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Figure 1: Proposed policy distillation approach using differentiable decision trees to obtain explainable reinforcement learning
controllers.

ABSTRACT
Demand-side flexibility is gaining importance as a crucial element
in the energy transition process. Accounting for about 25% of final
energy consumption globally, the residential sector is an important
(potential) source of energy flexibility. However, unlocking this
flexibility requires developing a control framework that (1) easily
scales across different houses, (2) is easy to maintain, and (3) is sim-
ple to understand for end-users. A potential control framework for
such a task is data-driven control, specifically model-free reinforce-
ment learning (RL). Such RL-based controllers learn a good control
policy by interacting with their environment, learning purely based
on data and with minimal human intervention. Yet, they lack ex-
plainability, which hampers user acceptance. Moreover, limited
hardware capabilities of residential assets forms a hurdle (e.g., us-
ing deep neural networks). To overcome both those challenges, we
propose a novel method to obtain explainable RL policies by using
differentiable decision trees. Using a policy distillation approach,
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we train these differentiable decision trees to mimic standard RL-
based controllers, leading to a decision tree-based control policy
that is data-driven and easy to explain. As a proof-of-concept, we
examine the performance and explainability of our proposed ap-
proach in a battery-based home energy management system to
reduce energy costs. For this use case, we show that our proposed
approach can outperform baseline rule-based policies by about
20-25%, while providing simple, explainable control policies. We
further compare these explainable policies with standard RL poli-
cies and examine the performance trade-offs associated with this
increased explainability.
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1 INTRODUCTION
The ongoing shift towards sustainable energy is leading to a sig-
nificant restructuring of the energy sector: large-scale integration
of distributed renewable energy sources, increased electrification,
phasing out of fossil fuel-based generation, etc. [18]. As a result of
these changes, there is a growing need for grid balancing services
and demand-side flexibility to ensure reliable and secure function-
ing of the grid. Conventionally, large industries and big consumers
were the primary source of such demand-side flexibility. However,
another important and as-of-yet untapped source of flexibility is
the residential sector [17].

Households account for about 25% of the final energy consump-
tion andwith growing adoption of rooftop solar PVs, home batteries,
heat pumps, etc., represent an appealing source of flexibility [9].
Usually, exploiting this flexibility entails optimizing the use of a
battery or other flexible assets to shift the real-time consumption
of households while ensuring user comfort [20]. In most cases, the
primary objective is to minimize the energy bill of the household,
however, prior research has also investigated other objectives such
as maximizing self-consumption or participation in other explicit
demand response services [22, 28].

An important component for extracting this household flexi-
bility is a home energy management system (HEMS), responsible
for solving the underlying, non-linear sequential decision-making
problem and calculating the necessary control actions to be taken
in real-time. Developing HEMS has been a major research area,
with works such as [15, 42] providing an overview of techniques
used in literature.

A prominent research direction in this context is the use ofmodel-
predictive control (MPC) algorithms. MPC forms an advanced con-
trol framework that relies on a model of the system to predict the
system’s behavior and uses the model to analytically obtain opti-
mal actions [8]. Works such as [10, 14, 31] have investigated the
application of MPC in both simulation and real-world scenarios,
showing significant performance improvements in such systems.
However, as highlighted in [2, 41], accurate models—which an MPC
requires—of the system are often difficult to obtain in the residential
sector, significantly limiting widespread adoption of MPC-based
solutions in this sector.

The residential sector necessitates control frameworks that can
easily scale to many, potentially diverse households. This has led to
an increased interest in data-driven control frameworks, especially
based on reinforcement learning (RL). RL-based controllers work by
continuously interacting with the environment (i.e., the household),
collecting experience (data) from these interactions, and using them
to learn a control policy that maximizes a predefined reward [36].
Thus, with little human intervention and relying completely on
data, such RL-based controllers can learn good control policies.
Previous works on RL-based HEMS controllers such as [1, 7, 25]
have shown significant improvements over baseline scenarios.

However, most RL-based research is limited to simulation en-
vironments or specialized buildings. As discussed in [32], this is
due to two main factors: (i) the data inefficiency of RL training,
and (ii) the opaque nature of obtained control policies. To address
(i), i.e., the high amount of data required for training RL-based
controllers, previous works such as [3, 39, 44] propose different
solutions. However, (ii) raises another important concern related

to RL, i.e., the non-interpretable/non-explainable nature of their
policies, especially when based on deep neural networks. With
limited prior works in this area, we identify this as a significant gap
in existing literature and thus introduce our innovative approach to
specifically address the (lack of) explainability of RL-based HEMS.

More specifically, we propose a policy distillation framework
using differentiable decision trees [11, 19]. The key idea is to distill
information from pre-trained RL-based controllers into an explain-
able decision tree, leading to control policies that are explainable
and perform nearly as good as the original RL-based policies. To the
best of our knowledge, this is one of the first works in the energy
field to adopt policy distillation using differentiable decision trees
for explainable RL. Our main contributions can be summarized as:

(1) We propose a novel framework for explainable RL that uses
differentiable decision trees and policy distillation for con-
verting black-box RL policies into explainable decision trees
(§4).

