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Abstract

We consider the problem of allocating data center (DC) resources for cloud enterprise customers who require guaranteed
services on demand. In particular, a request from an enterprise customer is mapped to a virtual network (VN) class that is allocated
both bandwidth and compute resources by connecting it from an entry point of a data center to one or more hosts while there are
multiple geographically distributed data centers to choose from. We take a dynamic traffic engineering approach over multiple
time periods in which an energy-aware resource reservation model is solved at each review point. For the energy-aware resource
reservation problem, we present a mixed-integer linear programming (MILP) formulation (for small-scale problems) and a heuristic
approach (for large-scale problems). Our heuristic is is fast for solving large-scale problems where the MILP problem becomes
difficult to solve. Through a comprehensive set of studies, we found that a VN class with a low resource requirement has a low
blocking even in heavy traffic, while the VN class with a high resource requirement faces a high service denial. Furthermore,
the VN class having randomly distributed resource requirement has a high provisioning cost and blocking compared to the VN
class having the same resource requirement for each request although the average resource requirement is same for both these VN
classes. We also observe that our approach reduces the maximum energy consumption by about one-sixth at the low arrival rate to
by about one-third at the highest arrival rate—this also depends on how many different CPU frequency levels a server can run at.

Keywords: Data Center Networks, Resource Optimization and allocation on-demand, Request Blocking, Energy Efficiency,
Virtual Network, Dynamic Traffic Engineering

1. Introduction

The increasing growth of cloud based applications such as
video streaming, web search, distributed file systems, scien-
tific computations, software libraries and document collection
made the data centers (DC) a popular platform in the Internet
world. Companies such as Amazon, Google, Facebook, and
Yahoo! routinely employ data centers for storage, web services
and large-scale computations [1], [2], [3]. With the increase
in demand, the size and number of DCs are increasing day by
day. Large-scale data centers are set up with a large number
of servers that are interconnected through routers, switch, and
high speed links [4]. Due to the growing usage of data cen-
ters, the expenses of maintenance are also increasing. Power
consumption is a major concern in operating data centers as
most of the equipment in data centers are temperature sensi-
tive and cooling through air and water is necessary to keep the
temperature within an acceptable limit. Moreover, operating
the servers, routers and switches also requires a huge amount
of power. Data centers in the USA consumed about 91 billion
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kilowatt hours annually in 2013 and are estimated to consume
140 billion kilowatt-hours of electricity annually by 2020 [5].
Hence, reducing the energy consumption of data centers has
been a challenging research problem. The ultimate aim behind
designing a data center is reducing the expenses while gaining
the highest efficiency.

There has been a number of contributions so far to increase
the efficiency of data centers by better utilizing the server re-
sources, applying traffic engineering techniques to reduce the
bandwidth and other operational costs. Some of them [6], [7]
focus on energy efficient resource provisioning using dynamic
traffic engineering. However, to our knowledge, no work has
considered how both compute resources at the end hosts and
network resources inside the data center are allocated to satisfy
the request of virtual network (VN) customers while minimiz-
ing both energy consumption and bandwidth cost. Secondly,
most work related to traffic engineering of intra-DC networks
consider east-west traffic, i.e., the intra data center traffic be-
tween hosts. In our work, we focus instead on enterprise cus-
tomers’ requests that result in north-south traffic in data centers
requiring both network bandwidth and server resources. In par-
ticular, we address serving different enterprise customer groups
using VNs at data centers through dynamic traffic engineering
by allocating both network bandwidth and processing resources
efficiently, while factoring in energy consumption. That is, we
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consider the north-south traffic environment where each request
consists of a two-tuple demand: one for data center network
bandwidth and the other for the processing demand at the end
hosts.

Our work has three notable contributions beyond the exist-
ing work.

• For the dynamic traffic engineering problem, we present
a novel mixed-integer linear programming (MILP) for-
mulation that is solved at each review point to minimize
a composite objective that consists of bandwidth cost, en-
ergy consumption cost and DC-VN mapping cost from a
traffic engineering point of view while satisfying the vir-
tual network customers by using the minimum amount
of resources from data centers. The MILP formulation
allows the flexibility that requests arriving at a particu-
lar review point may be allocated to any of the available
data centers; for the selected data center, it may use any
of the entry points for the north-south traffic at the north
end, and any of the hosts available at the south-end. Our
formulation also considers a penalty cost for a blocked
request due to the potential loss of revenue.

• We present a heuristic as an alternative to solving the
MILP formulation to test the performance of our frame-
work for more realistic large scale data center networks.
Our heuristic compares favorably with the solutions ob-
tained for the MILP formulation for small-scale prob-
lems, and is fast to solve large-scale problems.

• We present an insight on how different classes of VN cus-
tomers are affected in terms of resource allocations with
north-south traffic in data centers. For instance, we ad-
dress the following questions: How does each VN class
perform? Is there any difference in the level of satis-
faction among different VN classes in terms of cost and
blocking, if so then by how much? By what percent-
age can we reduce energy consumption? How does the
performance vary for different VN classes in a compara-
tively large data center?

The rest of the paper is organized as follows. In Section 2,
we present the optimization formulation of the traffic engineer-
ing problem to be solved at each review point. In Section 3,
we propose our heuristic. In Section 4, we summarize the sim-
ulation setup and parameter details. Results are discussed in
Section 5. The related work is discussed in Section 6. Finally,
in Section 7, we summarize our concluding remarks and discuss
potential future work.

2. Model Formulation

Our dynamic traffic engineering approach considers new re-
quest arrivals at random from customers, for which the resource
allocation (both data center network bandwidth and host re-
sources) is done at review point t ∈ T , where T is a discrete
temporal window for dynamic traffic engineering consisting of
review points. The duration of a new VN request that uses the

data center is assumed to be random. Note that since the data
center is set up to serve VN customers, at any time instant, there
are existing VN tunnels and host resources allocated for prior
requests. Thus, any (micro-)workload that needs immediate ac-
cess to resources, that is, workload that cannot wait until the
next review point, is assumed to be served by existing VN chan-
nels and host resources assigned to the customers that were set
up at earlier review points. Since such immediate workloads
are served through existing resources, they are not modeled in
our work. In other words, the scope of our work is to consider
new requests at review points that are major requests requir-
ing allocation of new bandwidths, virtual network tunnels and
new resources. For this, we first present a mixed-integer lin-
ear programming (MILP) formulation in which we attempt to
accommodate as many requests as possible while minimizing
the resources requirement towards satisfying those requests in
order to reduce the overall cost. To illustrate our approach, con-
sider the single data center network topology shown in Fig. 1,
which depicts just one site of the multi-location data center that
our model considers. The entry point in a data center is then
the north-end and the serving host is the south-end of the north-
south traffic. Our approach assumes that there is a central con-
troller that is responsible for solving the proposed optimization
model and setting up the allocations. For instance, this can
be accomplished by using a software-defined network (SDN)
based approach.

