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Abstract: Energy storage is ubiquitous in industrial processes and comes in many forms such as material, chemical, electrome-
chanical buffers. System identification of such energy buffers demands proper estimation/prediction of their physical quantities
and unknown parameters. Once these parameters are determined, the identified model can be employed to predict the industrial
process dynamics, which finally assist to build efficient control for these processes. This paper proposes physics-informed neural
networks-based grey-box modeling methods for the identification of energy buffers. The underlying system dynamics are en-
forced on the neural network structure to ensure that the identified grey-box model follows the approximate physics. We define
two novel grey-box models based on simple and recurrent neural network architectures and test these models for a generic en-
ergy buffer. Performance and training time for the proposed grey-box models are compared against a black-box baseline model.
Results confirm that imposing the dynamic system’s physics on the network improves the performance, and utilizing a recurrent
architecture leads to a further improvement.
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1 Introduction

Energy market fluctuations can cause problems in
the reliable operation of industrial processes such as
petro(chemical) and steel production. Disturbances need
to be mitigated as systems operate in a reliable and stable
manner. Effective control strategies that offer to industrial
processes the needed flexibility can help to maximize energy
efficiency and ultimately effective grid operation. Opera-
tional flexibility in an industrial process is defined as the
ability of these processes to adapt to changes in the energy
market quickly and with little financial effort. Control
engineers rely on parameterized models as these provide the
insights on the effect of settings on the dynamic behavior
and operation of the systems. When considering flexible
energy systems, identification of the system parameters is
thus essential step in the control design. The dynamics can
be formalized by a generic energy buffer model [1]. The
generic buffer is a virtual battery that outlines the relation-
ship between the control input and system parameter. This
generic buffer formulation can be used to describe multiple
industrial processes such as an evaporative cooling tower
(basin temperature as flexible parameter), wind turbines,
and Photovoltaics (PV) units.
System identification allows to build to build mathematical
models to apprehend a system’s behavior by relating the
inputs to its outputs. It can assist developing effective con-
trol, making pricing/cost decisions etc. Classical dynamic
system modeling approaches are based on knowledge of the
physical phenomena to define this relationship, resulting in
partial/ordinary differential equations (PDEs/ODEs). Such
dynamic system models are often referred to as white-box
models. White box models provide the ability that control
engineers can make sure that the industrial process is
controlled in a flexible manner. However, the complexity
and large scale nature of industrial processes hinders using

only white-box models, i.e., the limited set of parameters in
the models fail to fully align with real-world processes [2].
Data-driven approaches have attracted researchers’ attention
when it comes to analyzing or understanding complex
processes. Machine learning based system identification
allows to learn the relationship between control inputs and
unknown parameters [3]. Such black-box models however
lack the physical understanding of the system and can result
in outputs that are physically improbable as they fail to
extrapolate well. A good example is the use of an adaptive
neuro-fuzzy inference for predicting basin temperature in an
evaporate cooling tower [4], where it is noted that white-box
models tend to perform better. However, these black-box
models have been studied for specific industrial applications
and not for the generic buffer formulation.

Grey-box modeling is a more attractive approach than
black-box modeling because it incorporates the system’s
underlying dynamics in the data-driven machine learning
model. They usually outperform the black-box models
in predicting the future state of the system. Traditional
grey-box models for system identification are based on data-
driven techniques to integrate the physics of the process [5].
In recent years, multiple physics-informed modeling
methods have been studied, including Lagrangian neural
networks [6], Bayesian techniques [7] and physics-guided
recurrent neural networks [8, 9]. Physics-informed neural
networks [10] have been tested for classical problems (e.g.,
fluid dynamics, reaction-diffusion systems and such) but do
not explore the highly complicated nature of an industrial
process. Training these neural network-based models
requires a large amount of data. In an industrial context,
mostly only scarce data is available due to not logging the
data due to lack of proper infrastructure. Furthermore, the
collected sensor-based data has not yet been fully exploited
to understand the industrial process.



We define two novel grey-box models for system identifica-
tion in a generic industrial process, namely physics-informed
neural networks (PyNN) and physics-informed long-short
term memory networks (PyLSTM). These models enforce
the system’s dynamics onto the network architecture
compared to a black-box neural network model (NN) that
follows a free structure. We employ a recurrent architecture
in PyLSTM that is highly beneficial for modelling the
time-varying processes. In this paper we aim to evaluate the
potential of these grey-box models by implementing and
testing for a simplified generic energy buffer. Furthermore,
we compare these models against the baseline neural
network (NN) model. To assess our approach performance,
we compare our models’ output against simulated data
for a generic buffer. The present work has, therefore, the
following two contributions. i) Define the architecture for
physics-informed neural networks for generic buffer system
identification, ii) Performance comparison between the
proposed grey-box models and the traditional data-driven
model.

