
Influence of Recovery
Time on TCP Behaviour

Chris Develder
Didier Colle

Pim Van Heuven
Steven Van den Berghe

Mario Pickavet
Piet Demeester

Introduction

· Network recovery: backup paths to recover
traffic lost due to network failures

· Many questions remain to be answered:
• How fast should this happen? Is fast protection better,

or isn't it desirable? How does e.g. TCP react to
protection switches?

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

Experiment set-up

· Two sets of TCP flows:
– A→B: the "(protection) switched flows"
– C→D: the "fixed flows"

· MPLS paths and pre-established backup
paths
– to be able to influence exact timing
– protection switch: "manually"

A B

C D

LSR 4 LSR 5 LSR 6 LSR 7

LSR 8 LSR 9 LSR 10 LSR 11

: access node : LSR

: working path A-B

: backup path A-B

: working path C-D

: access link

: backbone link

Experiment set-up

· Simulation scenario:
– start of TCP sources: random
– [0-10s[: link up
– [10-20s[: link down; protection switch after

delay 0/50/1000 ms
– [20-30s[: link up again

A B

C D

LSR 4 LSR 5 LSR 6 LSR 7

LSR 8 LSR 9 LSR 10 LSR 11

: access node : LSR

: working path A-B

: backup path A-B

: working path C-D

: access link

: backbone link

Experiment set-up

· FYI: TCP NewReno mechanisms (RFC 2582)
• slow start: (cwnd ≤ sstresh)

– increase cwnd: +1 per ACK
– set sstresh=cwnd/2; cwnd=1 after timeout

• congestion avoidance: (cwnd > sstresh)
– if cwnd reaches sstresh
– linear increase of cwnd

• fast recovery, fast retransmit:
– if packet loss: retransmit; sstresh=cwnd/2;

cwnd=sstresh
– three duplicate ACKs: sstresh*=1/2; cwnd=sstresh+3

• newreno: extend fast recovery and fast retr.
– for each extra duplicate ACK: cwnd++; stay in fast

recovery

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

Qualitative discussion
— what will happen?

· When a failure occurs:
– switched flows join fixed ones
– backbone link will become bottleneck
– due to overload, packet losses will occur
– TCP will react by backing off

Qualitative discussion
— what will happen?

· Influence of protection switch delay:
– no delay:

• immediate buffer overflow on bottleneck backbone
link

• both fixed and switched flows are heavily affected
– small delay:

• switched flows have backed off somewhat when
joining the fixed ones

• fixed flows are less affected
– large delay:

• switched flows fall back to zero
• rather smooth transition of bottleneck from access to

backbone

Qualitative discussion
— simulation parameters

· Simulation parameters:
– number of TCP NewReno sources:

• 5 fixed,
• 5 switched

– access bandwidth: 8 Mbit/s
– backbone bandwidth: 10 Mbit/s
– propagation delay: 10ms/link

• this results in a RTT of 100-150ms
(+20ms in case of protection switch)

– queue size: 50 packets
– max. TCP window size set at 30

Qualitative discussion
— bandwidth and queues

· No protection switching delay (0ms)
A B

C D

ba

nd
w

id
th

 o
cc

up
at

io
n

 q
ue

ue
 o

cc
up

at
io

n

• before failure: access links are bottleneck

• during failure: bottleneck shifts to backbone

• after failure: access links are bottleneck (queues
in access are being filled again)

slow!
link is filled for 80%; queue empty
link is filled for 100%; queue filled

link gets filled for 100%;
immediate queue overflow;
oscillations due to TCP behaviour

bandwidth drops: fixed flows are
affected due to losses in backbone

bandwidth seriously drops;
recovery is rather slow!

immediate overflow!

100%

bandwidth drops

Qualitative discussion
— bandwidth and queues

· Small protection switching delay (50ms)
A B

C D

ba

nd
w

id
th

 o
cc

up
at

io
n

 q
ue

ue
 o

cc
up

at
io

n

NO immediate overflow!

• during failure: bottleneck shifts to backbone

• after failure: access links are bottleneck (queues
in access are being filled again)

link gets filled for 100%;
NO immediate queue overflow;
oscillations due to TCP behaviour

bandwidth drops: fixed flows are
affected AFTER CERTAIN DELAY

bandwidth drops less;
recovery apparently is faster

faster...

delay
• before failure: access links are bottleneck

link is filled for 80%; queue empty
link is filled for 100%; queue filled

Qualitative discussion
— bandwidth and queues

· Large protection switching delay (1000ms)
A B

C D

ba

nd
w

id
th

 o
cc

up
at

io
n

 q
ue

ue
 o

cc
up

at
io

n

• during failure: bottleneck shifts to backbone

• after failure: access links are bottleneck (queues
in access are being filled again)

• before failure: access links are bottleneck
link is filled for 80%; queue empty
link is filled for 100%; queue filled

link gets filled for 100% after delay;
NO immediate queue overflow:
very gradual shift of bottleneck

bandwidth drops: fixed flows are
affected only after rather long delay

bandwidth drops to zero;
very gradual recovery

delay

slow!

gradual shift of
bottleneck

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

TCP goodput

· Previous slides showed througput, window
size evolution and queue occupation:
– this learnt something about what happens,
– but it isn't obvious to decide what is best from

these graphs
· So: what matters to end user?

– end user of TCP only cares about how long it
takes to transfer file, access webpage, etc.

