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SMART GRIDS

Distributed generation (large scale)
Green energy sources (fluctuating)

Distributed generation 
(small scale)

Local energy storage

PHEV 
charging

(residential)

PHEV charging
(car parks)

Demand side 
management

ICT infrastructure

New services & business models
Fault detection? Restoration? 

Data processing?
Privacy, security?
Pricing schemes?

…
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POWER GRID STRUCTURE
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Transmission network 
(operated by TSO)

Distribution network 
(operated by DSO)



OUTLINE

Part I: Algorithms for DSM/DR

§ Example 1: Peak shaving 
§ Example 2: Wind balancing
Part II: Data analytics
§ Clustering smart metering data

§ EV usage analysis
§ Flexible usage of white good appliances
Part III: Non-intrusive load monitoring

§ Appliance classification w/ convolutional nets
§ Appliance classification w/ elliptical Fourier descriptors
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Example case study: EV charging

Research questions:
1. Impact of (uncontrolled) EV charging in a residential environment?

2. Minimal impact on load peaks we could theoretically achieve?
3. How can we minimize the impact of EV charging in practice?
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Impact of EV charging

§ Sample analysis for 150 homes, x% of them own a PHEV

§ BAU = maximally charge upon arrival at home
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Controlling EV charging?

Objectives:
§ Reduce peak load

§ Flatten (total) load profile
(= reduce time-variability)

§ Avoid voltage violations
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Smart charging: QP
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BAU
(uncontrolled)

Local control (QP) Global control (QP),
Market MAS



Case study

§ 63 Households
• Randomly distributed 

over 3 phases
• Spread over 3 feeders

§ Electrical vehicles
• PHEV: 15 kWh battery
• Full EV: 25 kWh battery

• Randomized arrivals 
(~5pm) and departures 
(~6am)

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

Scenario
PHEV

3.6 kW
PHEV
7.4 kW

EV
3.6 kW

EV
7.4 kW

Light 4 3 2 1

Medium 10 10 5 4

Heavy 17 16 7 7
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Results (1) – Load profiles
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Distributed generation (DG)
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A typical wind profile
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&     High peak loads

Wind balancing with EV charging

Supply/demand imbalance

§ Inefficient use of RES
§ Imbalance costs

Undesirable!
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Distributed control

Balance Responsible
Party (BRP)

EV EV

CoordinatorCoordinator

Exchange of control messages to 
iteratively negotiate charging plans 

for a specific period of time
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Centralized Optimization Model

§ Based on social welfare maximization
• Minimize imbalance costs C
• Minimize user disutility D

§ Objective:

§ Global constraints:

§ Local constraints:
• BRP: supply < limit
• EV: energy & time constraints

Drawbacks:
1) Privacy: sharing of cost 

& disutility functions, 
arrival/departure info, 
…

2) Scalability

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



§ Move demand-supply constraint into objective,
w/ Lagrange multiplier λt

§ Notice: Objective function is separable into K+1 problems that can be 
solved in parallel (assuming λt are given)

§ Iteratively update pricing vector λt …

Distributed optimization model

1 BRP 
problem

K subscriber 
problems

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

original	objective constraint



Distributed optimization model scheme:

1. Coordinator distributes virtual prices

2. BRP solves local problem
3. Subscribers solve local problem
4. Coordinator collects schedules:

• BRP: 
• EVs:

5. Coordinator updates virtual prices: 

6. Repeat until demand = supply

in parallel

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



Case study: Algorithms

§ Uncontrolled business as usual (BAU)
• EV starts charging upon arrival
• EV stops charging when state-of-charge is 100%

• No control or coordination

§ Distributed algorithm
• Executed at the start of each time slot

§ “Ideal world” benchmark
• Offline all-knowing algorithm determines schedules for ALL sessions

• No EV disutility function àmaximum flexibility

• Objective:

min

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



Results: Uncontrolled BAU vs. Distributed
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Results: Distributed vs. Benchmark

0

5000

10000

15000

20000

25000

30000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

Po
w

er
 (W

)

Time

Benchmark Distributed Wind energy

Day 2 Day 3 Day 4 Day	5 Day	6 Day 7Day 1

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



Results: Energy Mix

§ Total energy consumption ≈ 6.8 MWh
§ Substantial increase in the use of renewable energy

§ Reduced CO2 emissions
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CONCLUSIONS

§ Objective: balance wind energy supply with electric vehicle 
charging demand

§ Method: Distributed coordination algorithm where participants 
exchange virtual prices and energy schedules

§ Performance: Distributed coordination significantly better than 
BAU, close to “ideal world” benchmark
• Increased usage of renewable energy sources

• Reduction of CO2 emissions

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017
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Clustering smart metering data

§ Goal: Identify different types of daily power consumption time series
1. Single household: distinct types of daily load patterns?