In our model, each request consists of 2-tuple 〈h, r〉 where
h is the bandwidth demand of the request and r is the process-
ing resources required from a serving host. Thus, at a particular
review point t, if a VN customer v ∈ V has a request, the re-
quest tuple is further represented by 〈hvk(t), rvk(t)〉, which is to
be served by data center d ∈ D. While the bandwidth demand
needs to be satisfied by the capacity of the links within the data
center l ∈ Ld from the entry point i ∈ Id to a server j ∈ Jd, the
processing resources must be satisfied by the servers’ available
resources. We assume that there is a given set of paths Pvd

i j (t)
from the entry point i to server j, which could be potentially
different at each review point t.

For energy consumption, we consider that every server can
run at a given set of CPU frequencies f ∈ F. At each particu-
lar frequency, a server works at a particular processing capac-
ity ad

j f . A specific amount of power bd
j f is required to run the

server at that frequency. If we run the server at the highest fre-
quency, it offers the highest processing capacity, but consumes
the highest amount of power. All notations used in our model

Figure 1: Data Center Topology [8]



Constants/Parameters:
D = Set of data centers, N = #(D)
Jd = Set of servers in one data center
Id = Set of entry points in one data center
V = Set of virtual networks

Kv(t) = Set of requests from virtual network v at review
point t
F = Set of frequencies in which server j can run
Ld = Set of links in one data ceneter
Pvkd

i j (t) = Set of paths from entry point i to server j in dat-
acenter d for request k of VN v at review point t
M = A large positive number
ε = A very small positive number
bd

j f = Power consumption in server j of data center d at
frequency f
hvk(t) = Bandwidth demand for request k of VN v at review
point t
rvk(t) = CPU processing capacity demand for request k of
VN v at review point t
ad

j f = Capacity of server j of data center d at frequency f
cd

l (t) = Available capacity on link l of data center d at re-
view point t
δvkd

i jpl(t) = Link-path indicator: 1 if path p which is set up
from entry point i to server j uses link l of data center d in
order to satisfy request k generated by VN v that comes to
that entry point i of that data center d at review point t to
be served, 0 otherwise
βd(t) = Normalized cost of data center d at review point t
α, µ, γ are weight parameters related to 3 optimization ob-
jectives

Table 1: Constants used in Formulation

are summarized in Table 1 and Table 2.
We now present the constraints in our formulation. First,

one DC out of the N DCs (D = {DC1, ...,DCN}) is at the most
selected to meet request k from VN v at review point t:∑

d∈D

uvkd(t) ≤ 1, k ∈ Kv(t), v ∈ V (1)

Once a datacenter is responsible to fulfill the link bandwidth
demand request k from VN v, then this data center must be
the one from which the capacity is allocated for the bandwidth
demand:

svkd(t) = hvk(t)uvkd(t), k ∈ Kv(t), v ∈ V, d ∈ D (2)

Next, either the total link bandwidth demand must then be
served by the chosen data centers or if there is not enough band-
width to serve a request from a particular VN, then this request
will be labeled as an artificial allocation, s̃vk(t), that allows us
to keep a count on also blocked requests:∑

d∈D

svkd(t) + s̃vk(t) = hvk(t), k ∈ Kv(t), v ∈ V (3)

We force the decision of choosing the binary variable of ar-
tificial allocation if a request cannot be served by limited re-

Variables:
uvkd(t) = Binary decision variable to choose data center d
to satisfy request k from virtual network v at review point
t
svkd(t) = Bandwidth allocation going to data center d for
request k of virtual network v at review point t
s̃vk(t) = Artificial bandwidth allocation for request k of
virtual network v at review point t
qvk(t) = Binary decision variable to choose real allocation
for request k of virtual network v at review point t
f̃ vk(t) = Binary decision variable to choose artificial allo-
cation assuming a very high penalty cost for request k of
virtual network v at review point t
yvkd

i j (t) = Bandwidth allocation for request k of VN v from
entry point i to server j of data center d at review point t
ỹvkd

i j (t) = Binary decision variable to select request k of VN
v to be satisfied which comes to entry point i and served
by server j of data center d at review point t (this parallels
yvkd

i j (t))
xvkd

i jp (t) = Bandwidth allocation in path p, if request k
comes to entry point i of data center d is transferred to
server j uses path p at review point t
zvkd

l (t) = Bandwidth needed on link l of datacenter d for
request k of VN v at review point t
evkd

j (t) = The requirement of CPU processing capacity
from server j of dataceneter d to satisfy the request k com-
ing from VN v at review point t
gvkd

i j (t) = Server resource (CPU processing capacity) allo-
cation for request k of VN v through entry point i to server
j of data center d at review point t
g̃vk(t) = Artificial server resource (CPU processing capac-
ity) allocation for request k of VN v at review point t
wvkd

j f (t) = Binary decision variable to choose the optimum
frequency f from the range of available frequencies of
server j of data center d to meet the required demand of
CPU processing capacity for request k of VN v at review
point t

Table 2: Variables used in Formulation

sources:
s̃vk(t) ≤ M f̃ vk(t), k ∈ Kv(t), v ∈ V (4)

A request from a VN can only be considered for either a real
allocation or an artificial allocation but not for both at review
point t:

f̃ vk(t) + qvk(t) = 1, k ∈ Kv(t), v ∈ V (5)

If a request is considered for real allocation, the total link band-
width demand then must be served by the chosen real data cen-
ters: ∑

d∈D

svkd(t) = hvk(t)qvk(t), k ∈ Kv(t), v ∈ V (6)

The total amount of the link bandwidth demand from particular
VN v that will be served by data center d is the summation of
the bandwidth that is allocated from all chosen entry points i to



all chosen servers j of data center d at review point t:∑
i∈Id

∑
j∈J

yvkd
i j (t) = svkd(t), k ∈ Kv(t), v ∈ V, d ∈ D (7)

Next, we introduce a binary shadow variable ỹvkd
i j (t) cor-

responding to yvkd
i j (t) to track one-to-one mapping from entry

point i to server j at review point t by using a large positive
number M and a small positive number ε:

yvkd
i j (t) ≤ Mỹvkd

i j (t), j ∈ Jd, i ∈ Id, k ∈ Kv(t), v ∈ V, d ∈ D (8)

yvkd
i j (t) ≥ ε̃yvkd

i j (t), j ∈ Jd, i ∈ Id, k ∈ Kv(t), v ∈ V, d ∈ D (9)

Here, (8) and (9) together addresses the requirement that ỹ is
1 when the corresponding variable y has a positive flow; other-
wise, ỹ as 0 when y is 0.

