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Abstract

On the one hand, agent-based software platforms are
commonly used these days, while on the other hand Seman-
tic Web technologies are also maturing. It is obvious that
the combination of these two technologies can bring added
value and create a Semantic Agent-based framework. How-
ever, it also known that these Semantic Web technologies,
and the reasoning on ontologies in particular, can rapidly
become resource intensive. In order to get a clear view on
this problem, we have developed OTAGen, a highly tunable
tool to generate ontologies and corresponding queries. The
generated ontologies can then be used to benchmark Se-
mantic Applications, and to define a suitable size and com-
plexity so that the agents can still handle the model.

1. Introduction

With the constant development and research in Semantic
Web technologies, its use in everyday software engineer-
ing is increasing. Not least because of newly developed
technologies, but certainly because of the improved perfor-
mance of the tools as well. This also results in an increas-
ing amount of application domains where these technolo-
gies are used. One of these new domains, is the support of
Context-Aware Services. An example of such a service is
the office location service, presented in [7].

Arguably the most important concept in the Semantic
Web is the ontology. It describes in a formal and well-
defined way the concepts and relationships between these
concepts in a particular system, often called the domain. To
do so, a machine-processable common vocabulary is used.
One of the languages used to describe such an ontology is
the Ontology Web Language, OWL. A detailed presenta-
tion on the characteristics and functionalty of OWL can be
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Figure 1. Example Ontology-based Agent platform

found in [5].

Apart from the fact that OWL is a well defined vocab-
ulary for describing a domain, because of its foundation in
Description Logics [1], the model described in this formal-
ism can be used as input for a reasoner to check consis-
tency of the model and infer extra knowledge out of the
model. This reasoning process is however a resource in-
tensive and sometimes time-consuming task. It is therefore
of paramount importance to have a good idea of the be-
haviour of the reasoning process in function of the OWL
constructs used in the underlying ontology. In the use case
presented later in this Section, we envisage to have a net-
work of collaborating Semantic agents. To guarantee the
proper functioning of this platform, we need to be sure that
each individual agent in the framework remains responsive
to incoming requests. It is this requirement that formed the
baseline of the research activity presented in this paper.

OTAGen, as the application has been named, was cre-
ated to support our research in Semantic Agent collabora-



tion frameworks. It is envisaged that in such frameworks,
the agents interally use ontologies in two ways. One way is
to store the data and information needed for exposing their
functionality to clients in a formal ontology-based manner.
Also the communication with the clients is in this way for-
mally defined. The other way is, by making use of the fact
that ontologies in general and OWL-DL in particular are
based on formal first-order logics, to internally reason on
the ontology models and infer extra knowledge out of the
asserted information. This inferred knowledge is then used
to create more intelligent agents.

An example of such a platform is illustrated in Figure
1. A number of different agents can be seen in this dia-
gram. Each of them provide different functionality and data,
e.g. tourist information, traffic updates, personal agenda
and todo-list information. But not only pure ontology-based
agents can be included. The ontology can also be used to
manage other agents, such as a media streaming server, to
provide the most appropriate video stream for a user with a
certain user profile. It is important to note howevever that
all these agents internally use the ontology technology, and
first-order logic reasoners. Each of these agents provides
a well-defined function, which can of course be combined
in order to give an even more intelligent service to the end-
users.

The main motivation for developing an application able
to create different ontologies, with varying complexity and
sizes was motivated by the research presented in the previ-
ous paragraphs. After all, the main idea behind ontologies is
to gather the knowledge, both explicit and implicit, about a
certain domain, and make this representation both machine
as well as human readable and interpretable. Because the
ontology generator now generates random models, it does
not contain any domain knowledge, neither any semantics
as such. It does however produce fully OWL-DL compliant
models of which the characteristics can be tuned and speci-
fied.

The use of ontologies as internal representation format,
and more specifically the use of reasoners introduce a cer-
tain overhead in the processing of that data and information.
In order to obtain a clear view on the impact of these new
semantic technologies, there is the need to clearly lay-out
which characteristics of the ontology greatly influence the
performance of the reasoning process. After all, one of the
most important performance metrics, the response time of
the agent, will be greatly influenced by the time needed to
complete the reasoning process. Previous research by the
authors [8, 9] has already shown a few indications towards
the reasoning bottlenecks.

