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- Network recovery: backup paths to recover
traffic lost due to network failures
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- Many guestions remain to be answered:

< How fast should this happen? Is fast protection better,
or isn't it desirable? How does e.g. TCP react to
protection switches?
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- Two sets of TCP flows:
— A® B: the "(protection) switched flows"
— C® D: the "fixed flows"

- MPLS paths and pre-established backup
paths

— to be able to influence exact timing
— protection switch: "manually”
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- Simulation scenario:
— start of TCP sources: random
— [0-10s]: link up

— [10-20s[: link down; protection switch after
delay 0/50/1000 ms

— [20-30s]: link up again
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- FYIl: TCP NewReno mechanisms (RFC 2582)

= slow start: (cwnd £ sstresh)

— increase cwnd: +1 per ACK

— set sstresh=cwnd/2; cwnd=1 after timeout
= congestion avoidance: (cwnd > sstresh)

— If cwnd reaches sstresh

— linear increase of cwnd
= fast recovery, fast retransmit:

— if packet loss: retransmit; sstresh=cwnd/2;
cwnd=sstresh

— three duplicate ACKs: sstresh*=1/2; cwnd=sstresh+3
< newreno: extend fast recovery and fast retr.

— for each extra duplicate ACK: cwnd++; stay in fast
recovery
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- When a failure occurs:
— switched flows join fixed ones
— backbone link will become bottleneck
— due to overload, packet losses will occur
— TCP will react by backing off
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- Influence of protection switch delay:

— no delay:
< immediate buffer overflow on bottleneck backbone
link
= both fixed and switched flows are heavily affected
— small delay:

= switched flows have backed off somewhat when
joining the fixed ones

« fixed flows are less affected
— large delay:
« switched flows fall back to zero

e rather smooth transition of bottleneck from access to
backbone
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- Simulation parameters:

— humber of TCP NewReno sources:
e 5 fixed,
« 5 switched

— access bandwidth: 8 Mbit/s
— backbone bandwidth: 10 Mbit/s

— propagation delay: 10ms/link

e this results in a RTT of 100-150ms
(+20ms in case of protection switch)

— gueue size: 50 packets
— max. TCP window size set at 30
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e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B O link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100%;
immediate queue overflow;
oscillations due to TCP behaviour

O bandwidth drops: fixed flows are
affected due to losses in backbone

B bandwidth seriously drops;
recovery is rather slow!

= after failure: access links are bottleneck (queues
in access are being filled again)
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- Small protection switching delay (50ms)

bandwidth occupation

queue occupation
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e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B © link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100%;
NO immediate queue overflow;
oscillations due to TCP behaviour

O bandwidth drops: fixed flows are
affected AFTER CERTAIN DELAY

B bandwidth drops less;
recovery apparently is faster

= after failure: access links are bottleneck (queues
in access are being filled again)
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- Large protection switching delay (1000ms)

bandwidth occupation

queue occupation
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e pefore failure: access links are bottleneck

B link is filled for 80%; queue empty
B O link is filled for 100%; queue filled

e during failure: bottleneck shifts to backbone

B link gets filled for 100% after delay;
NO immediate queue overflow:
very gradual shift of bottleneck

O bandwidth drops: fixed flows are
affected only after rather long delay

B bandwidth drops to zero;
very gradual recovery

= after failure: access links are bottleneck (queues
in access are being filled again)
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- Previous slides showed througput, window
size evolution and queue occupation:
— this learnt something about what happens,
— but it isn't obvious to decide what is best from
these graphs

- So: what matters to end user?

— end user of TCP only cares about how long it
takes to transfer file, access webpage, etc.

— what matters is GOODPUT: number of bytes
successfully transported end-to-end per
second
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- Goodput evolution for different delays per
flow category:

@ no delay:
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= switched lose
significantly

= fixed show drop too

B 50 ms delay:

= switched lose as much
as for delay 0, but

= drop in goodput for
fixed is smaller
1000 ms delay:

= switched lose a lot
more and recover more
slowly

= drop in goodput for
fixed is less (of course)
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- Goodput evolution for different delays over
aggregate of all flows:

e The difference between the
three cases is limited to the
first seconds after the failure
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- Preliminary conclusion:

— extremely fast protection switching is not a
must

— It is better to have a certain delay than none at
all,

— but finding the optimal value doesn't appear to
be simple

(dependent on round trip time for TCP flows, and also on
traffic load)
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- Main cause for better goodput with delay
50 ms:

= delay O ms: TCP sources suffering multiple packet
losses recover slowly if they stay in fast retransmit &
recovery phase
P only one packet per round trip time (RTT) is
transmitted

= delay 50 ms: some TCP flows fall back to slow start
(due to timeout)
b this gives better goodput! (more than one
packet/RTT)
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- lllustration by packet traces
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- lllustration by packet traces
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- lllustration by packet traces
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- Previous slides:
— Indication of importance of delay for goodput

— "special" circumstances: same RTT for all TCP
flows, all TCP sources originated at same node

- Therefore:

— mixture of different RTTs
— different source nodes for different flows
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- ExXperiment set-up:
— propagation delay:
= first access link: random in [1ms,100ms|
= all other links: 1ms

— number of sources: 10 fixed, 10 switched
- Scenario (times in s):
— TCP sources randomly start in [0.1,2.1]
— [0,5][ link up; [5,10[ link down; [10,15[ link up
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- Analysis:
— 240 different runs (other random seeds)
— distrubution of f(x)=Good(x)/Good(0),

e Good(x)=total goodput over all flows during first 1.5
seconds after link failure for a protection switch delay
of x milliseconds

— Interpretation of f(x):

e if f(X)>100% then delay of x results in better goodput
than no delay at all

e if f(X)<100% then delay of x results in worse goodput
than no delay at all

e e.g. f(X)=110% means delay of x gives 10% more
goodput than no delay at all



)

Finding th

INTEC
- Analysis: distrubution of
f(x)=Good(x)/Good(0)
access = 90% backbone 0.000 = X-axis: f(x):
TCP NewReno ' goodput compared to
10% + 0.050 goodput for delay O ms
R (same random seed)
¢ 0.250
* 0.500 e Y-axis: P[ f(x) ]:
probability of finding
1.000 f(x) (histogram)
5% fit < all delays result in
— fit better goodput than no
. delay at all:
t
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- Conclusions:

= \We have studied the effect of recovery on TCP flows

e From simulation results, we have inferred that
recovery time doesn't necessarily need to be as small
as possible

= For TCP traffic, introducing a protection switch delay
may be useful

- Future work:

= Pursue detailed analysis of simulation results; e.g.
look at what happens after link recovery

e Extend investigation to other (larger, more complex)
topologies.
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Thanks for your attention...
Please feel free to ask any questions you

might have!