– what matters is GOODPUT: number of bytes
successfully transported end-to-end per
second

TCP goodput

· Goodput evolution for different delays per
flow category:

0 k

1.250 k

2.500 k

0 10 20 30

switch
0.000

switch
0.050

switch
1.000

fix
0.000

fix
0.050

fix
1.000

switched
flows

fixed
flows

no delay:
• switched lose

significantly
• fixed show drop too

50 ms delay:
• switched lose as much

as for delay 0, but
• drop in goodput for

fixed is smaller

1000 ms delay:
• switched lose a lot

more and recover more
slowly

• drop in goodput for
fixed is less (of course)

TCP goodput

· Goodput evolution for different delays over
aggregate of all flows:

• The difference between the
three cases is limited to the
first seconds after the failure

• For the first second, the 50
ms case has 28.72% better
total goodput than the 0 ms
case

0 k

1.000 k

2.000 k

0 10 20 30

delay
0.000

delay
0.050

delay
1.000

0 k

1,000 k

delay 0 ms delay 50 ms

switched
flows

fixed
flows

28.72%

all
flows

TCP goodput

· Preliminary conclusion:
– extremely fast protection switching is not a

must
– it is better to have a certain delay than none at

all,
– but finding the optimal value doesn't appear to

be simple
(dependent on round trip time for TCP flows, and also on
traffic load)

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

More detailed analysis

· Main cause for better goodput with delay
50 ms:

• delay 0 ms: TCP sources suffering multiple packet
losses recover slowly if they stay in fast retransmit &
recovery phase
⇒ only one packet per round trip time (RTT) is
transmitted

• delay 50 ms: some TCP flows fall back to slow start
(due to timeout)
⇒ this gives better goodput! (more than one
packet/RTT)

More detailed analysis

· Illustration by packet traces
• horizontal X-axis: time (s)

• vertical Y-axis: sequence
number of packet or ACK

• markers:
<packet sent
<ack recieved
<packet dropped
<ack dropped

flow 1

flow 2

flow 3

switched
flows

fixed
flows

flow 1

flow 2

flow 3 • how it works:

– packet is sent

– ACK is received

– new packet is sent

More detailed analysis

· Illustration by packet traces

switched
flows

fixed
flows

• at time of link failure: losses of packets that
are being transported
(switched flows only)

Delay 0 ms:

• almost immediately after failure: buffer
overflow on bottleneck link
(affects ALL flows)

• TCP algortithm: duplicate ACKs cause source
to go into fast retransmit & fast recovery;
only 1 packet is retransmitted per RTT

• next buffer overflows: same applies, but less
packets per source are lost

More detailed analysis

· Illustration by packet traces

switched
flows

fixed
flows

• no immediate
buffer overflow

Delay 50 ms:

• some sources
timeout and fall
back to slow start
⇒ faster recovery!

• fixed are not
affected until first
buffer overflow

• overall faster
recovery

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

Finding the best delay

· Previous slides:
– indication of importance of delay for goodput
– "special" circumstances: same RTT for all TCP

flows, all TCP sources originated at same node

· Therefore:
– mixture of different RTTs
– different source nodes for different flows

Finding the best delay

· Experiment set-up:
– propagation delay:

• first access link: random in [1ms,100ms[
• all other links: 1ms

– number of sources: 10 fixed, 10 switched
· Scenario (times in s):

– TCP sources randomly start in [0.1,2.1]
– [0,5[link up; [5,10[link down; [10,15[link up

F0

F9

...

S0

S9

... A B

C D

: access
 node

: LSR

: working
 A-B
: backup
 A-B
: working
 C-D

: access
 link

: backbone
 link

Finding the best delay

· Analysis:
– 240 different runs (other random seeds)
– distrubution of f(x)=Good(x)/Good(0),

• Good(x)=total goodput over all flows during first 1.5
seconds after link failure for a protection switch delay
of x milliseconds

– interpretation of f(x):
• if f(x)>100% then delay of x results in better goodput

than no delay at all
• if f(x)<100% then delay of x results in worse goodput

than no delay at all
• e.g. f(x)=110% means delay of x gives 10% more

goodput than no delay at all

Finding the best delay

· Analysis: distrubution of
f(x)=Good(x)/Good(0)

0%

5%

10%

70
%

80
%

90
%

10
0%

11
0%

12
0%

13
0%

14
0%

15
0%

16
0%

17
0% rel. amount

of goodput

0.000

0.050

0.250
0.500

1.000

fit

fit

fit
fit

fit

access = 90% backbone
TCP NewReno

• all delays result in
better goodput than no
delay at all:

delay 250ms: 7.55%

delay 1000ms: 3.98%

delay 50ms: 11.89%

delay 500ms: 6.91%

• X-axis: f(x):
goodput compared to
goodput for delay 0 ms
(same random seed)

• Y-axis: P[f(x)]:
probability of finding
f(x) (histogram)

Outline

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

· Experiment set-up
· Qualitative discussion
· TCP goodput
· More detailed analysis
· Finding the "best" delay
· Conclusion

Conclusion

· Conclusions:
• We have studied the effect of recovery on TCP flows
• From simulation results, we have inferred that

recovery time doesn't necessarily need to be as small
as possible

• For TCP traffic, introducing a protection switch delay
may be useful

· Future work:
• Pursue detailed analysis of simulation results; e.g.

look at what happens after link recovery
• Extend investigation to other (larger, more complex)

topologies.

the

Thanks for your attention…
Please feel free to ask any questions you
might have!