The remainder of this paper is structured as follows. The
following section, Section 2 introduces the ontology tech-
nology and related work on benchmarking tools for Seman-
tic applications, while Section 3 details the generating pro-

cess and its main characteristics. The generated ontologies
have been used to evaluate the reasoning process and to find
certain characteristics of the ontology which greatly influ-
ence the performance of that process. This is presented in
Section 4. The last section of this paper presents our con-
clusions and introduces tracks for future research.

2. Related Work

This sections contains an overview of relevant related
work, preceded by a brief introduction to the ontology con-
cept in general.

Although originaly intended for the Semantic Web, on-
tologies find their application in a variety of areas. Exam-
ples of other domains where ontologies have been proved
useful are the creation of Location-Based Services or mak-
ing applications Context-Aware. The use of ontologies to
create Context-Aware applications is described in [2] and
[6].

Using one of the three sublanguage flavours of OWL,
OWL-Lite, OWL-DL and OWL-Full, one can easily adapt
to the required expressiveness at hand. Arguably the most
interesting sublanguage for many application domains is
OWL-DL, balancing great expressiveness with inferential
efficiency. The efficiency is guaranteed by the underlying
Description Logics [1]. Due to its foundation in Description
Logics, OWL-DL is also very flexible and computationally
complete.

In the context of ontology generation and benchmark-
ing, three aspects are highly important to remember. Firstly,
at the basis of every ontology, there is a T-Box. This is
the terminology layer in the ontology, which models the
concepts and their relationships, without instantiating these
concepts with actual data and information. Secondly, there
is of course data, called the A-Box in ontology terms. The
last important aspect of a usable ontology are the queries
that are commonly executed on the ontology.

Few ontology generators have been developed previ-
ously, with the aim to benchmark Semantic Applications
and profile their behaviour with different sizes and com-
plexity of the used ontology. Arguably the most well-
known is the Lehigh University Benchmark (LUBM)[3].
The LUBM features a university domain ontology, of which
the T-Box is statically defined. Also a set of 14 different
queries on this data is included in the benchmark. The size
of the dataset, the A-Box, can be specified and varied during
the generation process of the actual ontologies. The perfo-
mance of Semantic Applications can be measured accord-
ing to the behaviour of the application, processing the pre-
defined queries on the different generated ontologies.

An extension of LUBM, namely the University Ontol-
ogy Benchmark (UOB) has been presented in [4]. After
all, one of the big disadvantages of LUBM is the statically



Parameter: Abbreviation:
The seed seed

The number of classes nrClasses

The maximal depth of the classes and properties tree maxDepthTree
The maximal number of direct subclasses maxNrSubClasses
The maximal number of direct subproperties maxNrSubProps

The number of logically defined classes nrLogClasses

The minimal connectivity minConnectivity

The maximal percentage of object properties or datatype | maxPercComplDomRange

properties with complicated domain/range specifications

The number of clusters clusterCount

The minimum number of classes that have to be included | minClusterSize

in a cluster

The maximum number of classes that have to be included | maxClusterSize
in a cluster

Specifies the percentage of fully connected instances clusterConnectivity

lamongst the instances of the concepts in the cluster

The minimum number of individuals minNrindividuals

The percentage of individuals with instantiated datatype PercDatPropForindividual

properties

The number of times a non-functional datatype property nrDatPropinstances

is instantiated

The minimum number of times a non-functional object minObjPropInstances

property is instantiated (intra-cluster)

The maximum number of times a non-functional object maxObjProplnstances

property is instantiated (intra-cluster)

The number of query depths nrQueryDepth
The depth of query set number n queryDepthN
The number of queries generated for set number n queryCountDepthN

Figure 2. Adjustable parameters of the ontology generation pro-
cess

defined T-Box. UOB aims to overcome this problem, by in-
troducing OWL-Lite and OWL-DL constructs in the LUBM
T-Box, thus creating extra parameters to be varied. The per-
formance of Semantic Applications can again be measured
according to the characteristics of the generated ontologies.