2 Generic Buffer System

Generic buffers can be considered as virtual batteries that
provide operational flexibility in the system [1]. Mapping
industrial processes to a simple dynamic linear model,
a generic buffer, also enables identifying their hidden
(non-identified) operational flexibility by considering input
and output resources to/from each process. A generic buffer
model constructed by representing the process in the form of
a power node [11] can be used to identify the parameter that
provides flexibility in the system. Furthermore, this generic
buffer brings the potential of having a more customized
objective function (e.g., maximize flexibility, minimize
power consumption and such) during industrial process
control design.
An industrial process that provides flexibility can be
represented as a virtual battery as shown in Figure 1.
The power fed into the process and that comes out of the
process are given by Pin and Pout. The state of charge
is represented by E. For example, in the case of a storage
tank, E can be represented using the current state of storage
(m represents how much the tank is filled, Equation 2),
where K is efficiency rate. The system’s dynamic equation
is given by Equation 1 and we can write the constraint
on E as in Equation 3. Representing a process in this
format provides an opportunity for identifying the system
parameter E and developing control algorithms based on
this identified parameter.

∂m

∂t
= K(Pout − Pin) (1)

E =
m−mmin

K
(2)

Emin ≤ E ≤ Emax (3)

The physics-informed models identify the system parameter
(m) that offers operational flexibility in this generic buffer.
This identified parameter can be employed to calculate the
current state of charge for this virtual battery of the process.
As a case study for building and testing our models, we

Figure 1: figure
Generic buffer

(Used to represent
industrial processes in

form of virtual battery)

Figure 2: figure
RC-circuit as a virtual

battery
(Vs: Input voltage,

Vc: Capacitor voltage)

consider the case of an RC-circuit. An RC-circuit can be
considered as a virtual battery, where the voltage across the
capacitor is the system parameter that provides flexibility.

2.1 RC-Circuit
We consider a simplified example of an RC-circuit to

investigate the feasibility of applying physics-informed
neural networks as (i) it is representative of the generic
buffer model, (ii) we can easily simulate/obtain data for
experimental purposes. A RC-circuit (Figure 2) can be
represented as a generic buffer using Equation 4, where
Vs denotes the input voltage, Vc is the voltage across the
capacitor.

∂Vc
∂t

=
Vs − Vc
RC

(4)

The underlying dynamic of the RC-circuit is very similar to
a generic buffer, as evident from the similar representations
of Equation 7 and Equation 1 (dynamic equation of a
virtual battery). The system parameter (m) is the voltage
across the capacitor (Vc). The control parameters are the
resistance (R), capacitance (C) and the voltage supplied
(Vs), which means our models need to approximate a single
output parameter Vc using multiple input parameters. Such
a structure helps in evaluating the efficacy of our models
in the case of a standard generic buffer. Furthermore, we
can simulate reliable data for RC-circuit step response.
Real-world industrial data is challenging to acquire and
often deficient for such analysis, and choosing to test our
models on RC-circuit solves that problem.

3 Physics-Informed Networks

For grey-box models, we use two model architectures:
physics-informed neural networks (PyNN) based on pre-
vious work [10] and physics-informed long short term
memory (PyLSTM) networks. Both models’ underlying
idea is to enforce the governing physics in the neural
network architecture using the system’s dynamic equations.
A dynamic system can be represented using Equation 5,
where m is the system response and H is a non-linear
operator. We assume that the PDE representing the
system can be rewritten as in Equation 6. For and RC-
circuit, we can rewrite Equation 4 as Equation 7 where
m = Vc is the system response that needs to be characterized.



∂m

∂t
+H(m;λ) = 0 (5)

f =
∂m

∂t
+H(m;λ) (6)

f =
∂Vc
∂t
− Vs − Vc

RC
(7)

Black-box model: A neural network can be used to ap-
proximate the time-varying relationship between the control
inputs and system response. System response approximated
by neural network is represented by m̂NN and depends
on the inputs I (Equation 8, where Ii are the inputs for

ith sample). In case of RC-circuit, V̂c
NN

depends on the
control inputs (R,C, Vs) and time t when the sample was
recorded (Equation 9). The weights of the trained neural
network are represented by θ.

m̂NN
i = NN(Ii; θ) (8)

V̂ NN
c,i = NN(Ri, Ci, Vs,i, ti; θ) (9)

In the following sections, architectures of two grey-box
neural networks are explained that enforce the dynamics of
an RC-circuit in a neural network architecture.