The bandwidth that is allocated to a particular path from
entry point i to server j of data center d is given by using the
path flow variables xvkd

i jp :∑
p∈Pvkd

i j (t)

xvkd
i jp (t) = yvkd

i j (t), j ∈ Jd, i ∈ Id, k ∈ Kv(t), v ∈ V, d ∈ D

(10)
If any bandwidth is allocated on particular path p to satisfy a
portion of the request k of bandwidth demand hvk from any VN
v, then all the links associated with that path has to carry that
portion of demand hvk.

Therefore, we can determine the link flow on l for tuple
〈v, d〉:∑

i∈Id

∑
j∈Jd

∑
p∈Pvkd

i j (t)

δvkd
i jpl(t)xvkd

i jp (t) = zvkd
l (t)

l ∈ Ld, k ∈ Kv(t), v ∈ V, d ∈ D (11)

while the total amount of bandwidth required in one link l of
data center d to satisfy the requests of all VNs must not exceed
the capacity of that link of this data center:∑

v∈V

∑
k∈Kv(t)

zvkd
l (t) ≤ cd

l (t), l ∈ Ld, d ∈ D (12)

Furthermore, we must determine whether a request can be
served with limited server resources or not. If there is a re-
source limitation to serve a particular request from a VN at
review point t, then the binary variable to choose an artificial
allocation for that request will be 1. This condition is satisfied
by the following constraints:∑

d∈D

∑
i∈Id

∑
j∈Jd

gvkd
i j (t) + g̃vk(t) = rvk(t), k ∈ Kv(t), v ∈ V (13)

g̃vk(t) ≤ M f̃ vk(t), k ∈ Kv(t), v ∈ V (14)∑
d∈D

∑
i∈Id

∑
j∈Jd

gvkd
i j (t) = rvk(t) qvk(t), k ∈ Kv(t), v ∈ V (15)

Next we address resource allocation of rvk(t) to the appropriate
tuple 〈d, i, j〉, ensuring this in accordance with shadow variable
ỹ.

gvkd
i j (t) ≤ Mỹvkd

i j (t), j ∈ Jd, i ∈ Id, k ∈ Kv(t), v ∈ V, d ∈ D
(16)

gvkd
i j (t) ≥ ε̃yvkd

i j (t), j ∈ Jd, i ∈ Id, k ∈ Kv(t), v ∈ V, d ∈ D (17)∑
i∈Id

gvkd
i j (t) = evkd

j (t), j ∈ Jd, k ∈ Kv(t), v ∈ V, d ∈ D (18)

In (18), evkd
j (t) represents the total amount of resources re-

quired from server j to satisfy a request from VN v at time t that
uses the server coming through all entry points of a particular
data center. The total resources allocated to each request from
a particular server must be less than or equal to the available
resources of that server of a data center:

evkd
j (t) ≤

∑
f∈F

ad
j f w

vkd
j f (t), j ∈ Jd, k ∈ Kv(t), v ∈ V, d ∈ D (19)

Finally, a particular server j running at a particular fre-
quency f can produce a particular capacity ad

j f . However, a
server cannot run at more than one frequency at a time:∑

f∈F

wvkd
j f (t) ≤ 1, j ∈ Jd, d ∈ D, k ∈ Kv(t), v ∈ V (20)

To achieve the goal of the optimization problem, we con-
sider four cost components in the objective function: the net-
work bandwidth cost, the server resource cost, the data cen-
ter location cost and the penalty cost for those requests which
are not satisfied by the limited resources identified through the
artificial allocation. Furthermore, since resources are of dif-
ferent types, we take a utility function-based approach by as-
signing weights to different components that form the objective
function. The first three sources of costs are assigned differ-
ent weight parameters, α, µ, γ, to understand the influence of
each term on the overall decision, while the penalty term is as-
signed a high penalty through parameter M. Thus, our goal is to
accommodate as many requests as possible and this can be ac-
complished by minimizing the amount of resources used. That
is, the objective function can be written as:

minα
∑
d∈D

∑
v∈V

∑
k∈Kv(t)

∑
l∈Ld

zvkd
l (t)

+µ
∑
d∈D

∑
j∈J

∑
v∈V

∑
k∈Kv(t)

∑
f∈F

bd
j f w

vkd
j f (t)

+γ
∑
d∈D

∑
v∈V

∑
k∈Kv(t)

βd(t)uvkd(t) + M
∑
v∈V

∑
k∈Kv(t)

f̃ vk(t) (21)

To summarize, our unified formulation addresses decision
choices at three different levels: data center, entry point, and
then the destination server. Secondly, we take power consump-
tion into account in determining the right frequency for operat-
ing a server. Finally, we consider four cost components in the
composite objectives.



3. Cost Effective Heuristic

The MILP problem is an NP-hard problem. Thus, due to
the limitation of the optimization model to generate optimal so-
lutions quickly for large scale problems in a dynamic traffic en-
gineering framework, we have developed a heuristic shown in
Algorithm 1. For the heuristic, we use the notations from Table
1 and Table 2.

At a particular review point t, for all incoming requests with
bandwidth and resource requirements, this heuristic attempts to
obtain the best possible solution at this review point. The input
for this heuristic and the output returned by this heuristic are
given below:
DC related Input: Number of DCs (N), all paths available p ∈
Pvkd

i j i→ j, capacity of each link (cd
l ), capacity of each server at

different frequencies (ad
j f ).

VN related Input: Resource requirement (rvk) and bandwidth
requirement (hvk) to satisfy the requests at review point t.
Output: Near optimal solution to satisfy a request or report that
request as blocked.