2. Over whole population: distinct groups of users?

§ Why?
• Demand analysis (nation-wide, distribution substations, … single houses)

• Customer segmentation, tariffs, billing…
• Power system planning

• Load forecasting
• Demand response programs

• …

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



Two-stage load pattern clustering

<                      >

(i) typical patterns per user (ii) overall load pattern clustering
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Can run in parallel, 
simultaneously for all users

Representative pattern
= real pattern closest to center



Core ideas

§ Hierarchical scheme

§ Wavelet transformation:
• Dimensionality reduction

• Invariance/tolerance to time shifting

§ G-means (instead of k-means) [Hamerly2003]

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017
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For alpha = 0.01% à low number of clusters
Note: representative ≠ arithmetic mean

Because of FWT: similar time shifted 
patterns are clustered together!



Time vs wavelet domain: Number of clusters 
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Time	shifting	à distance	metric	differences	in	
time greater	than	in	wavelet feature	domain	
àhigher	variation	in	cluster	sizes	in	time domain

Smaller	alpha	à convergence	to		the	
same	clusters



CONCLUSIONS

§ Totally unsupervised clustering process
• No a priori definition of ‘typical day’, groupings into weekday/weekend …

• Cluster size/quality controllable via parameter α

§ Note on scalability:
• Stage 1 = executed per user (in parallel)

• Stage 2 = number of profiles to cluster is limited, by reducing 
‘representative’ profile 

• Vector space dimensionality is reduced by FWT (96 à 7 or 8 features)

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



OUTLINE

Part I: Algorithms for DSM/DR

§ Example 1: Peak shaving 
§ Example 2: Wind balancing
Part II: Data analytics
§ Clustering smart metering data

§ EV usage analysis
§ Flexible usage of white good appliances
Part III: Non-intrusive load monitoring

§ Appliance classification w/ convolutional nets
§ Appliance classification w/ elliptical Fourier descriptors

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

N. Sadeghianpourhamami, N. Refa, M. Strobbe and C. Develder, "Quantitive analysis of 
electric vehicle flexibility: A data-driven approach", Int. J. Electr. Power Energy Syst., Vol. 
95, Feb. 2018, pp. 451-462.



MODELING EV CHARGING

Literature:
• Model EV usage from regular vehicle usage

• Aggregated EV load estimation
• Pre-defined EV user types (e.g., residents, taxis, commuters…)

• Flexibility as fraction of time spent charging
• …

Gap: data-driven EV modeling & real-world flexibility assessment
1. Typical behaviors in terms of time of arrival and departure?

2. Statistical models of sojourn vs time spent charging?
3. What amount of power can we shift over how much time?

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



DATASETS: IMOVE (BE) AND ELAADNL

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

* : Analysis on data from 1 Jan.–31 Mar. 2015 (N = 90 562)

PERIOD 03/2012 – 03/2013 01/2012 – 03/2013

# SESSIONS 8 520 1 141 849*

# USERS 134 about 53 000

CAR TYPE Full EV Unknown mix

CHARGE POINT At home Public

TRIP DETAILS Yes No

iMove: Flemish EV field trial; data from 50 EVs shared 3 x 2 months

ELaadNL: EV innovation in NL; data from ~3000 public stations



TYPICAL ARRIVAL AND DEPARTURE TIMES (1/2)
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Daytime charging
(9.4%)

Anytime charging,
short sojourn (61.5%)

Nighttime charging 
(29.1%)



TYPICAL ARRIVAL AND DEPARTURE TIMES (2/2)

Time of arrival (hh:mm)
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Daytime charging
(9.4%)

Anytime charging,
short sojourn (61.5%)