However, still a more or less static T-Box is used, al-
though completed with additional OWL-Lite and OWL-DL
constructs. Our work with OTAGen aims to provide the
capibility of specifying a large range of parameters charac-
terising the ontology, both on T-Box as well as A-Box level.
OTAGen also generates queries, of which the characteristics
can be specified. All tunable parameters and characteristics
of the different generating procedures will be presented in
the future sections, more precisely in Section 3,

3. Functional description

In this section the details of the generation process and
its characteristics are discussed. An overview of the param-
eters of the program is shown in Figure 2. The workflow of
the generation process is illustrated in Figure 3. It also in-
dicates which parameters are used in each part of the work-
flow. A deterministic property is added to the generation
process by using a seed. Each time a set of parameters is
used with the same seed, the same ontology is generated.

A user first specifies the characteristics of the conceptual
level (T-Box): the number of (logical) classes, the proper-

ties of the subclass tree and the minimum connectivity. A
number of properties of the instance level (A-Box) can also
be adjusted, namely the number of individuals, datatype and
object property instances and clusters. Finally the charac-
teristics of the queries are identified, such as the number of
queries and their depth.

As aresult the conceptual (T-Box) and instance (A-Box)
level of an ontology are randomly and automatically gener-
ated. For this ontology also the queries are generated.

3.1 T-Box generator - stage 1

First the necessary simple (not logically defined) classes
are created and organized into a hierarchy. Their number
is determined by the nrClasses minus the nrLogClasses.
Whether a class has subclasses is chosen at random (chance
1 in 2), but the number of direct subclasses may not exceed
the maxNrSubClasses parameter. The depth of the trees is
also a random choice that doesn’t exceed the maxDepthTree
parameter.

Next the logically defined classes are generated. Their
number is determined by the nrLogClasses parameter.
There are 5 categories that can be created: union, intersec-
tion, complement, restriction and enumerated classes. A
category is chosen at random. The creation of classes of
the last two categories is postponed until the necessary in-
dividuals and properties are available. The classes used in
the definitions of the other categories are chosen at random
from the simple classes.

In the following step the datatype properties are gener-
ated for the simple and union classes. The datatype proper-
ties of the other categories of logically defined classes need
to be computed by a reasoner. The number of datatype
properties is a random number dependent on the number
of classes, but it is unlikely to have more than 100 datatype
properties. The range can be String or Integer. There is also
a random chance (1 in 2) that it is a functional property.

Now the object properties can be generated. Each class,
simple or union, must have at least minConnectivity object
properties with other classes (loops do not count).

The minimal number of object properties needed to ful-
fill this constraint are generated first by using the formula:
([number of union and simple classes] * [minimum connec-
tivity]) / 2.0. Sometimes an inverse property is generated
with a chance of one in five. Each property can get the fol-
lowing characteristics at random: functionality (chance 1 in
3), symmetry (chance 1 in 3) and transitivity (chance 1 in
2).

Properties can have subproperties which is determined
at random, with a chance of 1 in 4. The depth of the trees
and the number of direct subproperties cannot exceed the
parameters maxDepthTree and maxNrSubProps. The do-
mains of all the properties and the ranges of the object
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Figure 3. Workflow of the ontology generation process

properties are chosen at random but are dependent on the
domain/range of the superproperty if there is one. All the
properties can have a complicated domain and the object
properties can have a complicated range (consisting of more
than one class). This is chosen at random, with a chance
of 1 in 4 but the parameter maxPercComplDomRange en-
forces that only a certain percentage of properties can have
this characteristic.

Because of the random choice of domain and range, it is
possible that all the classes have not reached the minimum
connectivity yet. These classes are searched and additional
object properties are generated to resolve this issue.

Finally the object properties to connect the future enu-
merated classes are generated. We do this here so that they
can also be used for the generation of the restriction classes.
The amount to be generated is the number of enumerated
classes multiplied by the minimum connectivity.

In the last step before starting the generation of the in-
stance level, the restriction classes are created. For each re-
striction class, a random non-transitive, object or datatype
property is chosen. There are 5 categories of restrictions:
all values from, some values from, maximum cardinality,
minimum cardinality and strict cardinality. A category, the
cardinality (1,2,3 or 4) for the cardinality restrictions and
the range for the value restriction are defined at random.