(2) Using different case studies, we detail the explainability of
our proposed method, contrasting it with conventional RL-
based policies (§6.2).

(3) We compare the performance of our method with conven-
tional RL-based policies and other baselines to show the
performance trade-off that results from the increased ex-
plainability (§6.1).

The primary emphasis of this paper is to introduce a novel method
for obtaining explainable RL-based control policies. As a proof-of-
concept, we validate our proposed approach on a battery-based
home energy management scenario using real-world data and
present our preliminary findings. Section §7.1 outlines the future
work in terms of additional investigation of this method and its
application to other, more complex scenarios.

2 RELATEDWORK
Designing control algorithms for unlocking flexibility in house-
holds has been a major field of research, with works such as [15, 42]
providing an exhaustive review of prior works including heuristics-
based controllers, MPCs, and data-driven algorithms. As discussed
in §1, our work focuses on improving the explainability of reinforce-
ment learning-based controllers and hence this section focuses on
developments in the fields of reinforcement learning-based control,
policy distillation, and explainable AI. We refer interested read-
ers to [15, 28] for more comprehensive reviews of other relevant
methods in the context of HEMS and demand-side flexibility.

2.1 Data-driven Home Energy Management
Systems

A recent research direction in HEMS has been the use of data-driven
and mainly reinforcement learning-based controllers [5]. RL-based
controllers rely primarily on past data and have minimal modeling
requirements as compared to prominent control techniques such
as MPCs. For example, works such as [1, 7, 25], demonstrate the
applications of RL-based controllers in the context of HEMS. In
most of these cases, the RL-based controllers rely on state-of-the-art
RL algorithms such as deep 𝑄-networks (DQN) [30], deep deter-
ministic policy gradient (DDPG) [23] and use control policies based
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on deep neural networks to achieve significant performance im-
provements (∼5-16% as reported in these works). While these deep
neural networks are beneficial for achieving good performance, a
common drawback associated with their use is their opaque (or
black-box) control policy [38]. We aim to address this challenge
associated with the explainability of RL-based controllers, provid-
ing a framework for distilling a standard RL control policy into an
explainable policy.

2.2 Explainable AI
Providing explainability for AI-based technology is an important
and necessary issue to address for large-scale deployment of ma-
chine learning-based solutions, especially in the context of the en-
ergy sector.We refer tomore exhaustive reviews [24, 29] of available
techniques, metrics, and methodologies across different fields such
as image recognition, natural language processing, etc. However, as
discussed in [27], in the context of energy, research on explainable
AI has been largely restricted to applications such as forecasting,
modeling, or fault diagnosis. While few works such as [21, 40, 43],
present explainable RL-based controllers, they largely rely on de-
composition methods or utilize post-hoc explanation frameworks
such as SHAPley values, feature importances, LIME, etc. Although
useful, such post-hoc explanations are typically designed for ex-
perts and are not easily accessible to the average end-user, such as
a homeowner. Our proposed method differs from such approaches
by distilling the deep RL-based control policy into an explainable
architecture in the form of differentiable decision trees. Thus, the re-
sulting control policies are structurally explainable, i.e., in the form
of rather simple if-then-else rules, that can be easily (a) explained
to non-expert end users, and (b) deployed on simple hardware.

2.3 Policy Distillation and Differentiable
Decision Trees

As discussed in §1, our approach employs policy distillation to
trained RL-based controllers and distills their knowledge into a dif-
ferentiable decision tree structure. This closely follows prior works
that have used knowledge distillation strategies to (1) compress
large neural networks, or (2) combine knowledge from model en-
sembles into a single model [4, 16]. Differing from these, works
such as [6, 12, 34] adopt knowledge distillation in RL to transform
the architecture of the final policy, e.g., into a fuzzy inference sys-
tem. We follow a similar approach and distill an RL-based control
policy into a differentiable decision tree. This enables us to extract
knowledge from standard RL-based controllers into simple decision
trees which are structurally easy-to-explain and simple to under-
stand. This choice is closely related to the objective of obtaining
control policies that are easy to explain (to both energy experts and
end-users).

Differentiable decision trees (DDTs) or soft decision trees are
variants of binary decision trees that can be trained using gradient
descent [11, 19]. Prior works such as [16, 26] have applied DDTs to
computer vision and regression tasks. For our energy use case, we
follow the approach of [6], using DDTs to distill RL-based control
policies. However, our proposed approach differs from [6] in two
ways: (i) we learn deterministic decision trees instead of the soft
decision trees, and (ii) we learn using observed, explainable features

(as opposed to rather indirect pixel-based learning in [6]). This
enables us to learn DDTs using gradient descent and then convert
them into simple decision decision trees for inference (as detailed
further in §4).

