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ABSTRACT
Amid growing environmental concerns and resulting energy costs,
there is a rising need for efficient Home Energy Management Sys-
tems (HEMS). Evaluating such innovative HEMS solutions typically
relies on simulations that may not model the full complexity of a
real-world scenario. On the other hand, real-world testing, while
more accurate, is labor-intensive, particularly when dealing with
diverse assets, each using a distinct communication protocol or
API. Centralizing and synchronizing the control of such a hetero-
geneous pool of assets thus poses a significant challenge. In this
paper, we introduce HomeLabGym, a real-world testbed to ease
such real-world evaluations of HEMS and flexible assets control in
general, by adhering to the well-known OpenAI Gym paradigm.
HomeLabGym allows researchers to prototype, deploy, and ana-
lyze HEMS controllers within the controlled test environment of
a real-world house (the IDLab HomeLab), providing access to all
its available sensors and smart appliances. The easy-to-use Python
interface eliminates concerns about intricate communication pro-
tocols associated with sensors and appliances, streamlining the
evaluation of various control strategies. We present an overview
of HomeLabGym, and demonstrate its usefulness to researchers in
a comparison between real-world and simulated environments in
controlling a residential battery in response to real-time prices.
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1 INTRODUCTION
The surge in energy costs, coupled with the growing emphasis
on demand-response and integration of renewable energy sources
(RES), has increased interest in the use of home energy manage-
ment systems (HEMS). Effective HEMS can strategically schedule
loads such as heating, ventilation, and air conditioning (HVAC), and
electric vehicle (EV) charging, while optimizing the usage of local
energy sources, e.g., photovoltaic (PV) installations and Energy
Storage Systems (ESS) [6]. HEMS control algorithms are typically
tested in simulation environments, notable examples being, e.g.,
CityLearn [5] for grid-level energy distribution, and BOPTEST for
building control [1]. Yet, no easily reproducible real-world testbed
has been widely adopted for real-world deployment of (residential)
flexible asset controllers. Since realistic simulation of real-world
households is both complex to model and to run, we believe there
is a need for such easy-to-use real-world test environments to de-
ploy, validate, and analyze flexible asset controllers. Inspired by
real-world testbeds in other domains — e.g., OffWorld Gym for
robotics [2] — we thus propose to use a real-world environment for
plug-and-play testing of HEMS controllers. In particular, we use the
HomeLab,1 a state-of-the-art smart home for realistic experimenta-
tion developed by the IDLab research group at Ghent University,
Belgium. However, accessing the broad set of sensors and control-
ling the wide range of devices (e.g., heat pumps, battery chargers,
PV inverters) therein, requires a diverse set of protocols/interfaces.
To abstract away this complexity for HEMS control researchers, we
created HomeLabGym, a real-world testbed that is customizable to
specific use cases of researchers.
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Figure 1: System Architecture of HomeLabGym.

1https://homelab.ilabt.imec.be/
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2 HOMELABGYM
The main objective of HomeLabGym is to offer an easy-to-use
environment for real-world (or at least realistic) deployment of
innovative HEMS controllers, particularly supporting controllers
based on state-of-the-art data-driven reinforcement learning (RL).
In that particular field, OpenAI Gym is a common platform for
testing RL innovations with minimal coding efforts [4]. As illus-
trated in Fig. 1, the Python based HomeLabGym package incorpo-
rates a modular design that interfaces with different assets of the
real-world testbed i.e., IDLAB HomeLab. Each asset has a corre-
sponding module for implementing the necessary communication
protocols, e.g., MODBUS for the ESS and ENTSOE-API for the day-
ahead price. HomeLabGym also includes additional functionalities
such as preprocessing (for register-level conversions), data logging,
Grafana-based visualization and support for containerizing and
cluster-based deployments. In our first version, the HomeLabGym
integrates existing HomeLab assets which include the heat pump
and thermostat, the home battery system, solar PV system and
smart energy meters. Additionally, the current version includes
the day-ahead energy prices for the BELPEX region. To warrant
adaptability of HomeLabGym to future extensions of the physical
HomeLab infrastructure, e.g., an EV charger, the package is built in
a modular manner as illustrated in Fig. 1.

3 EXPERIMENT
The objective of the short experiment is to illustrate the “plug-
and-play” nature of our HomeLabGym solution, in terms of us-
ing standard implementations of control algorithms, e.g., based
on RL. Additionally, we demonstrate the usefulness of such real-
world experiments in uncovering complexities that are difficult to
model/reveal purely in simulation.

The case study we consider is of using a home battery to en-
ergy arbitrage based on a real-time price profile using BELPEX
spot prices.2 The control algorithm we use is a Deep Q-Network
(DQN) agent, using the implementation from the Stable Baselines3
RL library [3], out-of-the-box, as is, given our HomeLabGym’s com-
patibility with OpenAI Gym. The DQN agent is trained using 2023
Belpex prices in simulation. We then simply deploy the trained
DQN model in our HomeLab, using HomeLabGym, for a 4-day
testing period.

As both the battery simulator and HomeLabGym are Gymna-
sium environments, this was a plug-and-play transfer, which not
only accelerates the deployment process but also showcases the
versatility and ease of integration offered by HomeLabGym.

As an example of added value that real-world testing can pro-
vide, we study the daily reward achieved with the considered DQN
agent. Particularly, we compare the cumulative reward attained
with the one a purely simulation-based experiment (with the same
DQN agent) would have attained. Our experiment revealed that the
real-world reward is 2% lower than that attained in simulation. This
disparity can be attributed to variations between real-world condi-
tions and simulation environments. Specifically, Fig. 2a illustrates
the variability in actual charging power, often falling below the
1 kW setpoint, resulting in a non-linear charging speed. Similarly,

2This refers to the organised wholesale market for power trading in the Belgium
energy market, i.e., the current European Power Exchange Belgium.
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Figure 2: Graphs of real-world assets in HomeLab.

Fig. 2b illustrates the (step-like) behavior of the heat pump as it
approaches the room heating set-point, giving us more insight into
the hardware-level discrepancies of the heat pump.

4 CONCLUSION
HEMS are often tested and benchmarked on simulated environ-
ments. However, deploying controllers in real-world households
requires additional coding and an in-depth understanding of var-
ious communication protocols to interface with heterogeneous
assets (e.g., batteries, HVAC systems, EV chargers). Also, as our
experiment shows, simulations do not fully align with real-world
dynamics. To allow easy prototyping of flexible asset controllers on
a controlled real-world household, we have introduced HomeLab-
Gym, a Python interface to easily test controllers in a real-world
home (i.e., the IDLab HomeLab). Our HomeLabGym environment
supports a wide range of communication protocols, thus providing
a plug-and-play tool to help investigate the real-world performance
of HEMS controllers and analyze their deployability. The IDLab
HomeLab is open for collaborations across the world to access the
HomeLab testbed facilities.
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