3.1 Physics-Informed Neural Networks (PyNN)
Figure 3 depicts the architecture of PyNN, where Ii

corresponds to the input for ith sample. Estimated value
of parameter m, represented by m̂PyNN , is characterized
by Equation 10. After calculating m̂PyNN , its time deriva-
tive is calculated using auto differentiation and non-linear
operator H is applied to it to calculate f̂PyNN . Time is
fed as an input (Ii) to the neural network. This introduces
the temporal component in the model and helps in learning
how m evolves with time. In case of RC- circuit, the values
V̂ PyNN
c,i and f̂PyNN

i are calculated according to Equa-
tion 11 and Equation 12.

m̂PyNN
i = PyNN(Ii; θ) (10)

V̂ PyNN
c,i = PyNN(Ri, Ci, Vs,i, ti; θ) (11)

f̂PyNN
i =

(
∂V̂ PyNN

c

∂t

)
i

−
Vs,i − V̂ PyNN

c,i

RiCi
(12)

Figure 3: figure
[Physics-informed NN architecture]Physics-informed NN

architecture. Inputs (I) for ith sample are used to model both m and
f .

3.2 Physics-Informed LSTM Networks (PyLSTM)
This section outlines a modified version of PyNN, where

we use a long short term memory (LSTM) to model the data.
LSTM networks are a type of recurrent neural networks
(RNN), which are used for temporal or sequential modeling
where the output of a step depends on the output of past
steps. Each cell of RNNs returns two parameters, output
and state, where the state represents the cell’s state and
is used as an input for the next step. LSTM cells have
forgotten and update gates, based on which they update
the state of the cell [12]. To make a prediction at step i
we feed the data of past i-k steps, such that the m̂PyLSTM

is characterized by Equation 13. We can choose k based
on the system. We estimate the time derivative of m using
finite difference based filtering. Figure 4 describes the
architecture of PyLSTM. In case of RC-circuit, V̂ PyLSTM

c,i

is described by Equation 14, and f̂i is estimated similar to
PyNN (Equation 12).

m̂PyLSTM
i = PyLSTM(Ii, Ii−1, . . . , Ii−k; θ) (13)

V̂ PyLSTM
c,i = PyLSTM(Ri, Ci, Vs,i, ti, . . .

. . . , Ri−k, Ci−k, Vs,i−k, ti−k; θ)
(14)

Figure 4: figure
Physics-informed LSTM architecture.

3.3 Training
Grey-box models (PyNN and PyLSTM) are trained

by minimizing the error incurred in estimating system
response (em = m− m̂) and error incurred in enforcing the
dynamics of system (em = f − f̂ ). Integrating the error
of f ensures that the dynamic system’s physics is enforced
on the network. Physics-informed LSTM are trained using
the ‘teacher-forcing’ algorithm introduced in [13]. In this
training algorithm, the true value of output at (i − 1)th step
is used as input to the network at ith step, rather than using
the network’s output from the previous step.

A loss function defined as the total mean squared error
(MSE), which is the sum of MSE of estimating m and MSE
of estimating f , is used previously to train physics-informed
neural networks [10]. We extend this loss function by
including L2 regularization to ensure a robust training of



the recurrent neural networks, which are prone to overfitting
when trained ‘teacher-forcing’ algorithm. In Equation 15,
we give the loss in the network with weights W. Total
number of observations in a batch is represented by N, em,i

and ef,i are errors in estimating m and f respectively, and
the last term is L2 regularization. Parameter λ controls the
importance of the regularization term.

L(W ) = MSEm +MSEf + Ω(W )

=
1

N

N∑
i=1

(e2m,i + e2f,i + λ|Wi|2)
(15)

4 Experimental design

In the following paragraphs, we outline the data simula-
tion for RC-circuit, training of the baseline neural networks
and physics-informed networks, and the evaluation metrics.

Data Simulation: The step response of a RC-circuit can
be represented using the Equation 7, where resistance (R),
capacitance (C) and input voltage (Vs) are the system con-
trol parameters. The voltage across the capacitor (Vc) is the
system parameter that represents flexibility and needs to be
identified. Data is simulated for 5000 seconds (100 obser-
vations/second) based on randomly chosen values of Vs, R
and C (Vs ∈ {0, 1, 2, 3}V ; R ∈ {1, 2, 3}Ω; C ∈ {1, 2, 3}F ).
Each sample also records the time (s) referred as timestep.
Gaussian noise is added to the simulated Vc to get a noisy
observation V n

c that represents the real world scenario. This
noisy observation is used to train the models.

