

Node architectures for optical packet and burst switching

Chris Develder,

Jan Cheyns, Erik Van Breusegem, Elise Baert, Ann Ackaert, Mario Pickavet, Piet Demeester

> Dept. of Information Technology (INTEC) Ghent University, Belgium

- Introduction
 - OPS and OBS concepts
 - packet & header format
- Node architecture
 - functionality
 - optics and/or electronics
- Switch matrix
 - alternatives
 - scalability
- Contention resolution
 - problem & solution
 - buffer architectures

Introduction

Optical switches

INTEC

- Optical switching:
 - direct light from an input port to an output port
 - possibly wavelength conversion
- circuit-switching:
 - continuous bit-stream
 - pre-established light-paths
 - set-up: "manually" or dynamic
- packet/burst switching
 - chunks of bits, encapsulated in packets
 - packet header determines forwarding
 - e.g. label switching, GMPLS based

Packet format

- <u>fixed/variable</u> duration:
 - pro variable = no fragmentation/ reassembly, no padding, less header overhead
 - contra = long packets can block many short ones
- <u>slotted/unslotted</u> operation:
 - pro slotted = easier packet scheduling (synchronous switching)
 - contra = cost of synchronisation components
- OPS = fixed, slotted packets
- OBS = variable, unslotted packets

Header format

- position of header:
 - <u>in band</u>: header and payload are sent sequentially, separated in time
 - <u>out of band</u>: dedicated wavelength; also multi-wavelength headers have been proposed (see e.g. PS.TuC1)
 - out of band: orthogonal channel (e.g. DPSK)

Operation of OPS

- <u>fixed-length</u> packets, <u>slotted</u> operation
- header accompanies payload
 - contains necessary information to make forwarding decision
- each timeslot:
 - inspect packets at input ports
 - decide which packets can be forwarded without collisions
- switch is "memory-less"
 - no knowledge of packets scheduled in past is necessary

Operation of OBS (1)

- variable packet lengths, unslotted operation
- header is sent T_{offset} before payload
 - contains necessary information to make forwarding decision
 - functions as one-way reservation (allows timely config. of switch fabric)
 - offset decreases by header processing time per hop
- on arrival of header:
 - decide whether burst can be forwarded without collisions
 - make necessary resource reservations if burst is accepted
- switch needs "memory":
 - · keep track of reservations made in past

- Note: WR-OBS = wavelength-routed OBS
 - two-way reservation
 - "header" is sent from source to destination within OBS network
 - if all goes well, acknowledgement is sent back to source
 - this is more like wavelength switching at very short timescales
 - proposed by P. Bayvel et al. (Univ. College London, UK)

Node architectures

Functionality of an OPS/OBS node

- <u>input</u> interface:
 - header extraction (straightforward if out-of-band)
 - synchronisation: detect beginning of packet/burst
 - in OPS: align packets
- <u>switching</u> matrix (see further)
- <u>output</u> interface
 - e.g. regeneration of optical signal; header re-writing...

Combine the best of electronics and Optics

- optical packet switching "today":
 - header is processed electronically
 - payload is switched optically
 - \Rightarrow <u>optics</u> for capacity & switching, <u>electronics</u> for routing & forwarding
- note:
 - all-optical header processing is "under study" (e.g. PS2001, PThD5)

Oh-oh-oh*

: optical

*: G.Bennet, at www.lightreading.com

Node architectures for optical packet and burst switching - C. Develder, et al.

• O-O-O:

INTEC

- optical input interface, optical switch fabric, optical output interface
- payload is switched transparently, without leaving optical domain
- <u>pro</u> = bitrate-transparent
- <u>con</u> = still emerging technologies, BER can not be monitored
- O-E-O:
 - optical inputs, converted to el. for switching, back to optics at outputs
 - "opaque": no more all-optical; but straightforward grooming
 - pro = well established techno, 3R regen. "for free"
 - <u>con</u> = no bit-rate transparency, scalability ~ Moore's law
- OEO-O-OEO
 - (some) inputs and outputs: electronic 3R regen.
 - **pro** = scalability of optical switch fabric with 3R regen.
 - <u>con</u> = bit more complex than O-O-O

: electrical

Switch fabric

Overview of dominant architectures

- dominant approaches to optical switch fabrics:
 - MEMS (=micro-electro-mechanical systems)
 - broadcast-and-select (e.g. SOA-based)
 - AWG and tuneable lasers
- MEMS:
 - principle:

- main components:
 - tiny mirrors (2D pop-up, or 3D tilting)
- characteristics
 - low loss, good scalability (=high port counts)
 - but... too slow for packet switching (ns timescale not feasible)

Node architectures for optical packet and burst switching - C. Develder, et al.