Nighttime charging 
(29.1%)

AM/Noon/PM peaks on 
weekdays

Shift to later times on 
weekends



SOJOURN AND IDLE TIMES (1/2)

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

Average charging time ≈ 3h 42min

Average idle time ≈ 23min Average charging time ≈ 3h 44min

98.9% 0.9% 0.1%

95.4% 3.3% 0.8% 0.1%

99.6%



SOJOURN AND IDLE TIMES (2/2)
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Daytime charging
(9.4%)

Anytime charging,
short sojourn (61.5%)

Nighttime charging 
(29.1%)

Week ≈ Weekend
Shorter in weekend
Lower var. in weekLonger in weekend



QUANTIFICATION OF FLEXIBILITY: CALCULATION

PFLEX(t, Δ) = Maximal power that DR could either consume 
constantly, or not at all, in interval [t, t+Δ ]

•Charging session has to include [t, t+Δ ]

•Charging duration ≥ Δ [else we could not consume in full interval]

•Flexibility = session duration − Δ ≥ charging duration  [we can move it away]

Upper bound: we disregard impact of 
using/suppressing power in [t, t+Δ] on 

flexibility at other times t’

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017
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QUANTIFICATION OF FLEXIBILITY: RESULT

§ Park to charge:
• Daytime flexibility
• Weekend: ≈ volume, but ≠ timing

§ Near home:
• Nighttime flex
• Weekend: lower & more spread 

§ Near work:
• Daytime flex
• Low in weekend

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



BUT … WHAT FLEXIBILITY IS ACTUALLY USED?

Quantification of use of flexibility in relevant use cases:

Eflex =                                        ⇒ 1 – Eflex = fraction charged at tBAU

Tflex =                        =  fraction of idle time exploited to delay

E.g., Eflex = 0.2   ⇒ only 20% of charge volume is delayed
E.g., Tflex = 0.8 ⇒ end-of-charge at 80% of flexibility time window

CASE STUDIES: (1) Load flattening, (2) RES balancing

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

Energy beyond tBAU

Maximal energy beyond tBAU

tcoordinated – tBAU

tdepart– tBAU



SAMPLE FLEXIBILITY EXPLOITATION: RESULTS
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SAMPLE FLEXIBILITY EXPLOITATION: RESULTS

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

§ Near home:
• Tflex close to 1: charging

till last moment, but…
• Eflex low: reasonable 

SoC at tBAU

§ Near work:
• Higher Tflex in weekend
• Reasonable SoC at tBAU

§ Park-to-charge:
• Tflex close to 1
• Peaked Eflex during 

daytime

Tflex

Eflex

flattening balancing



§ Real world data set

§ Three major types of charging sessions 
§ Statistical models of user behavior
§ Methodology to quantify flexibility

Application?
E.g., extrapolation of iMove data to 3% of Flemish fleet by 2020:

• ~100k cars out of ~3.2M

• E.g., noon in weekend ⇒ can have ~7MW extra for 2h

CONCLUSION

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017
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N. Sadeghianpourhamami, T. Demeester, D.F. Benoit, M. Strobbe and C. Develder, 
"Modeling and analysis of residential flexibility: Timing of white good usage", Appl. 
Energy, Vol. 179, Oct. 2016, pp. 790-805.



MODELING WHITE GOOD FLEXIBILITY BEHAVIOR

Flexible use of appliances (dishwasher, washing machine, tumble 
dryer) characterized by

• Time of availability = appliance configuration time
• Time window for deferring operation defined by deadline

• Amount of deferrable energy = depending on device

Gap: data-driven modeling & real-world flexibility assessment
1. Real-world data?