3 PRELIMINARIES
The proposed differentiable decision tree-based policy distillation
framework is examined in the context of a home energy manage-
ment scenario. This section describes the problem formulation for
this proof-of-concept and introduces basic concepts related to rein-
forcement learning (RL).

3.1 Problem Formulation
In the context of home energy management, we consider an aver-
age Belgian household with a rooftop solar PV installation (with
generated power 𝑃pv𝑡 ), non-flexible electrical load (𝑃con𝑡 ), and a
home battery. We assume that this household is exposed to varying
BELPEX day-ahead prices (𝜆con𝑡 ) and a capacity tariff based on peak
power. This leads to a joint optimization problem, where the HEMS
must minimize the daily cost of both the energy consumption (𝑐eng𝑡 )
and the peak power (𝑐𝑝𝑡 ). This opimization problem is modeled as:

min
𝑢1,...𝑢𝑇

𝑇∑︁
𝑡=1

𝑐
eng
𝑡 + 𝑐𝑝𝑡 (1a)

s.t.: 𝑐eng𝑡 =

{
𝜆con𝑡 𝑃

agg
𝑡 Δ𝑡 : 𝑃agg𝑡 ≥ 0

𝜆
inj
𝑡 𝑃

agg
𝑡 Δ𝑡 : 𝑃agg𝑡 < 0

∀𝑡 (1b)

𝑐
𝑝
𝑡 = 𝜆cap max(𝑃agg𝑡 , 𝑃

𝑎𝑔𝑔

min) (1c)

𝑃
agg
𝑡 = 𝑃con𝑡 + 𝑃

pv
𝑡 + 𝑢𝑡 ∀𝑡 (1d)

𝐸𝑡+1 =

{
𝐸𝑡 + 𝜂 𝑢𝑡 Δ𝑡 : 𝑢𝑡 ≥ 0
𝐸𝑡 + 1

𝜂 𝑢𝑡 Δ𝑡 : 𝑢𝑡 < 0
∀𝑡 (1e)

0 ≤ 𝐸𝑡 ≤ 𝐸max; 𝑢min ≤ 𝑢𝑡 ≤ 𝑢max ∀𝑡 . (1f)

The battery is modeled using a linear model (Eq. (1e) with charg-
ing/discharging actions 𝑢𝑡 and current energy level (𝐸𝑡 )). The cost
of energy consumed (𝑐eng𝑡 ) depends on the power consumed (𝑃agg𝑡 )
and the current injection and consumption prices (𝜆inj𝑡 and 𝜆con𝑡

respectively). Similarly, the capacity cost (𝑐𝑝𝑡 ) depends on the actual
power consumed and the minimum power capacity contracted [37].
Furthermore, we assume 𝑇 = 24 hours and a time resolution
Δ𝑡 = 1 hour.

The above-mentioned problem illustrates a real-world scenario
that is pertinent in the present day where a household’s HEMS
needs to efficiently leverage the home battery to reduce the en-
ergy bill, taking charging/discharging actions dependent on the
real-time price, solar PV production, and daily load consumption
patterns. Accordingly, we further assume that the HEMS can only
take discrete actions (a total of 5 related to 2 charging modes, 2
discharging modes, and 1 ‘do nothing’ mode). Nonetheless, our
method can be easily extended to other action spaces as well.
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3.2 Markov Decision Process
Wemodel the sequential decision-making problem presented in §3.1
as a Markov Decision Process (MDP) [36]. The states (x𝑡 ∈ X)
consist of the current price (𝜆con𝑡 ), battery state-of-charge, non-
flexible demand (𝑃con𝑡 ), and solar PV generation (𝑃pv𝑡 ). The ac-
tions (𝑢𝑡 ∈ U) are the charging/discharging signals given to the
battery. As stated above, we assume a discrete action space of 5 ele-
ments (i.e., U = {−1,−0.5, 0, 0.5, 1}), with the possibility of extend-
ing it reserved for future work. The reward function (𝜌 : X×U → R)
is defined as the cost incurred for each time step 𝑡 and is modeled
based on Eq. (1b), Eq. (1c). The transition function (𝑓 ) models the
dynamics of the household, taking into account the (controllable)
behavior of the battery along with (uncontrollable) real-time solar
PV generation, and non-flexible power consumption.

3.3 Reinforcement Learning
In RL, the goal of an agent is to find a policy 𝜋 : X → U that
minimizes the expected 𝑇 -step cost (𝐽𝜋 ) starting from an initial
state x0 ∈ X (Eq. (2)).