The heuristic works on the first fit principle. At first, the
heuristic updates the existing capacity of resources based on the
given input discussed above. To find the best way of allocating
resources, the heuristic picks one data center among all avail-
able data centers and continues to use it until either all servers
or required links to establish a path from an entry point to a
server are exhausted. Among all available entry points in that
DC, the heuristic starts with one entry point (EP) and continues
to allocate requests through this point until either all neighbor
servers (NS) or all required links to establish a path from that
entry point to an NS are occupied. By neighbors, we mean that
two edge switches are considered as the neighbor edge for each
entry point; then, for a particular entry point, the servers which
are connected to this neighbor edge of the entry point are con-
sidered as a neighbor server (NS) for this entry point. From all
the available neighbor servers, the heuristic picks a server from
a neighbor server rack and continue to use the servers from that
rack until all servers are occupied. When all the servers from
that rack are occupied or do not find not enough capacity for
any of the required links to establish a path, the heuristic starts
with another neighbor server rack. This way the heuristic con-
tinues to allocate from the available resources to satisfy all the
requests arriving at a review point.

In our approach, a server’s goal is to fill as many requests
as it can. To do so, at first, this server starts with the max-
imum available capacity and continue to fit requests until it
reaches the limit of its capacity or all the requests are allocated
with required compute resources. While doing so, from all the
available capacity of that server, the heuristic tries to find the
minimum capacity using which resource requirement from one
request can be satisfied. After finding the minimum resource
requirement, this quantity is reduced from the maximum avail-
able capacity. Through this, the heuristic is able to determine
the best capacity in which a server should run. Furthermore,
the heuristic gives us the information that by running the server
at this frequency, how processing capacity that is generated is

Figure 2: Data Center Topology [8]

fractionally allocated among different requests. After being en-
sured about the resource fulfillment from a server, the heuristic
uses the leftmost shortest path to route all the requests that can
be satisfied by that server from the entry point to the targeted
server. Now, for all the requests served by this server, once
the shortest path is established, link capacity is modified by re-
ducing the required link capacity from the currently available
link capacity (from the given input in the review point) for each
link.

We illustrate the heuristic using Fig. 2. When a number
of requests arrives at a review point, each request is attempted
in a sequential order. The first request picks the leftmost data
center (where data centers are numbered left to right) and enters
through EP1 (if available). Then, it tries the leftmost shortest
path, 1-5-13, to reach server 1. if server 1 is not available, it tries
server 2. In the case of resources not available either at server
1 or 2, the request tries the path 1-6-14 to reach server 3 or
server 4. In case none of the paths or servers are accessible from
EP1 to satisfy the request, then an entry through EP2 is initiated
to reach server 5, 6, 7, or 8. Thus, the attempts are made in
the following order: 1-5-13-s1, 1-5-13-s2, 1-6-14-s3, 1-6-14-
s4, 2-7-15-s5, 2-7-15-s6, 2-8-16-s7, 2-8-16-s8, and so on. This
hunting process is continued until the request is fulfilled by a
data center, a server with a path with the required bandwidth;
consequently, the available bandwidth and server resources are
updated on the path and the server. If after trying all data centers
and paths and servers, the request cannot not be satisfied, it is
deemed blocked. It may be noted that at any review point, a
request may not be satisfied, but one next in its sequence may
be satisfied. This is because the next request may have less
bandwidth and/or resource requirements than the previous one
since we assume that arriving requests are heterogenous.

4. Simulation Study Setup and Parameter Values

To conduct our study, we use the data center topology
shown in Fig. 1. We set a maximum of two data centers (N = 2)
in our study. Each data center is considered to be identical in
this study; the number of servers in each data center are the
same and all links inside the data center are set with the same
capacity. For the MILP model, we set Pvd

i j (t) = 4 paths from an
entry point to a server in which the bandwidth will be allocated
to satisfy a specific request for the duration of this request.



Case Description # of Servers Link Capacity
in Each Data Center of Each Link

Group-A
Case-1 CPLEX and heuristic for demand

type H: small-scale (Frequency-
SetA)

16 12

Case-2 CPLEX and heuristic for demand
type VHa: small-scale (Frequency-
SetA)

16 12

Case-3 Heuristic for demand type VHa and
VR: small-scale (Frequency-SetA)

16 12

Group-B
Case-4 Heuristic for demand type VHb

with Processing Capacity as Bot-
tleneck: large-scale, 4 entry points
(Frequency-SetB)

800 1,000

Case-5 Heuristic for demand type VHb

with Link Capacity as Bottle-
neck: large-scale, 4 entry points
(Frequency-SetB)

800 500

Case-6 Heuristic for demand type
VHb: large-scale, 8 entry points
(Frequency-SetB)

1,600 600

Group-C
Case-7 High Frequency Options: HFO

(using demand type VHb and
Frequency-SetB)

16 12

Case-8 Low Frequency Options: LFO
(using demand type VHb and
Frequency-SetC)

16 12

Table 3: Summary of Cases (Group-A: Case-1, Case-2, Case-3; Group-B: Case-4, Case-5, Case-6; Group-C: Case-7, Case-8)

We divided our studies into eight cases that are clustered
into three groups as listed in Table 3 (H, VHa, VHb, and VR
in this table are described later in this section). The first group,
Group-A, consists of Case-1, Case-2, and Case-3, where the
number of servers in each data center is set to 16 and the capac-
ity on each link is set to 12, to reflect small-scale DCs. Com-
paring the results of the heuristic against the MILP formula-
tion in a dynamic traffic engineering environment was done for
Case-1 and Case-2. The MILP formulation used at each review
point of the dynamic traffic engineering problem was solved us-
ing AMPL/CPLEX (v 12.6.0.0). Beyond this size, CPLEX was
found to be highly time consuming to obtain even a near opti-
mal solution by setting a CPLEX option of node limits to 1000
for the branch-and-cut method. In Case-3, we used the heuristic
to compare two types of demands.

The second group, Group-B, in Table 3 consists of Case-
4, Case-5, and Case-6 for large-scale DCs. In this group, we
varied the number of servers from 800 to 1,600, and capacity
of each link between 500 and 1000 to understand a number of
situations, which were solved using the heuristic. Case-4 is to
consider the situation where the processing capacity is the bot-
tleneck. Case-5 considers the scenario when the link capacity is

the bottleneck, while Case-6 is also is a case with capacity bot-
tleneck while with a larger number of servers and entry points.

The third group, Group-C, in Table 3 consists of Case-7 and
Case-8 is to exclusively understand energy consumption. For
this study, it suffices to use a small-scale DC, but we change the
frequency options to understand the gain in energy consump-
tion.