2. Statistical models of sojourn vs time spent charging?
3. What amount of power can we shift over how much time?

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



SAMPLE RESULT FOR DISHWASHER – MODEL 1
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Two-stage: (i) deadline G-means clustering, (ii) fit K-component finite mixture using MCMC 
estimation of distribution parameters

00
:0

0
08

:0
0

16
:0

0
24

:0
0

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

D
ea

dl
in

e 
(h

h:
m

m
)

00
:0

0
08

:0
0

16
:0

0
24

:0
0

Customer 6 Customer 7 Customer 8 Customer 9 Customer 10

00
:0

0

08
:0

0

16
:0

0

24
:0

000
:0

0
08

:0
0

16
:0

0
24

:0
0

Customer 11

00
:0

0

08
:0

0

16
:0

0

24
:0

0

Customer 12

Configuration time (hh:mm)

00
:0

0

08
:0

0

16
:0

0

24
:0

0

Customer 13

00
:0

0

08
:0

0

16
:0

0

24
:0

0

Customer 14

00
:0

0

08
:0

0

16
:0

0

24
:0

0

Customer 15

next day
deadline



SAMPLE RESULT FOR DISHWASHER – MODEL 2
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Single-stage: reorder X-axis, then fit with 2D Gaussian Mixture Model (GMMs)
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CONCLUSIONS

§ First model based on real-world dataset of flexible appliance usage

§ Two models: (1) two-stage univariate modeling, (2) single-stage 
bivariate distribution fitting with GMMs

§ Validation confirms Model 2 suitability for three device types
(using k-s test on empirical distribution from data vs model-generated samples)

§ Exploration of influential factors: holidays, week vs weekend, 
seasons ⇒ user-dependent!

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017
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CLASSIFICATION w/ VI TRAJECTORIES & CONVNETS

§ Input:

§ Method:

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

50 x 50 float 
matrix



APPLIANCE CLASSIFICATION RESULTS – VI AS IMAGE

§ PLAID dataset: 11 device types, 55 households, submetered @ 30kHz
§ Evaluation: leave-one-house-out cross-validation 

⇒ Fmacro = 77.10%  (beating SotA* of 70.41%)

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

*: J. Gao, E. C. Kara, S. Giri, and M. Bergés, “A feasibility study of automated plug-load identification from high-
frequency measurements,” in Proc. IEEE GlobalSIP 2015, Orlando, FL, USA, 14-16 Dec. 2015, pp. 220–224.
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CLASSICATION w/ VI & FOURIER DESCRIPTORS

§ Convert normalized VI trajectory to contours

§ Approximate contours with elliptical Fourier descriptors (EFDs)
§ Classify with NN using EFDs as input

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



Gao et al. 2015 Fourier descriptors VI greyscale image

Input 16 x 16 binary 3 x 4 float 50 x 50 float

Accuracy 81.75% 77.14% 84.55%

macro-F1 70.41% 65.80% 77.10%

Confusion

APPLIANCE CLASSIFICATION RESULTS

§ PLAID dataset: 11 device types, 55 households, submetered @ 30kHz
§ Evaluation: leave-one-house-out cross-validation

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017



CONCLUSION

§ VI images as greyscale images & convolutional NNs beats previous 
state-of-the-art

§ Fourier descriptor approach is viable alternative: lower performance, 
but much simpler features & computationally more efficient

Further NILM building blocks:
§ Event detection: detect when device turning on/off (or changing state?)

§ Novel appliance detection: devices come and go – avoid manual 
(re)labeling

§ Program cycle detections (e.g., washing machines)
§ …

C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

L. De Baets, J. Ruyssinck, C. Develder, T. Dhaene and D. Deschrijver, "Optimized statistical 
test for event detection in non-intrusive load monitoring", in Proc. IEEE Int. Conf. 
Environment and Electr. Eng. and IEEE Industrial and Commercial Power Sys. Europe 
(EEEIC / I&CPS Europe), 6-9 Jun. 2017.



WRAP-UP
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Summary

§ Challenge: deal with renewable sources

§ Demand response algorithms: initial feasibility studies
§ Get insight in consumption/production: e.g., clustering as first step
§ Quantify flexibility, e.g., the EV case study
§ Pieces of the NILM puzzle: classification, event detection, …

§ What’s next?
• Can we learn/predict flexibility, e.g., from smart metering data?

• Can we infer user behavior, and then (context-aware) preferences?
• Evaluation of the business case of flexibility?

• Convincingly demonstrate flexibility exploitation in the real world?
C. Develder, et al., "Algorithms for Smart Grids: Knowing and controlling power consumption", IEC Workshop, Paris, France, 19-20 Oct. 2017

E.g., refine “disutility” from user; “imbalance” from business 
perspective; evaluate using real(istic) data…



THANK YOU … ANY QUESTIONS?
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