𝐽𝜋 =

𝑇∑︁
𝑡=0

𝛾𝑡 𝜌 (x𝑡 , 𝜋 (x𝑡 ), 𝜔) (2)

This expected cost 𝐽𝜋 can be expressed as a recursive function
using a state-action value function, called 𝑄-function:

𝑄𝜋 (x𝑡 , u𝑡 ) = E[𝜌 (x𝑡 , u𝑡 , 𝜔) + 𝛾𝑄𝜋 (x𝑡+1, 𝜋 (x𝑡+1))] . (3)

Here, 𝜔 represents the stochasticity in the transition function (𝑓 )
and can be attributed to exogenous factors. The discount factor is
represented as 𝛾 .

For our work, we focus on the deep-𝑄 network (DQN) algo-
rithm [30], where the 𝑄-function is iteratively estimated using
a deep neural network as a function approximator. The neural
network-based 𝑄-function (parameterized as 𝑄̂𝜃 ) is trained on a
batch of data (F ) with the following loss term:

L = E

[(
𝑄̂𝜃 (x𝑡 ,u𝑡 ) −

(
𝑐𝑡 +min

u∈U
𝑄̂𝜃− (x𝑡+1,u)

))2]
, (4)

where, 𝑐𝑡 = 𝜌 (x𝑡 , 𝑢𝑡 , 𝜔) is the observed cost value during the state
transition from x𝑡 to x𝑡+1 and the expectation is over all elements
of F . For more details related to the DQN algorithm, we refer the
readers to [30]. Note that our proposed method is agnostic to the
choice of the RL algorithm and can be easily extended to other RL
algorithms as well.

4 METHODOLOGY
This section details our proposed approach. We first mathematically
formulate the differentiable decision tree architecture, followed by
the policy distillation process.

4.1 Differentiable Decision Trees (DDTs)
Differentiable decision trees or soft decision trees are a variant of
ordinary decision trees, introduced in prior works such as [11, 19].
We follow the work presented in [35], where a DDT is formulated
as a directed, acyclic graph consisting of nodes and edges. There are
two types of nodes in a DDT: (1) decision nodes, characterized by a
feature selection weights (𝛽) and a threshold (𝜙); and (2) leaf nodes

Figure 2: Illustration of a DDT of depth 2. The rounded boxes
depict the decision nodes and the rectangles depict leaf nodes.
All 𝑝𝑖 represent the path probabilities and 𝑝𝐿

𝑗𝑘
denotes the leaf

probability distributions (with 𝑛 = |U| i.e., the total number
of actions).

containing a weight vector (w𝐿) to express the probability distribu-
tion. While ordinary decision trees have decision nodes represented
using a boolean function, DDTs implement a ‘soft’ decision using
the sigmoid function (represented as 𝜎). Consequently, each path
(or edge) going out of a decision node carries a probability value
that is based on the condition evaluated at that decision.

4.1.1 Decision Node. A decision node (represented as rounded
boxes in Fig. 2) is modeled as:

𝑝 = 𝜎 (𝛽x − 𝜙) (5a)

𝑝 left = 𝑝 (5b)

𝑝right = 1 − 𝑝 (5c)

Here, 𝛽 and 𝜙 are trainable parameters representing the feature
selection weight and the cut thresholds respectively. Each decision
node evaluates a condition based on the selected feature and cut
threshold and gives path probabilities for going left (the condition
is likely to be True) and going right (the condition is likely to be
False).

4.1.2 Leaf Nodes. A leaf node 𝑙 contains a weight vector (w𝐿
𝑙
)

that leads to an output probability distribution modeled using a
SoftMax function. In our case, each leaf output is the probability
distribution over all actions in the action space (U), however, this
can be extended to estimate exact values (for continuous actions)
as well. For this leaf node, the probability for each action 𝑢𝑚 ∈ U is
calculated using Eq. (6)

𝑝𝐿
𝑙𝑚

=
𝑒−𝑤𝑚∑ |U |
𝜅=1 𝑒

−𝑤𝜅

∀𝑚 ∈ {1, 2, . . . , |U|} (6)

4.1.3 Creating a DDT. Eq. (5) and Eq. (6) are combined to imple-
ment a DDT of required depth. To illustrate this, we now present the
formulation of a DDT of depth 2 (as shown in Fig. 2). Such a DDT
contains 3 decision nodes and 4 leaf nodes. For each decision node,
we have feature selection vectors (𝛽1, 𝛽2, 𝛽3) and cut-thresholds (𝜙1,
𝜙2, 𝜙3); each leaf node contains weight vectors (w𝐿

𝑘
). The tree is

built based on algorithm 1. This formulation is used to perform a
forward pass of the DDT and train the parameters using gradient
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Algorithm 1 Depth 2 DDT Formulation

1: Initialize: 𝜷𝒊 , 𝝓, w𝐿
𝑘
, where 𝑖 = {1, 2, 3} (decision nodes) and

𝑘 = {1, 2, 3, 4} (leaf nodes)
2: Input: State x
3: for all i do
4: Feature Selection: 𝑥 𝑗 = 𝜷𝒊 x
5: Evaluate Condition: 𝑝𝑖 = 𝜎 (𝑥 𝑗 − 𝜙𝑖 )
6: end for
7: Calculating Path Probabilities: p =