We considered V = 3 classes of virtual networks to repre-
sent three different groups of enterprise customers that generate
requests. Recall that a request is represented by the tuple 〈h, r〉.
We varied 〈h, r〉 to create different types of demands to run the
simulation for different cases as shown in Table 3; these are
summarized in Table 4. Type-H in Table 4 assumes that all VN
classes are homogeneous in terms of 〈h, r〉; this type was used in
Case-1. Type-VHa reflects heterogeneous VN classes different
bandwidth and processing demands, using 〈h1, r1〉 = 〈3, 0.3〉,
〈h2, r2〉 = 〈6, 0.6〉, 〈h3, r3〉 = 〈9, 0.9〉. VN-2 here requires twice
as much resources as VN-1 while VN-3 requires three times as
much resources as VN-1. This allows us to see how each VN
class is treated by the DC due to heterogeneity.

Type-VR is similar to VHa except that we allow variation of
the demand to be uniformly chosen at random within each VN



Demand types Parameters Values
Type-H:
Homogenous Bandwidth and CPU Processing
Capacity for each request from all 3 VNs

Bandwidth Demand from VN-1,
VN-2 and VN-3

6

CPU Processing Capacity Demand
from VN-1, VN-2 and VN-3

0.6

Type-VHa:
Different Bandwidth and CPU Processing
Capacity demand for different VNs while the
demand is fixed within each VN

Bandwidth Demand-VN-1 3
Bandwidth Demand-VN-2 6
Bandwidth Demand-VN-3 9
CPU Processing Capacity Demand-
VN-1

0.3

CPU Processing Capacity Demand-
VN-2

0.6

CPU Processing Capacity Demand-
VN-3

0.9

Type-VR:
Different Bandwidth and CPU Processing
Capacity demand for different VNs while
with random within a fixed range for each
request from a particular VN

Bandwidth Demand-VN-1 uni f {2, 3, 4}
Bandwidth Demand-VN-2 uni f {5, 6, 7}
Bandwidth Demand-VN-3 uni f {8, 9, 10}
CPU Processing Capacity Demand-
VN-1

uni f {0.2, 0.3, 0.4}

CPU Processing Capacity Demand-
VN-2

uni f {0.5, 0.6, 0.7}

CPU Processing Capacity Demand-
VN-3

uni f {0.8, 0.9, 1}

Type-VHb:
Similar to Type-VHa except of having
different values for CPU Processing Capacity
demand

Bandwidth Demand-VN-1 3
Bandwidth Demand-VN-2 6
Bandwidth Demand-VN-3 9
CPU Processing Capacity Demand-
VN-1

0.1

CPU Processing Capacity Demand-
VN-2

0.5

CPU Processing Capacity Demand-
VN-3

1

Table 4: Values of the general parameters used for this research for VN customers with different demand types.

Frequency Option 1 2 3 4 5 6 7 8
Normalized Capacity .5385 .6038 .6692 .7346 .8 .8645 .9308 1

Power Consumption (watts) 60 63 66.8 71.3 76.8 83.2 90.7 100

Table 5: Frequency-SetA: CPU frequencies, capacities and operational cost [9]

Frequency Option 1 2 3 4 5 6 7 8 9 10
Normalized Capacity .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Power Consumption (watts) 10 20 30 40 50 60 70 80 90 100

Table 6: Frequency-SetB: CPU frequency options, capacities and operational cost

Frequency Option 1 2 3
Normalized Capacity .3 .6 1

Power Consumption (watts) 30 60 100

Table 7: Frequency-SetC: CPU frequency options, capacities and operational cost



Algorithm 1 Cost Effective Heuristic
for all d ∈ D do

update ad
j f , f ∈ F, j ∈ Jd, d ∈ D

update cd
l , l ∈ Ld, d ∈ D

end for

while V , ∅ && D , ∅ do
for all d ∈ D do

for all i ∈ Id do
for all NS(j) ∈ EP(i) do

cd
j = max(ad

j f )
for all v ∈ V do

for all k ∈ Kv do
if cd

j ≥ rvk then
for all f ∈ F do

ad
j f = min(ad

j f ) ≥ rvk

end for
if cd

j ≥ ad
j f then

cd
j = cd

j − ad
j f

wvkd
j f = 1

rvk = 0
end if

end if
end for

end for
for all v ∈ V served by NS do

use leftmost shortest path p ∈ Pvkd
i j , i→ j

for all l used in p do
if cd

l ≥ hvk then
zvkd

l = cd
l − hvk

hvk = 0
map→ uvkd

V = V \ k
end if

end for
end for

end for
end for
D = D \ d

end for
end while

count blocking = 0
for all v ∈ V do

for all k ∈ Kv do
if rvk == 0 && hvk == 0 then

return uvkd,wvkd
j f , z

vkd
l

else
count blocking ++

end if
end for

end for

from a range, i.e., 〈h1, r1〉 = 〈uni f {2, 3, 4}, uni f {0.2, 0.3, 0.4}〉,
〈h2, r2〉 = 〈uni f {5, 6, 7}, uni f {0.5, 0.6, 0.7}〉, 〈h3, r3〉 =

〈uni f {8, 9, 10}, uni f {0.8, 0.9, 1.0}〉. The three types, type-H,

type-VHa, and type-VR, are used in the first group of studies
(Case-1, Case-2, and Case-3) listed in Table 3.

Type-VHb listed in Table 4 are also heterogeneous demand
but with an wider gap for processing requirements between the
three VN classes. This type was used in the rest of studies
(Cases-4 to Case-8).

For server frequencies, we used three sets of frequencies,
labeled Frequency-SetA, Frequency-SetB, and Frequency-SetC
shown in Tables 5, 6, and 7, respectively. Frequency-SetA was
used in the small-scale DC study, Group-A (Case-1, Case-2,
and Case-3). Frequency-SetB was created for two purposes:
to allow more frequency options and to uniformly spread out
normalized capacity; this set was used for in the large-scale
DC study, Group-B (Case-4, Case-5, and Case-6). Finally,
Frequency-SetC with less frequency option was created to un-
derstand the energy consumption gain with larger number of
frequency options compared lesser number of frequency op-
tions; this is used in Group-C (Case-7 and Case-8) for the en-
ergy consumption study.

