@ Influence of Recovery

Time on TCP Behaviour

Chris Develder

Didier Colle

Pim Van Heuven
Steven Van den Berghe
Mario Pickavet

Piet Demeester

)

ﬁ INn

INTEC

- Network recovery: backup paths to recover
traffic lost due to network failures

”’{§:t~\ 7
N

A

S

- Many guestions remain to be answered:

< How fast should this happen? Is fast protection better,
or isn't it desirable? How does e.g. TCP react to
protection switches?

- ExXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- FInding the "best" delay

- Conclusion

= = Experim

—_—— — — — —- — — — — — — — —

. :access node ¢) :LSR |

| — — :working path A-B |
| — — raccess link

eeeeee= : backup path A-B |

. | == «= :packbone link == == :working path C-D
LSR 8 LSR 9 LSR 10 LSR 11 L

- Two sets of TCP flows:
— A® B: the "(protection) switched flows"
— C® D: the "fixed flows"

- MPLS paths and pre-established backup
paths

— to be able to influence exact timing
— protection switch: "manually”

LSR 4 LSR 5 LSR 6 LSR 7 LT T T T T T LT T T T T T
. :access node .’: Y :LSR |

| — — :working path A-B |
| — — raccesslink
|

| = == :backbone link == == :working path C-D
LSR 8 LSR 9 LSR 10 LSR 11 L

eeeeee= : backup path A-B |

- Simulation scenario:
— start of TCP sources: random
— [0-10s]: link up

— [10-20s[: link down; protection switch after
delay 0/50/1000 ms

— [20-30s]: link up again

e Experim

- FYIl: TCP NewReno mechanisms (RFC 2582)

= slow start: (cwnd £ sstresh)

— increase cwnd: +1 per ACK

— set sstresh=cwnd/2; cwnd=1 after timeout
= congestion avoidance: (cwnd > sstresh)

— If cwnd reaches sstresh

— linear increase of cwnd
= fast recovery, fast retransmit:

— if packet loss: retransmit; sstresh=cwnd/2;
cwnd=sstresh

— three duplicate ACKs: sstresh*=1/2; cwnd=sstresh+3
< newreno: extend fast recovery and fast retr.

— for each extra duplicate ACK: cwnd++; stay in fast
recovery

- ExXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- Finding the "best" delay

- Conclusion

)

72 Qualitative

INTEC — what wi

- When a failure occurs:
— switched flows join fixed ones
— backbone link will become bottleneck
— due to overload, packet losses will occur
— TCP will react by backing off

)

7\ Qualitative

INTEC — what wil

- Influence of protection switch delay:

— no delay:
< immediate buffer overflow on bottleneck backbone
link
= both fixed and switched flows are heavily affected
— small delay:

= switched flows have backed off somewhat when
joining the fixed ones

« fixed flows are less affected
— large delay:
« switched flows fall back to zero

e rather smooth transition of bottleneck from access to
backbone

)

7\ Qualitative

INTEC — simulation p

- Simulation parameters:

— humber of TCP NewReno sources:
e 5 fixed,
« 5 switched

— access bandwidth: 8 Mbit/s
— backbone bandwidth: 10 Mbit/s

— propagation delay: 10ms/link

e this results in a RTT of 100-150ms
(+20ms in case of protection switch)

— gueue size: 50 packets
— max. TCP window size set at 30

Qualitative
— bandwidth a

bandwidth occupation

queue occupation

IS .1
L RN

20000

immediate overflow!

mﬂ llﬂl.l"l

[E0
e T-F

ol 00 ¥ A4
1

100 DR ey R

00000

P01\ RCT) | O N A PSPPSR N F S

200000 /

00002 LIk L L i U
! ! bme (3]
150000

orotection switching delay (Oms)

100%

e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B O link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100%;
immediate queue overflow;
oscillations due to TCP behaviour

O bandwidth drops: fixed flows are
affected due to losses in backbone

B bandwidth seriously drops;
recovery is rather slow!

= after failure: access links are bottleneck (queues
in access are being filled again)

)

Qualitative
— bandwidth a

- Small protection switching delay (50ms)

bandwidth occupation

queue occupation

55000

11—

PN {1 s o [P

40000
25000

S0000

SEDI e e

=000

rk 5-10
lrkC-p

Cdelay

—Iirk A

000

o5ma-—---

(e}

15,0000 200000

e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B © link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100%;
NO immediate queue overflow;
oscillations due to TCP behaviour

O bandwidth drops: fixed flows are
affected AFTER CERTAIN DELAY

B bandwidth drops less;
recovery apparently is faster

= after failure: access links are bottleneck (queues
in access are being filled again)

Qualitative
— bandwidth a

- Large protection switching delay (1000ms)

bandwidth occupation

queue occupation

rk5-10
Tk A

(11T n o TP DU S | . -Fl-- i

120000

100000

EO000

AD OB - e e e

;ﬂm;.:.j.....g.