[
𝑝1 0
0 1−𝑝1

]
·
[
𝑝2 1−𝑝2
𝑝3 1−𝑝3

]
8: for all k do
9: Calculate Leaf Probabilities: p𝐿

𝑘
= {𝑝𝐿

𝑘1, 𝑝
𝐿
𝑘2, . . . 𝑝

𝐿
𝑘𝑛

} based
on Eq. (6)

10: end for
11: Output: 𝑜 = p[1, 1]p𝐿1 + p[1, 2]p𝐿2 + p[2, 1]p𝐿3 + p[2, 2]p𝐿4

descent. At inference, each node is converted from the ‘soft’ ver-
sion into a crisp node, resembling an ordinary decision tree. This
includes reducing all feature selection parameters (𝛽) into one-hot
representations (using argmax) and converting all probabilities into
‘crisp’, boolean values. Note that this method of creating a DDT
decomposes all computations into differentiable computations and
allows to parallelize them. Additionally, while a DDT of any depth
can be implemented based on Eq. (5), Eq. (6), for this work we re-
strict the scope to trees of depth 2 and 3. This choice is primarily
driven by the ease of explainability for such (shallow) trees.

4.2 Policy Distillation
Distillation is a method for transferring knowledge from a teacher
model 𝑇 to a student model 𝑆 [34]. In the context of reinforcement
learning, this refers to transferring knowledge related to a control
policy from a trained teacher agent (𝜋𝑇 ) to a student agent (𝜋𝑆 ).
Typically, this leads to a classification problem where targets are
obtained using the outputs of the trained agent.

We follow the approach presented in [34], where a DQN-based
teacher agent is trained first and then using a batch of observa-
tions (F ), a student policy is distilled based on the teacher agent.
First, the trained teacher agent is used to create a new batch of
training data of the form D = {x𝑖 , q𝑖 }

| F |
𝑖=1 . Here, q𝑖 is the vector

corresponding to 𝑄-values for all actions for a state x𝑖 ∈ F , ob-
tained using the teacher agent (i.e., q𝑖 = {𝑄𝑇 (x𝑖 , 𝑢𝑖 ) | ∀𝑢𝑖 ∈ U}).
Following this, the student agent is trained to mimic this distribu-
tion using Kullback-Leibler (KL) divergence with temperature (𝜏)
as presented in Eq. (7).

L𝜃𝑠 = softmax
(q𝑖
𝜏

)
· ln

©­­­­«
softmax

(
q𝑖
𝜏

)
softmax

(
q𝑆
𝑖

𝜏

) ª®®®®¬
(7)

Note that q𝑆
𝑖
is the output of the student model parameterized by

𝜃𝑠 . The temperature 𝜏 is used to adjust the ‘smoothness’ of the
𝑄-function distribution.

Algorithm 2 Training algorithm for our proposed method

1: Initialize: Teacher agent 𝑇 , DDT student 𝑆 , buffer F .
2: Train Teacher:

Use F and Eq. (4) to train teacher i.e., obtain 𝜋𝑇 and 𝑄𝑇

3: Create Distillation Batch:
Distillation batch D = {x𝑖 , q𝑖 }

| F |
𝑖=1

where q𝑖 = {𝑄𝑇 (x𝑖 , 𝑢𝑖 ) | ∀𝑢𝑖 ∈ U}
4: Train Student DDT:

Use D and Eq. (7) to train the student (𝜋𝑆 ) using gradient
descent.

4.3 Our Approach
For our work, we assume a teacher agent (policy 𝜋𝑇 and𝑄-function
𝑄𝑇 ) as a standard DQN agent, and the student agent (𝜋𝑆 ) consists
of the DDT architecture. First, the teacher agent is trained inde-
pendently using DQN, to obtain a control policy. Following this,
the trained teacher is used to create target distributions using data
collected from previous interactions with the environment. This
data is then used to train the student DDT-based agent. Algorithm 2
outlines the training procedure for our proposed approach.

5 EXPERIMENT SETUP
We validate our proposed approach on a home energy management
scenario using a battery as the source of flexibility. This section
presents the simulation environment and details the training and
experimental scenarios used.

5.1 Simulator Setup
We use a Python-based simulation environment to validate and
compare our proposed approachwith standard RL-based controllers.
This simulator is derived from a real-world Belgian household with
rooftop solar PV and is modeled based on Eq. (1). Real demand and
solar PV profiles are used along with the battery model presented
in Eq. (1e). Additionally, we use hourly, real-world BELPEX prices
as consumption prices (𝜆con𝑡 ) and a capacity tariff structure based
on [37]. The battery parameters are detailed in Appendix A.1. Fur-
ther, we assume the injection price (𝜆inj𝑡 ) is 25% of the consumption
price i.e., (𝜆inj𝑡 = 0.25 𝜆con𝑡 ).