All arrivals for the dynamic traffic engineering simulation
were generated randomly. Specifically, we assumed that the re-
quest arrivals was a Poisson process and the service duration for
the request arrivals was assumed to follow the negative expo-
nential distribution with an average value of 5 time units mea-
sured in terms of the number of discrete review points. Note
that with an increase in the arrival load, the system may not
have sufficient capacity to accommodate all requests. Thus, our
simulation environment also recorded any requests that were
not satisfied by the system by tracking the blocked requests to
determine the blocking rate. Through our initial experimenta-
tion, we attempted to find the arrival rate for which the block-
ing was approximately 1%. We refer to that arrival rate as a
normal loaded network condition, and assigned the normalized
load of 1.0. We then continued to increase the arrival rate un-
til we found the arrival rate for which the average blocking
was approximately 10% to indicate highly overloaded condi-
tion. Also, through our initial experimentation, we chose the
weight factors for each term in the objective (21) and set them
as α = 0.3, µ = 0.05, γ = 8.1 to understand the influence of the
three cost components on the overall provisioning cost. They
were chosen to give higher importance on the DC-VN mapping
cost, followed by the bandwidth cost and finally, by the energy
consumption cost, without any one of them being delegated to
being an insignificant cost.

For our dynamic traffic engineering simulation, we first de-
termined the warm-up time and then collected the data for a
steady-state region after the warm-up time. For each arrival
rate, we used 10 independent seeds and reported the results on
the average value. We also computed the confidence interval
and found the 90% confidence interval to be approximately 5%
in cost variation for low arrival rates to 2.5% for high arrival
rates.

5. Results

The scope of the simulation study is to understand the fol-
lowing issues: (1) comparison of the optimization model and



the heuristic for dynamic traffic engineering, (2) service perfor-
mance impact due to service heterogeneity as identified through
VHa and VR types of demands and answer the questions we
raised in Section 1, and (3) reduction in power consumption due
to our approach compared to the benchmarking when all server
runs at its maximum capacity (labeled as “no optimization”).

The choice of the parameters in our study was motivated by
the set of questions we posed in Section 1 leading to formulat-
ing the following two postulates:

Postulate-1: We postulate that when the bandwidth de-
mand and the resources (per request) vary uniformly
from an average value, the cost and the blocking would
be higher compared to when the bandwidth demand and
resources for each request are fixed.

Postulate-2: We postulate that by taking three values for
the requested bandwidth h and CPU resource r, i.e., the
tuple 〈h, r〉 for different VN classes in increasing order,
the VN class with the lowest resource requirement would
receive better treatment (lower blocking and cost) by the
network than the other. In the following subsections, we
discuss the three broad scopes of our study while bring-
ing up the postulates as applicable.

5.1. Comparison between CPLEX and Heuristic
The purpose of our first set of experiments was to validate

the performance of the heuristic compared to the MILP solution
obtained using CPLEX. Indeed, we did not expect the MILP
to scale to large problem instances, but hoped that our heuris-
tic would provide solutions that were reasonably close to the
MILP solution from CPLEX. More specifically, we compared
them over the entire simulation duration for dynamic traffic en-
gineering, not at a particular review point. For performance
measures, we used the average cost and average blocking over
the simulation duration.

Consider Case 1 first from Group-A, where the demands
were homogeneous (H). From Fig. 3a, we observed that the
maximum mean deviation between the result obtained from
CPLEX and the heuristic was 2.99% for the average cost of
provisioning for Case-1. This deviation was observed when the
network was 50% more overloaded than the normalized request
arrival rate to the network for the existing resources. However,
this deviation did not increase as the load continued to go up,
as we could see just a 1.75% deviation when the average arrival
rate of the incoming traffic was 75% more than normalized ar-
rival rate. From this figure, we note that the cost incurred from
the solution by the heuristic is slightly higher than the CPLEX
solution. Now, if we look at Fig. 3b, we can find that the
maximum mean deviation between the heuristic and CPLEX
is 3.69% at the 75% overloaded condition. Overall, we note
that the blocking caused by using CPLEX was slightly higher
than the heuristic at high overload. This can be understood by
the greedy nature of CPLEX at each review point in solving the
MILP problem exactly.

The pattern of this deviation can be further explained by
considering the fact that the actual requests which were blocked

by the heuristic and the MILP solution, might be different ones.
In other words, the requests accepted by each approach would
be different at a review point, meaning that their service du-
rations would be different as well. Consequently, the residual
bandwidth and resources available at future review points seen
by the heuristic and the MILP approach could be different; this
further led to requests blocked by the heuristic being different
than the MILP solution. That is, Fig. 3a and Fig. 3b do not
necessarily imply that the heuristic was better than CPLEX due
to less blocking, but it rather showed that the performance be-
tween CPLEX and the heuristic for demand type H was almost
similar in terms of average cost and average blocking. This ob-
servation is also true for the three individual cost constituents
(bandwidth, energy consumption, and DC-VN mapping) as we
can see from Fig. 3c.

Next we considered Case 2, where each VN had a different
bandwidth and resource demand, labeled as type VHa. From
Fig. 4a and Fig. 4b, the maximum mean deviation between
CPLEX and the heuristic is observed for VN class 3, which re-
quired additional resources per request compared to the other
two VN classes. Higher resource requirements means high
blocking for this VN class and this difference widens as the load
increases. Again, the deviation in performance does not neces-
sarily indicate that CPLEX would be better than the heuristic, or
otherwise. Even though the maximum overall blocking rate is
11.53%, the maximum blocking rate for VN class 3 is 19.11%,
which illustrates the performance deviation in a high blocking
(overloaded) situation. We found that the maximum difference
in cost for the VN class to be 3.14%. From Fig. 4c, we also note
differences in the bandwidth cost for VN3 between the heuristic
and CPLEX; in addition both the postulates are satisfied regard-
less of whether CPLEX or the heuristic is used for this case.

We now briefly comment on the computation time between
CPLEX and the heuristic. For Case-1 and Case-2, we observe
that our heuristic was approximately 240× faster than CPLEX
without much loss on the quality of the solution obtained in
terms of cost and blocking.

5.2. Service Impact due to demand types VHa and VR
In this subsection, we study the impact of traffic patterns,

in particular the cases of sets of heterogeneous requests (VHa,
with fixed, but different resource requirements for each VN
class), and random variations in the resource requirements
within each class (VR) as listed in Case-3. We report results
for the heuristic solution, since we have established its solution
quality in the previous subsection.

