

Service differentiation for variable length packets in OPS with recirculating FDLs

<u>Chris Develder</u>, Jan Cheyns Mario Pickavet, Piet Demeester

Dept. of Information Technology (INTEC) Ghent University - IMEC, Belgium

• Context: the DAVID-project

- Switch architecture
- QoS approaches
- Performance criteria
- Simulation set-up
- Results
 - influence of nr. of buffer ports
 - influence of "class offset"
 - influence of buffer delay
 - influence of load

Conclusions

Context

- Optical packet switching
- Network
 - MAN: metro rings, MAC protocol
 - WAN: full-mesh, (G)MPLS-based control
- Key components
 - Ring node (OPADM), Hub, Gateway, OPR

http://david.com.dtu.dk

Switch Architecture

- Node in core OPS network (backbone)
- Switch functionality:
 - fully non-blocking switching matrix (SOA-based)
 - wavelength conversion to solve contention
 - FDLs to provide buffering

QoS approaches (1)

- Known approaches to provide QoS in OPS/OBS:
 - resource reservation (dedicated wavelength converters, buffers); static or dynamically
 - OBS-JET with differentiated offsets
 - burst segmentation: tails have larger survival chances (implicit QoS)
 - intentional drops: drop low priority traffic to free resources...

OBS-JET: higher offset = higher priority

segmentation: drop head of overlapping packet

- This study:
 - no resource reservation, no intentional drops, no segmentation

QoS approaches (2)

• Header offset differentiation: offset O

- well-known OBS-JET; high priority = larger offset
- high priority bursts are known to the switch longer in advance
- Look-ahead: look-ahead delay H
 - no different offsets; but look-ahead delay at input: time H to "change our mind"
- <u>Slotted control</u>: slot time T
 - headers are delayed electronically, and handled in batches each timeslot

- for each arriving packet, do:
 - check if there is a free wavelength on the <u>output port</u> it's destined for, using LAUC-VF
 - if no free wavelength: find free buffer wavelength, using LAUC
 - if packet is buffered: do not reserve output wavelength yet, but repeat scheduling upon re-entrance of switch (PostRes)
- look-ahead:
 - high priority packets may preempt low priority ones
 - preempted packets are re-scheduled using same algorithm upon time of preemption
- slotted control:
 - packets scheduled at same time are <u>sorted</u>: first the high priority packets

Performance criteria

• loss rate:

- amount of data lost / amount of data sent

• fairness:

- are longer packets strongly discriminated against?

Simulation set-up

• Parameters:

- F=6 input/output fibres
- W=8 wavelengths per i/o fibre
- B=0..64 recirculating buffer ports
- D= delay in buffer
- L= average packet length
- 40% high priority; 60% low priority

• Traffic model:

- train length: minimal L/2, average L
- train length distribution: (length L/2) follows neg. expo distribution
- train inter-arrival: Poisson process
- uniform distribution over output fibres

Influence of nr. of buffer ports (1)

• settings:

- O=H=T=2L; buffer D=2L
- load 0.8

Ioss rates:

- fairly strong class separation
- slotted control higher avg loss and less differentiated
- no significant difference between look-ahead and diff. offsets

• delays:

- slotted worse than others
- more buff ports = delay instead of loss

hiah priority

48

32

nr. buffer ports B

64

0.5

0

16

---+-- lah, low

--- slot, low

slot, total - - - slot, high

Influence of nr. of buffer ports (2)

• unfairness:

- more pronounced for look-ahead; which
- stems from preemption: re-scheduling packets leads to less optimal wavelength allocation (ie. worse config of "gaps" left for other packets)

Influence of class offset

- settings:
 - buffer B=8, D=4L;
 - load 0.8
 - varying "class offset" O=H=T
- overall loss rate:
 - stronger class separation: high priority forces more low priority losses
 - boundary (reached for smaller "class offsets" with look-ahead)
- unfairness:
 - significantly stronger for lookahead

• settings:

INTE

• load =0.1...0.9; buffer: B=0 or 8, D=2L; "class offset": O=H=T=2L

• loss rates:

- class separation slightly diminishes for increasing load
- slotted control achieves much weaker separation; esp. if there is buffer (B=8)
- buffer very much helps to increase sustainable load

- compared various QoS approaches
- slotted control achieves less strong separation, but
 - simpler scheduling algorithm
 - may be suitable for low to medium loads (cf. for load=0.5, high priority loss ~1E-6)

look-ahead

- achieves equally good (or slightly better) loss rates and delays as OBS-JET with differentiated offsets
- separation limit is reached for shorter "class offsets" than OBS-JET
- induces more intra-class unfairness (i.e. stronger discrimination of longer bursts)

That's all, folks!

... thanks for your attention ... any questions?