5.2 Training Setup
The training is divided into two parts: (i) training the teacher agent;
and (ii) policy distillation to train student agent. For the teacher
agent, we follow the standard DQN implementation and use an
𝜖-greedy training strategy to train the DQN-based teacher agent.
Following this, the buffer generated by the DQN-based teacher is
used to create the distillation dataset (D). The student agent is then
trained using this dataset. To improve the stability of the training
process, we set the temperature (𝜏) from Eq. (7) to 0.03 to obtain a
sharp Q-function distribution. We list all the hyperparameters used
in Appendix A.2. For each agent (teacher and student) we perform
5 seeded runs and compare the mean values over the 5 runs.
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5.3 Experiment Scenarios
The primary goal of this work is to present a novel approach for
obtaining explainable, RL-based policies. We investigate the HEMS
scenario described in §3.1, where one intentionally simplified sce-
nario is used to effectively assess the explainability of our proposed
approach. We specifically investigate two key scenarios:

5.3.1 Scenario 1: Performance Comparison. In this scenario, we
investigate the performance of our proposed approach and evaluate
whether our method can achieve satisfactory performance com-
pared to standard DQN agents and baseline rule-based controller.
For this, we consider a realistic HEMS scenario and use real-world
data for load profiles, solar PV, and prices as described in §5.1. The
performance is quantified as the total cost for a day, comprising
both energy and capacity costs. As baselines, we use the teacher
agents as the upper bound of performance and a rule-based con-
trol (RBC) policy as the lower bound. The RBC policy is designed
similar to the typical built-in control policy of home batteries and
aims to maximize self-consumption. We consider two key variants
of price profiles: (i) an artificial, square wave price profile (resem-
bling day-night tariff); and (ii) an actual real-world day ahead price
profile. The artificial price profile is a simplified scenario with clear
peaks and valleys in the price to provide unambiguous opportuni-
ties for energy arbitrage.

5.3.2 Scenario 2: Explainability Assessment. To further assess the
explainability of our method, we consider a simplified scenario
where we exclude solar PV from the system and reduce the state
features to 3 components i.e., battery state-of-charge, price, and de-
mand. This simplification enables clear visualization of the learned
policies, contrasting them with standard DQN policies to qualita-
tively investigate the explainability of our proposed method.1

6 RESULTS
This section presents the results obtained for the different scenarios
discussed in §5.3.

6.1 Performance Evaluation
The performance of our proposed approach using DDTs of depth
2 and 3 is presented in Fig. 3. We note two key observations:
(i) both DDT agents clearly outperform the baseline RBC controller;
(ii) while the DQN-based teacher performs better than the DDTs,
the performance difference (mean) is quite small (∼ 5%). This in-
dicates that our proposed approach can learn satisfactory control
policies that outperform an RBC included with standard batter-
ies. Additionally, the DDTs can mimic the teacher agents well and
sustain minimal deterioration in performance.

While the overall performance is satisfactory, Fig. 3 indicates
some (training) stability issues with the DDT-based controllers.
This is particularly apparent in Fig. 3a, where both DDTs demon-
strate a strong performance for 3 of the runs, while the other two
instances do not fare as well. This problem can be attributed to
the training process, where changes in ‘upstream’ or hierarchically
higher features could have a disproportionate impact on the output

1Quantitatively assessing the explainability of AI methods remains an open ques-
tion with most prior works relying on either qualitative methods or user studies for
assessment [33].

(a) Artificial, square wave price profile

(b) Real-world BELPEX price profile

Figure 3: Performance of DDT-based students as a HEMS
on different price scenarios. The dots represent the actual
performance of individualmodels and the box plots show the
aggregate performance. The student agents are benchmarked
using teacher agent “DQN” and a RBC.

distributions. This needs to be investigated further and will be part
of future work as discussed in §7.1.

Furthermore, examples of learned DDTs of depth 2 are presented
in Fig. 4. Note that these DDTs are randomly initialized and over
the course of training learn the feature selection (e.g., choosing
‘demand’ or ‘solar PV’ as the feature for the first decision node) and
the respective cut thresholds via gradient descent. We observed
that both DDTs are straightforward to understand, easily ‘explain-
ing’ how the controller takes an action. Additionally, the actions
taken are intuitive and follow human intuition – e.g., in Fig. 4b,
the controller decides to take a charging action only when solar
PV generation is high (greater than 0.47) while demand is low (less
than 0.37). Likewise, in Fig. 4a, the controller discharges with max-
imum power when both price and demand are high while only
discharging by half the power when price is high but demand is
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(a) learned DDT for Square wave price scenario

(b) learned DDT for real-world price scenario

Figure 4: Visual representation of learned decision trees of
depth 2 for both price scenarios. The decision nodes are de-
picted with unshaded boxes and contain the learned features
and the threshold values. The leaf nodes are depicted by grey
boxes and contain the learned distribution. The annotations
highlight the actions related to each leaf node.

low, showing that the learned policy adjusts its decision based on
the current as well as expected future demand.