In Fig. 5a and Fig. 5b, we present how the cost and block-
ing varies respectively for these two types of demands as the
incoming load increases. We found that there is little difference
in blocking for VN-1 between Case-VHa and Case-VR. On the
other hand, this difference is noticeable for VN-2, and quite
prominent for VN-3 as this class requires significantly more re-
sources. In other words, the VN class for which the resource
requirement for each request was randomly distributed within a
range had a high blocking rate compared to the VN class hav-
ing the same resource requirements for each request. The cost
of providing connectivity for each VN customer is shown in
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Figure 4: CPLEX (C) vs. Heuristic (H) for Case-2
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Figure 5: VHa vs. VR (Case-3)

(Fig. 5a). Naturally, the cost of provisioning VN-1 is always
the lowest, regardless of the arrival rate, due to the lower re-
source requirements. Now, revisiting Postulates 1 and 2, we
can see that our result satisfied both the postulates. We also
plot the bandwidth cost for each VN as shown in Fig. 5c and
observe almost the same behavior as in Fig. 5a.

5.3. Cost and Service impact for Large Topology

We now move to Group-B of the study. We divide the
study reported in this section into two scenarios to address two
sources of potential bottlenecks in the system. In the first sce-
nario, we investigated how different VN classes were treated
by the data centers when the servers’ processing capacity was
the bottleneck—this is labeled as Case-4 of Table 3. To con-
sider this scenario, we provided abundant capacity to all links

of the data centers to ensure that no request would face blocking
because of not getting the sufficient amount of bandwidth that
is required by that request; rather, the only blocking possible
in this scenario was due to the lack of server resources. From
Fig. 6a, we see that the cost of VN3 was always higher than
the other two groups of VNs. However, the slope of increase
in cost for VN3 started to reduce after the incoming traffic load
reached 1.3% of the normal load as the blocking rate exceeded
10% (Fig. 6b) for this class. However, for the other two classes,
we noticed a steady slope of increasing cost.

We further observe that VN2, having the resource require-
ment in between VN3 and VN1, and its cost and blocking are
also at the middle of these classes, presented in Fig. 6a and
Fig. 6b. From Fig. 6b, we can further observe that blocking for
a customer class with less resource requirements (like VN1) is
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Figure 6: Performance analysis of demand type VHb (Case-4)
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Figure 7: Total and VN Blocking: VHb (Case-5)

always lower. Even with a high traffic situation, the blocking
rate for this class is less than 5%, where the blocking rate for
VN2 and VN3 reached at around 10% and 18%, respectively.
In Fig. 6c, the bandwidth cost for each VN class shows that
there is a similar behavior to Fig. 6a.

Next, we investigated how the quality of service varied
when the primary source of the bottleneck was network capac-
ity compared to the server resources being the bottleneck, i.e.,
Case-5. From Fig. 7, we see that VN class 3 was more strongly
affected than the other two classes. Thus, customers having
a greater bandwidth requirement (i.e., VN 3), received worse
treatment (more blocking) in a network having less link ca-
pacity compared to other types of customer classes having less
bandwidth requirements, especially as the overload increases.

Again, both postulates held. However, the level of impact
was different on the VN with the highest resource requirements
depending on where the bottleneck in the system was.

Next, we tested the scalability of our framework using our
heuristic for a larger data center system than Cases 4 and 5 by
considering 8 entry points and 1,600 servers in each data center;
recall that this is listed as Case-6 in Table 3. We found that
our developed heuristic could find the solution for this large
topology as well. We present the average cost for each VN
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Figure 8: Per VN Cost: VHb (Case-6)

in Fig. 8. We noticed that the pattern of this figure is nearly
similar to demand type VH of Case-3 as shown in Fig. 5a, and
the postulates held.

5.4. Energy Consumption

Another aim of our work is to reduce energy consumption.
To understand how our approach helps to reduce energy con-
sumption, we simulated two additional cases listed as Group-C
in Table 3. First, we considered the data center topology with
four entry points for the small-scale problem of 16 servers in
each data center. We considered two options. In the high fre-
quency option (Case-7), we considered that the CPU of each
server could run at one frequency among ten different options,
while in the low frequency option (Case-8), we reduced the
number of frequency options to understand how the energy con-
sumption varied. From Fig. 9 and Table 8, we clearly observe
that our approach reduced the energy consumption by 84.83%
at the low arrival rate (the best case with 10 frequency options
available: Case-7) to 66.81% at the highest arrival rate (at the
worst case with low frequency options available: Case-8), com-
pared to if all servers were running at the highest frequency
(labeled as “no optimization”). From Fig. 9, and Table 8, we
further observed that our approach gained more reduction in
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Figure 9: Comparison of energy consumption cost between Case-7 and Case-8,
with energy optimization

energy consumption when the servers ran at more frequency
options. We also point out that energy consumption for the low
frequency options was more than the high frequency options,
especially when the incoming traffic load was high. Hence,
in brief, the percentage of reduction in energy consumption
achieved through our approach depends on the granularity of
available frequency in which the CPU of the servers could run.

Finally, to understand how much reduction in energy con-
sumption could be achieved through our approach for a large-
scale problem, we further considered Case-4 that consists of
800 servers, mentioned earlier in Table 3, compared to no op-
timization. The findings are depicted in Fig. 10 and Table 8.
From Fig. 10 and Table 8, we see that our approach reduced the
energy consumption to 69.02% of the maximum energy cost at
low arrival rate to 42.6% at the highest arrival rate compared to
benchmarking with no optimization. The most significant fac-
tor to notice from this figure is that the reduction in energy con-
sumption was less compared to Fig. 9. The reason behind this
is that, in this case, we used the processing capacity of servers
as the bottleneck. This means that all the servers of the avail-
able data centers was in use at the highest arrival rate. This
ensures the maximum utilization of the servers’ processing ca-
pacity. In consequence, the energy consumption cost became
slightly higher than the result shown in Fig. 9. However, now
the energy consumption by the servers was far less compared
to no optimization. From these analyses, we can say that our
approach can help design an energy efficient data center net-
working system.

5.5. Summary of Observations
We now summarize the key observations:

1. In a dynamic traffic engineering environment, our heuris-
tic is comparable to the MILP formulation using CPLEX
in terms of cost and blocking. Our heuristic is approx-
imately 240 times faster than CPLEX for small-scale
problems and can be used for large-scale problems.
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Figure 10: Energy consumption cost with energy optimization and no optimiza-
tion (Case-4)

2. In general, the VN class with a higher resource require-
ment faces significantly higher blocking as the arrival rate
increases while having a noticeably higher cost. A small
random perturbation on the resource requirement of the
VN class with the highest resource requirement can have
a noticeably different performance impact at a high ar-
rival rate. This is even though the average resource re-
quirement is the same for both VN classes.