3.2 A-Box generator - stage 1

The A-Box generating process is also split up into two
parts. The first and major part is to generate A-Box indi-
viduals for all classes, apart from the enumerated classes as
these can only be generated by the T-Box generator after a
number of individuals has been created.

At this first stage in the generating process, five subrou-
tines are executed. We start by establishing a number of
clusters. Clusters are defined as a number of classes which
more strongly relate to one another, then with other classes
in the ontology. The number of these clusters to be gener-
ated is defined by parameter clusterCount. The size of the
different clusters in randomly chosen between the values
specified by minClusterSize and maxClusterSize.

The second subroutine generates the actual A-Box in-
stances of the T-Box concepts. The parameter minlndivid-
ualCount is used as a strict basis for generating a random
number of instances of that particular concept, i.e. a ran-
dom class is chosen of which an individual is generated up
until all concepts satisfy the minimum amount as specified
by the value of this parameter. Also, the generated individ-
uals are declared to be AllDifferent, with the appropriate
OWL axiom.

Once the individuals and the clusters have been defined,
the individuals of the concepts belonging to the same clus-
ter have to be linked. As the definition of a cluster indi-
cates, the individuals of the concepts in such clusters are
strongly connected. The connectivity of these individuals is
specified by the parameter clusterConnectivity. The prop-
erties of the relationships used to link the individuals to-
gether, such as the functionality and symmetry but also the
domain and range as specified by the T-Box generting pro-
cess, are of course taken into account when inserting this
knowledge in the model. The parameters minObjectProper-
tyCount and maxObjectPropertyCount are used to calculate
between those two values a random amount of relationships
to be satisfied in case of a non-functional property.

The same procedure is repeated for linking individuals
breaching the borders of the clusters. As of course the con-
nectivity has to be less for these individuals, the comple-
ment of the value clusterConnectivity is used as value for
this property. Also, for non-functional properties the same
values are used for the inter-cluster case.

As a last step in this first part of the A-Box generating
process, the Datatype properties are defined. Here a pa-
rameter is used as well, namely individualDatatypeProper-
tyPercentage, to define the amount of individuals of a single
class that need to have there Datatype properties filled in.



3.3 T-Box generator - stage 2

An enumerated class is a collection of randomly chosen
individuals. The number of individuals chosen to make up
an enumerated class depends on the number of individuals
in the entire ontology. If there are less than 100 individuals,
arandom number between 0 and 10 is chosen, else a random
number between 0 and 100 is chosen.

The enumerated classes also need to fulfill the minimum
connectivity constraints. We already created the necessary
object properties for this in a previous step. We just need
to fill in their domain and range. Each time a random enu-
merated class is chosen as domain/range and a random - not
necessarily enumerated - class is chosen as range and do-
main. These properties are also given the classical charac-
teristics at random, being functionality, symmetry and tran-
sitivity.

3.4 A-Box generator - stage 2

Once the enumerated classes have been defined using the
individuals generated by the previous iteration in the A-Box
generating process, extra properties using these enumerated
classes as domain or range have been generated. During
the second phase of the A-Box generation, the same algo-
rithms are used as described in the first stage for linking the
concepts together, but this time only these extra enumerated
classes and relationships are taken into account.

3.5 Query generator

As an added value for OTAGen, situated in our overall
research concerning collaborating agents, a feature for gen-
erting queries has been implemented as well. These queries
are generated in the SPARQL[?] query language, and the
characteristics of these queries can be tuned using the pa-
rameter queryDepth, which specifies as the name suggests
the depth of the query. Also for every query depth, the
amount of different queries to be generated can be speci-
fied using the parameter queryCount.

The algorithm starts by choosing an arbitrary concept in
the ontology, and depending on a random number between
1 and 3 either following the ObjectProperty path to another
concept or querying for the value of a Datatype property.
In the second and third case the sub or superclass property
of the class of the individual currently considered is fol-
lowed. In order to insert extra complexity into the queries,
an individual is randomly chosen belonging to the concept
where the current querying path has arrived. We can do
this because the ontology is actually a graph structure and
SPARQL defines graph patterns to be satisfied. Thus by
walking through the graph of the ontology, and introduc-
ing randomness of values to be queries at each node in the

graph, a number of different queries with varying difficulty
can be generated.