We conclude that the results presented in Fig. 3 and Fig. 4 validate
the performance and explainability of our proposed DDT-based
approach and show that the DDTs learn a simple, easy-to-explain
policy and achieve satisfactory control performance.

6.2 Explainability Comparison
While §6.1 investigated the control performance of our method,
we now examine the explainability of the obtained policies. As
described in §5.3, we consider a reduced problem where a house
without solar PV is exposed to an artificial square wave price profile.
Despite being hypothetical, this scenario reduces the dimensionality
of the state space (now reduced to battery state-of-charge, price
and non-flexible demand) and allows us to examine and compare
the explainability of the learned DDT policy with that of the DQN
policy. While the visual representation of the policy as shown
in Fig. 4 is useful, we cannot directly compare it with the teacher
policy (which is a neural network). Consequently, we make use of
policy heatmaps to visualize different control policies [33]. Figure 5
illustrates such heatmaps comparing the teacher (DQN) policy with
depth 2 and depth 3 DDT policies. These heatmaps are generated
by evaluating the controller’s policy on all possible states (in a fixed
subset of the state space) and provide an overview of how an agent
would react for different states.

Based on Fig. 5, we observe that the DDT heatmaps (top rows
of the figure) are consistent, straightforward, and can be easily
decomposed into a few rules based on demand, price or state-of-
charge. Contrary to this, the DQN-based policy is complex and
often non-intuitive in terms of actions taken in specific regions. E.g.,
the DQN policy in the low-demand region prefers to discharge the
battery even in the regions where the price is quite low (e.g., regions
where price is less than 0.25 and the state of charge is greater than
0.75). Such behavior is counter-intuitive and difficult to understand

Table 1: Comparison of DQN and DDTs based on computa-
tional metrics

Algorithm Number of Parameters Storage Size

DQN (teacher agent) 4.8k 22KB

DDT – depth 2 10 (38) 4KB

DDT – depth 3 22 (82) 7KB

even for experts, not to mention everyday homeowners (who will
actually use such a system). This further highlights the increased
explainability achieved using our proposed approach.

6.3 Compute performance
Besides explainability, the proposed DDT-based method is compu-
tationally light and easy to deploy on any edge device given that it
reduces the control policy into a limited set of if-then-else rules. As
a comparison, Table 1 lists the number of parameters used and the
storage footprint of the teacher agents and the distilled DDTs used
in §6.1. For DDTs, the number of parameters used during training
are represented inside parenthesis along with the parameters used
during inference. Unlike DQN which uses the same set of parame-
ters during training and inference, DDTs require fewer parameters
for inference – e.g., at any decision node, the feature selection pa-
rameters can be reduced to a single parameter representing the
selected feature. From this table, it can be clearly observed that the
proposed DDTs have a significantly smaller compute footprint due
to the reduced number of parameters, leading to trained models
which are about 200 times smaller than the teacher DQN agents.
To conclude, the comparison in Table 1 further underscores the
potential for deploying such controllers in real-world scenarios.

7 CONCLUSION
Through this work, we introduced a novel method for obtaining
explainable RL-based control policies using differentiable decision
trees and policy distillation. The key idea of our work is to distill
knowledge from a standard RL-based controller into a simple, easy-
to-explain decision tree architecture by purely relying on data. For
this, we use differentiable decision trees in a policy distillation
setup, training the decision trees using a standard (pre-trained) RL-
based controller and gradient descent. The policy distillation step
allows extracting knowledge from an RL-based controller, while
the differentiable decision tree architecture constrains the policy to
be simple and explainable at all times.

We validated our method on a battery-based home energy man-
agement problem and investigated the control performance and
explainability of our proposed approach. As presented in §6, our
proposed approach learns a control policy that performs compara-
ble to the teacher DQN agent, while being simple (i.e., ∼ 200 times
reduction in number of parameters) and easy-to-explain. Further-
more, the performance of our DDT-based controllers surpasses the
performance of commonly observed RBC, performing ∼ 20 − 25%
better than the RBC.
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(a) DDT of Depth 2 (b) DDT of Depth 3

Figure 5: Visualizing the trained policy of DDT and DQN-based agent on a simplified HEMS scenario. The heatmaps show the
actions chosen by the agents for different values of state-of-charge and price across different demand regions. The bottom row
depicts the DQN policy and the top rows show the policy of our proposed DDT-based controllers

7.1 Limitations and Future Work
As discussed in §1, the goal of this work was to introduce this
novel method and highlight its potential for future applications in
the energy domain. In support of this objective, we identify some
limitations within the current work and outline areas for future
investigations.