000

adual shift o
bpttleneck

4/

10,0000

150000

i bme (3]
20,0000

e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B O link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100% after delay;
NO immediate queue overflow:
very gradual shift of bottleneck

O bandwidth drops: fixed flows are
affected only after rather long delay

B bandwidth drops to zero;
very gradual recovery

= after failure: access links are bottleneck (queues
in access are being filled again)

- EXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- Finding the "best" delay

- Conclusion

)

N TC

INTEC

- Previous slides showed througput, window
size evolution and queue occupation:
— this learnt something about what happens,
— but it isn't obvious to decide what is best from
these graphs

- So: what matters to end user?

— end user of TCP only cares about how long it
takes to transfer file, access webpage, etc.

— what matters is GOODPUT: number of bytes
successfully transported end-to-end per
second

(@

INTEC

T

- Goodput evolution for different delays per
flow category:

@ no delay:

2.500 k

1.250 k

Ok

TP,

(A
,, SATATATATASATATATATA

A

—e— switch
0.000

—&— switch
0.050

switch
1.000

——fix
0.000

—m— fix
0.050

fix
1.000

switched
flows

fixed
flows

= switched lose
significantly

= fixed show drop too

B 50 ms delay:

= switched lose as much
as for delay 0, but

= drop in goodput for
fixed is smaller
1000 ms delay:

= switched lose a lot
more and recover more
slowly

= drop in goodput for
fixed is less (of course)

A 3

INTEC

- Goodput evolution for different delays over
aggregate of all flows:

e The difference between the
three cases is limited to the
first seconds after the failure

2.000 Kk

—e—delay

0.000 e For the first second, the 50
ms case has 28.72% better
total goodput than the O ms
case

| —=—delay T
0.050 flows

1.000 k

28.72% O switched
1,000 k 1 flows
delay
1.000
7\ ~ fixed
flows
0 k IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 10 20 30 ok . .
delay O ms delay 50 ms /

)

@

INTEC

- Preliminary conclusion:

— extremely fast protection switching is not a
must

— It is better to have a certain delay than none at
all,

— but finding the optimal value doesn't appear to
be simple

(dependent on round trip time for TCP flows, and also on
traffic load)

- EXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- Finding the "best" delay

- Conclusion

)

@\ More detall

INTEC

- Main cause for better goodput with delay
50 ms:

= delay O ms: TCP sources suffering multiple packet
losses recover slowly if they stay in fast retransmit &
recovery phase
P only one packet per round trip time (RTT) is
transmitted

= delay 50 ms: some TCP flows fall back to slow start
(due to timeout)
b this gives better goodput! (more than one
packet/RTT)

@ More detal

INTEC

- lllustration by packet traces

se0. At
10,0000 I e horizontal X-axis: time (S)
----- lr :
1] ol
gsmllj s S%e ”“-}flow 3 - vertical Y-axis: sequence
. mmj ! T !,', number of packet or ACK
switched sso00-f 1 fopee : 5 }flow 2
flows s.uunul L i I] ’ ’ < markers:
=t ; 0 THNY
7.5000 ! IE!} I‘? ? i i" i! }ﬂOW 1 H packet sent
70000 ‘ L -!j l'; l” l! ! ack recieved
~ 101 DDDD 11.0000 12 DDDD 13,0000 14 DDDD 15 DDD[
m packet dropped
80, HE.
(cooold Li NL R ack dropped
ol
4.5|:n:|.;.i y !' g',y y ! y P ’El I; Ei ; :;! }ﬂOW 3 e how it works:
OO 108 100 100 o Y L L8 1 ot i .
. o R T T e 1 oy — packet Is sen
:.:leed 3.5000 ’ﬂ"'. I!'I }] ! i!l!—'l'l"‘r!j‘l P
ows : :
i A .LL, : — ACK is received
| — new packet is sent

] 1 [] |-
’ o il l" i | p 'ﬂ ’|’
258000/ - | | i]
o A
2.0000 [| I! Al .” 4 !
13 [I I N | . T
100000 110000 120000 130000 14.0000 150000

r

)

More detail

- lllustration by packet traces

S8, NF.
100000 (S T ' Delay O ms:
[| ! 1
e.snnn!--' : @ , ¢ ! i ,%
9.0000- < F { < at time of link failure: losses of packets that
switched | Lqualh) A | are being transported
< : i !); =t ik P
flows ool L) L (switched flows only)
7 5000 '_".'(!! ;tl @'. ! .!f"- ., _ - -
ldL WA i ‘!" i = almost immediately after failure: buffer
- ?.DDDiDDg\IDD 11.0000 1.20.060 .13000011140.030 15IIIIIIII;[Overflow On bOttIeneCk Ilnk
' ' | | ' ' (affects ALL flows)
S8 AF.
[sooonlL = TCP algortithm: duplicate ACKs cause source

45000 , ,'I £y I e
a— i' r |
%

fixed | o @ _____ i

to go into fast retransmit & fast recovery;
only 1 packet is retransmitted per RTT

35000 - .
flows I} = next buffer overflows: same applies, but less
3-”””“! 'I 7 packets per source are lost
2 5000 - 0‘1_::) |
\ LY lﬁ 1 .:- [T | r 1 ni

10 EIEIEIEI 11.0000 12.0000 13.0000 14.EIEIEIEI 15.0001

(@

INTE

C

More detal

- lllustration by packet traces

switched
flows

fixed
flows

(~ 10.0000 .I
' '

FE0. MF.