4. Results

Using the tool described in the previous Section 3, a
number of experiments were conducted. We varied the pa-
rameters as described in Section 3, each time varying only
a single parameter in three different values and storing the
ontology on disk, thus creating each time a set of three on-
tologies.

All measurements were done on Linux Debian ma-
chines, running a 2.6.17.14 kernel. These machines each
have 512 MB of RAM available and an AMD Athlon(tm)
64 Processor 3000+ processor. The Java version used is
1.5.0.11, with Pellet 1.5.1 as reasoner. We have chosen Pel-
let as a reference reasoner, because of its use of the tableaux
algorithm, commonly used in other reasoners as well. The
reasoning metrics considered are the time needed for load-
ing the ontology into the reasoner, validating the loaded on-
tology, checking consistency of the ontology, classifying the
concepts in the T-Box of the ontology, and realizing the in-
dividuals in the A-Box according to the classified ontology.

In the following paragraphs, a number of interesting re-
sults are described giving an idea about the reasoning bot-
tlenecks. For the development of Semantic Web - based
reasoning enabled agent frameworks, these results should
be taken into account to tune the performance, e.g. the re-
sponsiveness of the agents in the framework.

A number of characteristics appear to have limited in-
fluence on the overall reasoning process. For one of the
characteristics, being the amount of datatype properties de-
fined per concept, we have measured average values of
16501.6ms, 16692ms and 17053.1ms for the total reason-
ing time. The values are all average values over a ten-time
execution of the reasoning on the same ontology. A stan-
dard deviation on the total time needed for the reasoning of
27,34ms, 27,49ms and 40,41ms has been measured on the
case of 3, 6 and 9 datatypeproperties per concept resp.

Important measurements for the agent use-case have
been obtained when varying the number of individuals.
These are plotted in the graph in Figure 4. Here the rea-
soning metrics are plotted against the ontology where the
parameter for the individuals to be created per concept is
varied from 10, over 20 to 30 individuals per concept. The
amount of concepts is maintained throughout all ontologies.
From this diagram it is clear that the realization routine
amounts for the largest part in the reasoning process, and
also that the amount of individuals greatly influences the
time needed for the realization routine. It will have to be
kept in mind that increasing sizes of A-Box will result in
a drastic perfomance decrease if all these individuals are
taken into account during the reasoning process. A stan-
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dard deviation on the total time needed for the reasoning
of 27.34ms, 225.04ms and 433.78ms has been measured on
the case of minimum 10, 20 and 30 individuals per concept
resp.

The last parameter to be described is the amount of log-
ically defined concepts present in the ontology. Again, in-
creasing the amount of such concepts results in heavy in-
crease in the processing time. In the ontologies plotted in
the diagram in Figure 5, we have maintained a constant
amount of individuals and relationships, but doubled each
time the amount of logically defined concepts, going from
1, over 2 to 4. It appears to result in a quadrupled increase
in reasoning time. Standard deviations of 2734ms, 20.51ms
and 11.57ms have been measured. This result together, with
the result from the previous diagram indicates an important
feature to be kept in mind when developing Semantic Agent
systems. Reassoning over many individuals with a consid-
erable amount of logically defined classes will drastically
decrease performance of the agent.

5. Conclusions and Future Work

In this paper we have presented our developments on
OTAGen, a highly-tunable ontology generator. An exten-
sive number of characteristics of the ontology can be con-
figured to generate ontologies according to the needs of the
user. As indicated as well in the conclusions found in [10],

such a generator is needed to get a clear overall picture of
the performance of these tools. We have seen that the over-
all perfomance of Semantic Aware applications and specif-
ically those using OWL and reasoners is greatly influenced
by the complexity of the different OWL constructs in the
ontology.

Our research and development was motivated by the
need to understand the behaviour of these technologies in
the context of Agent-Based ontology aware frameworks.
This behaviour was measured while varying the tunable
characteristics of the ontology. We will therefore take the
results into account in our future research, in particular the
influence of the A-Box size combined with the number of
logically defined classes.
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