Model configuration: Baseline neural networks (NN) and
physic-based neural networks (PyNN) take the inputs at
timestep i to make predictions at timestep i. Both architec-
tures are fully connected networks with two hidden layers
with 16 neurons in each layer. We build a Physics-informed
LSTM (PyLSTM) with the length k = 50 steps to make pre-
dictions for the next step. Two hidden layers of 16 LSTM
cells each are utilized. While training, ‘teacher-forcing’ is
used to train the LSTM network at each step. While mak-
ing predictions with PyLSTM, we feed the data for the last
k steps to make the prediction. Training and evaluation are
performed using Intel Xeon E5645 and a single four-core
E3-1220v3 (3.1GHz) with 16GB RAM.

Evaluation: We do a walk forward validation with a
moving window, where a validation set is selected for a
fixed window, and this window is moved ahead in time
recursively to create the new validation sets. This validation
is conducted because the data is time-series, and we can
compare the performance based on the same training and
testing set size for all models. The training set consists of
data for 50K timesteps (500 s) and we evaluate our model
on the next 5K timesteps (50 s). We do this for a total of 5
validation sets.

We calculate the absolute errors for all models based
on short-term predictions (2 s, 200 time steps) and long-
term predictions (50 s, 5000 time steps) to measure
the efficacy. Absolute error is defined in Equation 16,

where V̂M
c represents the values predicted by model M

∈ {NN,PyNN,PyLSTM}.

|ei|M = |Vc,i − V̂M
c,i | (16)

5 Numerical results

Figure 5 shows the absolute errors for all models for short-
term and long-term predictions. Each box is constructed
from absolute errors of all predictions in the prediction hori-
zon, for example, for long-term (50 s), each box is made
from 5K absolute errors. Average values are calculated for
all validation sets. We can see that PyLSTM outperforms
both models. In predictions for the next 2 seconds, PyNN
performs better than the baseline neural network NN model
because it has information on the system’s dynamics. To
check if the absolute errors for models are statistically dif-
ferent, we perform a two-tailed t-test ( Figure 5). We can see
that even in long-term predictions, PyLSTM is statistically
better from the baseline neural network (NN).

Figure 5: figure
Absolute error distribution for short-term predictions (2 s) and
long-term predictions (50 s). (t-test p-Values are represented

using **** : p-Value ¡ 0.0001)

Figure 6: figure
Absolute error for short-term predictions. Average values are

calculated for all validation sets (shaded area represents 25 and
75 percentile)

We also provide all models’ absolute errors for each time
step in Figure 6 for short-term predictions. PyLSTM seems’



to be performing better than both the other models. Adding
information about the dynamics of the systems improves
the performance of neural networks, but using a LSTM in-
creases the performance even further with less than 5% error
in short-term predictions. We also see that the variance in er-
rors in the case of PyLSTM is smaller compared to the other
two models. The worst performing validation set results in
the case of PyLSTM which is still better than the best per-
forming PyNN.

Figure 7: figure
Loss per iteration for physics-informed models (Loss is the sum

of mean square error in m and f , Equation 15)

Figure 7 shows the loss curves for physics-informed models
for 4 validation sets (we notice similar curves for other vali-
dation sets). The loss for PyNN becomes stable after around
100 iterations in all cases, and it is optimized faster than
PyLSTM. Physics-informed LSTM takes a large number
of iterations to optimize, where the loss keeps decreasing
even after 500 iterations. This also suggests that using more
data will result in a better model in the case of PyLSTM.
Training time for PyLSTM for each iteration is higher than
PyNN, which happens because we run more operations
while training a recurrent neural network compared to the
standard neural networks.

6 Conclusions

Industrial processes depend on accurate system identifi-
cation to design effective control polices, mitigating future
disturbances and and reliable operation. It is also crucial
in forecasting parameters that assist in making pricing/cost
decisions. In this paper, we present two architectures of
physics-informed neural networks (PyNN and PyLSTM),
that can be employed for system identification in dynamic
systems. One such dynamic system that is representative of
a generic industrial process is used to evaluate and compare
the performance of these models.

We notice significant improvement in system identifica-
tion in grey-box models (PyNN and PyLSTM) which are
not only optimized for minimum output prediction error, but
also incorporate adherence to physical model constraints
(i.e., ODE/PDE) compared to the black-box model (NN).
Furthermore, the recurrent neural network architecture

based PyLSTM outperform even the grey-box PyNN, and
we receive the best performance for PyLSTM such that
short-term prediction errors for this network are less than
5%. We also see that PyLSTM keeps on learning even
after loss for PyNN becomes constant. For predictions in
the immediate future of the training period (i.e., short-term
predictions), PyLSTM should be used as they outperform
other models.

This study was a initial proof-of-concept, demonstrating
the potential of PyLSTM for system identification in
dynamic systems. Future work will include validation
for (i) real-world industrial processes, and (ii) multiple
input and multiple output systems compared to single
output system that we tested. Finally, as mentioned, we need
to come up with a DL-based control by employing PyLSTM.
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