AT BN il:
.:!:..JI- Ly .l”

9.0000" s L] <
a.5nnn’ !ﬁ') : ! l“ !
s.uuuuL ,-L £ ,. ''''' l!’ '
7 5000 !r }!F !I‘r J':}r 'rp. ! :
7.0000 ‘L ’I ll? f;? llii l” !
(se::nntlnn” & A iy |
ot LA
4.uuuuul. l l l [. l _l I’ |!|l li': .II
SR
3.uuucl 2! II 'I 'I] -l’i II i l .':
el TP AT
20000 I[IILl | Ilpull .i-lln.t.r rlp l!lll II“l J

10.0000 110000 120000 130000 140000 150000

Delay 50 ms:

* No immediate
buffer overflow

e some sources
timeout and fall
back to slow start
P faster recovery!

= fixed are not

affected until first i

buffer overflow

e overall faster
recovery

S ORI LA L 1 LW
| I TS UL Al
'[T SO W LA
a.onnolﬂ a0 LI LY

1 o s AR JAU gl .H'
TR LAY

10,0000 11.0000 120000 130000 140000 150000

6. hr.

5000 L] gl = et Ot oA

H TN TR R T

402::L fiid sl t“l ” L IF
e AL A T
Il l'i Lt
E.SDDDIJ !l gl ‘ Ii' lil'!“ ’i "::

i —l .!' Lty

i3 11 1E 11 : nl R r [] ’
10,0000 110000 12l EIEIEIEI 13 EIEIEIEI 14.0000 15.0000

- EXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- FInding the "best" delay

- Conclusion

)

(/@) Finding the

INTEC

- Previous slides:
— Indication of importance of delay for goodput

— "special" circumstances: same RTT for all TCP
flows, all TCP sources originated at same node

- Therefore:

— mixture of different RTTs
— different source nodes for different flows

= = Finding the

I JPEN |
|) laccess i) LSR

| -* node |

|

| = == :working |
| — — ! access A-B

link eeee=== : backup |

| A-B |

| —— : backbone == == :working |

| link C-D |

S —

- ExXperiment set-up:
— propagation delay:
= first access link: random in [1ms,100ms|
= all other links: 1ms

— number of sources: 10 fixed, 10 switched
- Scenario (times in s):
— TCP sources randomly start in [0.1,2.1]
— [0,5][link up; [5,10[link down; [10,15[link up

)

AN Finding the

INTEC

- Analysis:
— 240 different runs (other random seeds)
— distrubution of f(x)=Good(x)/Good(0),

e Good(x)=total goodput over all flows during first 1.5
seconds after link failure for a protection switch delay
of x milliseconds

— Interpretation of f(x):

e if f(X)>100% then delay of x results in better goodput
than no delay at all

e if f(X)<100% then delay of x results in worse goodput
than no delay at all

e e.g. f(X)=110% means delay of x gives 10% more
goodput than no delay at all

)

Finding th

INTEC
- Analysis: distrubution of
f(x)=Good(x)/Good(0)
access = 90% backbone 0.000 = X-axis: f(x):
TCP NewReno ' goodput compared to
10% + 0.050 goodput for delay O ms
R (same random seed)
¢ 0.250
* 0.500 e Y-axis: P[f(x)]:
probability of finding
1.000 f(x) (histogram)
5% fit < all delays result in
— fit better goodput than no
. delay at all:
t
! € delay 50ms: 11.89%
— fit
delay 250ms: 7.55%

EEe :
. ° \‘$0 oo — fit
0% @ delay 500ms: 6.91%

S rel. amount
™~ of goodput M delay 1000ms: 3.98%

70%

80%

90%
100%
110%
120%
130%
140%
150%
160%

- EXperiment set-up

- Qualitative discussion

- TCP goodput

- More detailed analysis

- FInding the "best" delay

- Conclusion

@

INTEC

- Conclusions:

= \We have studied the effect of recovery on TCP flows

e From simulation results, we have inferred that
recovery time doesn't necessarily need to be as small
as possible

= For TCP traffic, introducing a protection switch delay
may be useful

- Future work:

= Pursue detailed analysis of simulation results; e.g.
look at what happens after link recovery

e Extend investigation to other (larger, more complex)
topologies.

the

)

Thanks for your attention...
Please feel free to ask any questions you

might have!