• principle: (e.g. David, http://david.com.dtu.dk; ECOC'01)

- selectors
- characteristics:
 - split losses: calls for regeneration
 - inherent multicast capability

AWG based switch

• principle: (e.g. Stolas, http://www.ist-stolas.org)

- AWG
- characteristics:
 - passive component, no split losses
 - multicast quite complex

- switch dimensions limited by
 - B&S: split losses
 - AWG: tuneability range of TWCs
- Possible solution:
 - multi-stage switches, e.g. Clos-networks

Node architectures for optical packet and burst switching - C. Develder, et al.

- slotted OPS
 - re-arrangeable non-blocking
 - second-stage switches: $k \ge n$
- unslotted OBS
 - fully non-blocking
 - second-stage switches: $k \ge 2n-1$

⇒ slotted OPS needs only half as much second stage switches

Node architectures for optical packet and burst switching - C. Develder, et al.

- <u>note</u>: if wavelength conversion is allowed, third switching stage can be eliminated
- e.g. slotted OPS:
 - F fibres, W wavelengths per fibre
 - make 1st and 3rd stage per input/output fibre

Contention resolution

- Problem:
 - two or more packets contend for same resource: destined for same outgoing port at the same time
- Solutions:
 - deflection routing
 - wavelength conversion
 - buffering: optical buffer = Fibre Delay Lines (FDLs)

What solution to choose?

- Deflection:
 - packets are "stored" in network:
 - increases load, increases delay
 - only works for low loads
- Wavelength conversion:
 - no packet storage
 - allows high network throughput, no increased delay

• Buffering:

- local packet storage at nodes
- small delay penalty

⇒ Use combination of wavelength conversion and buffers

Buffer architectures

- feed-forward vs feed-back
 - feed-forward: input or output buffering
 - feed-back: shared, recirculating FDLs
- single stage vs multiple stage
 - multiple stages separated by switching elements
 - e.g.: each stage different delay resolution ("units", "tens", "hundreds"...)
- choice of FDL lengths
 - multiple FDLs: multiples of "unit", resolution D
 - uniform/non-uniform (D,2D,3D or something else)

feed-forward vs feed-back

single vs multiple stages

OPS/OBS: fixed vs increasing FDLs

- sample results for fixed-length, slotted OPS
- Increasing FDL lengths give far lower PLRs (order of magnitude or more)
- "penalty": reordering of packets, higher delays

see COIN.TuD1 for details

OBS: choice of granularity

- Optimal granularity D:
 ⇒Non-trivial choice!
- Tradeoff between resolution and buffering capacity
 - small D: small gaps, but limited buffer depth
 - large D: large buffer depth, but large gaps between packets
- Function of
 - load
 - traffic profile (packet size distribution, burstiness...)

sample results for slotted switch with output buffering, single wavelength per fibre, geometric distr. packet lengths, bernouilli arrivals, 20 FDL lengths

- Void creation in case of variable packet-lengths (OBS):
 - FDL buffer offers discrete set of delays (in contrast to e.g. electronic RAM)
 - gaps between successive packets: "voids"

⇒Need for intelligent buffer scheduling if we want to improve link throughput (i.e. void filling)

example: we need delay d, but FDL only offers $D \Rightarrow$ gap of D-d is created; void filling will attempt to insert packet in this gap

- wavelength conversion greatly reduces need for buffering
- feed-back architecture allows sharing of FDL resources among all output ports
- when using different delay lengths, this calls for more intelligent buffer scheduling; for variable-length packets (OBS) the issue of void creation arises
- OBS: choice of delay lengths, i.e. the FDL granularity, is non-trivial issue

Conclusions

Summary

- reviewed OPS/OBS concepts
 - OBS as possible 1st step
 - OPS: fully exploit fast switching technologies
- switch architectures:
 - MEMS: too slow for OPS
 - broadcast & select: allows multicast, but splitting losses
 - AWG: passive core component, but no multicast
 - multi-stage architecture to increase scalability (OPS fewer switching elements than OBS)
- buffering:
 - push buffers to network edges
 - use FDLs to lower PLR in core
 - non-trivial choice of FDL granularity for OBS
 - quite complex scheduling for OBS

That's all, folks!

... thanks for your attention