MPLS Recovery

Didier COLLE
Pim VAN HEUVEN
Adelbert GROEBBENS
Chris DEVELDER
Mario PICKAVET
Piet DEMEESTER
MPLS recovery: single layer

- Introduction to:
 - MPLS and MPλS technologies
 - MPLS Recovery techniques:
 - Study of IETF proposals
 - Development of FTCR scheme
- Porting MPLS recovery to MPλS
- Spare resource dimensioning
MPLS protection

- Pre-establish backup LSP
 - Protected segment:
 - local (link or node)
 - subnetwork
 - end-to-end
 - Upstream: Protection Switch LSR (PSL)
 - protection switching
 - Downstream: Protection Merge LSR (PML)
 - no protection switching, but merging

<table>
<thead>
<tr>
<th>IN IF</th>
<th>IN LABEL</th>
<th>OUT IF</th>
<th>OUT LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

- End-to-end Prot
MPLS protection: local loop-back

Alternative Path

Reuse
Alternative path
Re-routing in MPLS

The Next Hop of S has changed

Update the LSP:
• O = old next hop
• N = new next hop

Link state update packets

Shortest path Re-calculation

Link Fails

MPLS

A

S

O

B
FTCR: Fast Topology-driven Constraint-based Rerouting

- S has topology knowledge
- S updates his topology
- S Calculates the new path

Path Setup Problem: routing tables not valid

Specify every hop in path (Explicit routed)

The routing tables will be updated but the MPLS paths are restored before that

MPLS
Porting MPLS protection to MPλS

Select (= switch to) best signal

Select (= switch to) best signal

Dedicated, thus 2 wavelengths needed

Conclusions:

• Dedicated protection
• Merging problem
 • solve by simulating with passive selector/switch
 • shift merging to client (i.e., IP layer).
Simulations: assumptions

- Single layer planning
 - MPLS recovery techniques
 - MP\(\lambda\)S recovery techniques

- Routing:
 - shortest path
 - each LSP independent

- Capacity/cost model
 - linear capacity model: line capacity = used capacity
 - cost model: cost to carry unit of capacity proportional with link weight (roughly estimated on distance).

- Traffic matrices: asymmetric

- Random generation (e.g., traffic):
 - set of 10 instances

- MP\(\lambda\)S: wavelength conversion assumed
Failure scenarios:
- single link failures (interpreted as a node failure by adjacent LSRs, except for rerouting)
- single node failures
Traffic:
- Uniform pattern
- Randomly generated (integer values)
Last link (of an LSP):
- Protected
- Not reverted (for local loop-back)
Topologies
- Large: 57 links and 44 nodes
- Small: 36 links and 30 nodes
Results: Optical versus Electrical Recovery

• Rerouting and FTCR: no difference
 – When tearing down part of primary LSP downstream of the failure

• Worst case: dedicated versus shared protection
 – No merging possible (eventually simulating merging via switching)
 – Label is scarce product in MP\$S, instead of bandwidth in MPLS
 – How to improve this worst case --> see next slides

• Dedicated effect:
 – significant for end-to-end protection or local loop-back
 – does not allow sharing between both direction for local loop-back
 – catastrophe for local protection
Results: Electrical MPLS Recovery

Failure scenarios:
• single link failures (interpreted as a node failure by adjacent LSRs, except for rerouting)
• single node failures
Traffic:
• Uniform pattern
• Randomly generated (integer values)
Last link (of an LSP):
• Protected
• Not reverted (for local loop-back)
Topologies
• Large: 57 links and 44 nodes
• Small: 36 links and 30 nodes

Rerouting: correct view of topology
FTCR: interprets link as node failure, due to hello-msg detection scheme
Results: Electrical MPLS Recovery

Failure scenarios:
- single link (left) OR node (right) failures
- --> link failures always interpreted as link failures

Traffic:
- pattern:
 - uniform: "bidir"
 - hubbed: "from" or "to" single node

Why hubbed/star traffic pattern?
- European backbone: gateway to USA
- Residential ISPs
- Traffic to/from a server farm
- Etc.

Topologies
- Large: 57 links and 44 nodes
Results: Electrical MPLS Recovery

Failure scenarios:
- single link (white) OR node (gray) failures
- --> link failures always interpreted as link failure

Traffic:
- pattern: single, uniform traffic matrix

Topologies
- Large: 57 links and 44 nodes
- Link weights: randomly generated

Single Path
- **MPLS Rerouting**: single LSP between two nodes, restored by another single LSP

Multi Path
- **OSPF**: forward packets evenly over all interfaces which have same distance to destination

MPLS rerouting: consider multiple equal cost LSPs (each to be rerouted!) --> scalability problem!
Results: Electrical MPLS

- **Local Protection > FTCR > End-to-end:**
 - FTCR is a combination of Local Protection and End-to-end
- **End-to-end:**
 - Rerouting > end-to-end protection or local-loop back:
 - protection --> less alternative routes --> potentially less spare resources
 - End-to-end protection = +/- Local loop-back:
 - downstream no traffic anymore --> place for local loop-back of opposite direction
- **Hubbed Traffic pattern:**
 - FTCR performs significantly better for traffic from the hub than for traffic to the hub.
- **Single (MPLS Rerouting) versus multipath (e.g., OSPF):**
 - Working cost identical
 - Decreasing maximum link weights
 - Multipath seems to perform slightly better
 - But also higher variance on multi/single path ratio.
Sharing in MP\(\lambda\)S: local protection

Dedicated, thus 2 wavelengths needed

Select (= switch to) best signal

Converging backup Tree: AT MOST single output wavelength!!!
Sharing in MPλS: path protection

Independent routing!!!
Even if red and black working paths do not overlap, the wavelength cannot be shared on this link, because they are routed differently downstream.

- At most 2 working paths through each piece of equipment. Thus at most 2 backup wavelengths needed on each link.
- Cost backup wavelengths = 10 + 5\sqrt{2} (unit = cost for 1 wavelength per length of horizontal link)
Sharing in MPλS: path protection

- How to force to share backup resources?
 - Limit routing of backup paths to a predefined/predistributed tree
 - Why?
 - Avoid situation that backup paths divert after overlapping
 - Forcing routing so that as much of the backup route is shared with other routes (even if this results in slightly longer backup routes --> to be compensated by the sharing).

- 3 backup routes can share 2 wavelengths
- Cost reduced from $10 + 5\sqrt{2}$ to $12 + 2\sqrt{2}$
Sharing in MPŁS: path protection

Red and blue should be protected at the same time. To which color has the backup of the black path to be tuned, in order to share the backup wavelength?

Conclusion: ingress of black path cannot swap to THE backup OLSP, in combination with simple merging downstream.