The initial consideration pertains to the problem formulation
discussed in §3.1, which we will further expand to include thermal
models and joint optimization with comfort constraints. While the
current problem mimics a real-world house in the present times,
future application scenarios will require more elaborate HEMS that
can optimize cost by leveraging flexibility from different sources
including building thermal mass, batteries, and electric vehicles.
To efficiently deal with such complex scenarios, our future work
will explore two main aspects: (i) extending the policy distillation
set-up to multi-agent RL settings, where simple, shallow DDTs can
be trained per flexibility asset; and (ii) domain knowledge induced
feature engineering (using previous works such as [13]) to compress
information and allow the use of shallow DDTs. While large DDTs
can be trained for such complex scenarios, we intend to focus
on “shallow” DDTs that are intuitively easier to explain (or more
explainable) as compared to “deep” trees.

Besides this, another limitation of our current approach is the
occasional instability in the training process related to the DDTs.
As noted in §6, this training instability could be attributed to the
tree structure of the DDT with features hierarchically higher up
in the tree significantly affecting the outputs. This needs to be
investigated further to identify possible solutions to stabilize the
learning process. This includes effective regularization strategies,
warm starting, or constraining the decisions being learned. The lat-
ter seems particularly useful for DDTs of higher depth, where some
decisions are conflicting or redundant (as shown in Appendix B).

The third area that needs to be addressed further is the deploy-
ment of such an algorithm in real-world scenarios and performing
a user trial to further validate the explainability of our method.
While non-trivial, such a pilot study is needed to investigate the ac-
ceptance of such a HEMS as well as the challenges associated with
maintaining such a system. This will further allow us to investigate

more advanced approaches such as human-in-loop training and
intervention strategies to maximize the decision tree architecture
and develop a robust, data-driven controller that can be widely
deployed across houses.
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A HYPERPARAMETERS
A.1 Home Energy Management Environment
For the HEMS simulator described in §5.1, we consider a nominal
power rating (𝑃agg𝑡 ) of 4kW, prompting the agents to perform peak
shaving operations to avoid exceeding this value. The agents can
do this by controlling the battery (modeled based on Eq. (1e)), the
details of which are tabulated in Table 2. The action space represents
the charging or discharging signal that is given to the battery (and
not the actual power).

Table 2: Parameters related to the Battery model used in the
Home Energy Management Simulator

Parameter Value

Max Capacity 10 kWh

Max Power 4 kW

Efficiency (round trip) 0.9

Action Space {−1,−0.5, 0, 0.5, 1}

A.2 DQN-based Teacher Agents
The hyperparameters used for the DQN-based teacher agents are
listed in Table 3. Additionally, during the distillation process, the
temperature 𝜏 is set to 0.03.

A.3 Baseline Rule-based Controller (RBC)
We compare the performance of our proposed DDTs with the cor-
responding teacher agents and a baseline RBC. This baseline is
modeled based on built-in controllers that are available with com-
mercially available batteries and are generally designed tomaximize
the self-consumption of solar PV. Such an RBC is modeled as:

𝑢𝑖 =


−1 : 𝑃agg𝑡 ≤ −𝑃max

1 : 𝑃agg𝑡 ≥ 𝑃max

𝑃𝑡
𝑃max : otherwise

, (8)
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Figure 6: Example of a learned DDT for depth 3 for the real-world BELPEX price scenario.

Figure 7: Example of a learned DDT for depth 2 for the real-world BELPEX price scenario. This particular policy learns an
unusual set of rules, yet performs well.

Table 3: Hyperparameters for 𝑄-network (DQN)

Parameter Value

Optimizer Adam

Learning Rate 0.001

Activation Function ReLU

Mini Batch Size 1000

Output Size 5 (= |U|)
Hidden Layers [64, 64]

Target Update (𝜏) 0.1

Buffer Size 5000

where 𝑃𝑡 = 𝑃con𝑡 + 𝑃
pv
𝑡 represents the power required or left over

after self-consumption.

B ADDITIONAL EXAMPLE OF LEARNED
DIFFERENTIABLE DECISION TREES

This section provides some more examples related to the learned
DDT policies. Figure 6 depicts a depth 3 DDT student. The shown
policy (decision tree) takes intuitive actions, e.g., charging the bat-
tery when the price is low or when solar PV is high. However,
as compared to the depth 2 DDT (shown in Fig. 4b), this policy
is a bit more difficult to understand. Further, as annotated in the
figure, some decision nodes learn redundant rules, which may lead
to some training instability. Besides this, for some instances, the
DDTs may learn rules that are not obvious or human intuitive, an
example of such a scenario is presented in Fig. 7. As shown in the
figure, the policy bases its decisions on time as a feature, possibly

exploiting the underlying correlation between time, price, and solar
PV generation. Hence, while the rules learned are unusual, this
policy still shows good performance. Such unusual rules are related
to high correlation between various features and to improve the
rules (making them more intuitive) we need to carefully select the
relevant features from the perspective of information content and
explainability.
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