3. Blocking sharply increases at a much smaller overload
for large-scale problems than compared to the small-
scale problems. This behavior is consistent with a single-
link loss system model (without routing and server selec-
tion) that can be computed with the Erlang-B blocking
formula. The nonlinear concave behavior of Erlang-B
blocking is well known as the load and capacity increase,
impacting blocking, especially when the services have
heterogeneous bandwidth requirements; see [10, Chapter
11] for a discussion.

4. Our approach reduces energy consumption by 42% to
84% depending on the granularity of the frequency op-
tions available and compared to when the servers are run-
ning at the highest frequency.

6. Related Work

Early research on data center networks investigated archi-
tectural construction, operation and scalability of DCs [11],
[12], [13], [14], [15], [16]. Joint VM placement and routing
for data center traffic engineering was addressed by [17]. Sim-
ilar to [17], we also consider our problem from a traffic engi-
neering point of view but we do not focus on VM placement;
rather, we keep routing flexible in such a way that no dedicated
server is required to satisfy demand from a particular VN. Any
idle server is able to handle the request from any VN tenant.
To satisfy a particular request, a server is chosen based on the
resource demand and available resources of the server. Un-



Normalized Arrival Rate (small-scale) 1 1.25 1.5 1.75 2
Case-7: HFO 84.83% 81.17% 78.1% 75.16% 72.11%
Case-8: LFO 82.58% 78.21% 74.56% 70.44% 66.81%

Noramalized Arrival Rate (large-scale) 1 1.01 1.02 1.03 1.04
Case-4 69.02% 63.58% 56.44% 48.45% 42.60%

Table 8: Percentage in energy reduction achieved by our heuristic compared to no optimization.

like their work, we take bandwidth guarantee into considera-
tion. The issue of multiple service classes with heterogeneous
requirements have been addressed for access control [18, 19];
however, they do not consider two-tuple demands nor the im-
plication of network routing.

Different approaches of optimization have been addressed
in different research papers. In [20], a scheme has been pro-
posed to optimize both virtual machine placement and traf-
fic flow routing through dynamic VM migration and pro-
grammable flow-based routing. [21] proposes an optimization
technique to reduce both the latency and cost of data center.

Recently, much research has been done to increase the en-
ergy efficiency of a data center network [22], [23], [24], [25],
[26], [27]. A new data center architecture is presented in [23]
and [24]. In [23], authors proposed a novel data center net-
work architecture using optical multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM)
technology. To achieve high energy efficiency, they used pas-
sive optical switch (PON) and parallel signal detection technol-
ogy to detect multiple optical channels simultaneously while
using a single photodetector. [24] proposed a SDN based Ar-
rayed waveguide grating routers (AWGR) PON data center in-
terconnection design to improve energy efficiency. Different
techniques have been proposed in [22], [25], [26] and [27] to re-
duce the energy consuption of a data center in the network level.
[22] talks about a solution to reduce energy consumption by us-
ing switch ports and link bandwidth optimally to avoid conges-
tions and balance the load to increase the transmission capacity
and save a significant amount of network energy in Data Cen-
ter Network. However, they didn’t consider optimizing energy
in the server level. An ILP formulation followed by a heuristic
is proposed in [25] to reduce the energy consumption in soft-
ware defined data center networks by activating the switches
selectively and scheduling multi-path routing carefully, accord-
ing to the traffic demands in data center. A routing scheme has
been proposed to reduce the energy consumption in the network
level of data center in [26] which selects the flows iteratively
to consume the residual capacities in the active nodes and allo-
cate routes to flows based on the distributions of nodes, residual
capacities and flow demands. A correlation-aware power opti-
mization algorithm has been presented in [27] to dynamically
combine traffic flows onto a small set of links and switches to
shut down as many network devices as possible for reducing
energy consumption.

[28] discussed the servers’ operational cost optimization
without taking data center architecture into consideration. and
they did not consider the on-demand model either. In [8], au-

thors presented a formulation to optimize the link cost in one
data center, while we consider connecting multiple data cen-
ters. Unlike [8], we take two factors into account, which are
energy consumption by the servers, and the DC VN mapping
cost. In our earlier conference paper [29], we combined three
cost components (reducing link costs, power cost, and the DC
VN mapping cost) together and impose weight parameters on
each of these components to reflect their relative importance.
In this paper, we extended the optimization model to consider
requests that are not satisfied by explicitly introducing a set of
artificial variables along with penalty costs for requests not sat-
isfied. Furthermore, we now present a heuristic that can be
used in large-scale problems. A novel contribution beyond the
state-of-the-art is the dynamic nature of our model to provide
on-demand service considering north-south traffic and finding
the optimal resource requirement to contain service blocking
within a tolerable range. Our model allows us to study service
differences among different service classes identified through
virtual networks. Moreover, we can also identify which servers
are not used to serve the VN requests at a particular time, which
allows us to determine servers in a lower power consumption
mode.

7. Conclusion and Future Work

In this work, we presented a dynamic traffic engineering
framework for resource allocation due to north-south traffic in
a multi-location data center environment. We presented a novel
MILP formulation and alternately a heuristic that is solved in
this framework at each review point. Our approach is geared
for enterprise customers that require resource guarantees from
data centers.

We found that the MILP formulation is suitable for up to 32
servers. For higher traffic situation, our heuristic approach is
much more suitable, and we tested and presented results for up
to 3,200 servers.

Our comprehensive study allowed us to answer a number
of questions when resource requirements may vary for each re-
quest as well as may differ between different customers. In gen-
eral, we observed that VN customers with the lowest resource
requirements face the lowest blocking as the traffic is increased
in the system. For VN customers with high resource require-
ment, blocking is significantly higher for heavy traffic.

A key observation is that our approach significantly reduces
energy consumption compared to servers running at the highest
frequency and it works better when we have more frequency



options to choose from at which a server is allowed to oper-
ate. In other words, more frequency options for a server means
higher reduction in energy consumption.

There are several future directions we wish to address. We
do not allow partial fulfillment of a request if there is lack of
sufficient resources to fully consider a request. Furthermore, we
plan to add performance evaluation on the loads to a data cen-
ter based on its geographical distance from different VNs. We
also plan to explore different allocation policies so that service
performance are comparable for different VN customer groups.
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