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ABSTRACT 

Since the inception of smart grids, a substantial amount of 

research has focused on the development of scalable Demand 

Response (DR) approaches. For example, to flatten peak load, or 

to balance renewable energy production. A crucial assumption in 

DR is that at least some portion of the load is flexible, i.e., can be 

shifted in time. While the flexibility potential of smart devices has 

been analyzed extensively based on the device characteristics, 

little effort has been devoted to establishing potential factors in 

their owner’s behavior.   In this paper, we focus on sharpening the 

analysis of flexibility in residential user load and contribute with: 

(1) a quantitative specification of such flexibility, (2) a systematic 

methodology to derive a generative model for user flexibility 

behavior from data, (3) application of the methodology on a real-

world data set from a field trial with smart appliances, and 

(4) analysis of factors determining that flexibility.  

CCS Concepts 

• Mathematics of computing~Probabilistic representations   • 

Mathematics of computing~Probabilistic inference problems   

• Computing methodologies~Model development and analysis 
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1. INTRODUCTION 
Thanks to the communication capabilities offered by smart grid, 

customers are no longer a passive part of the grid. They can 

contribute to demand-supply balancing by offering flexibility in 

their electricity usage in response to variable energy tariffs or 

financial incentives. Demand response (DR) algorithms are viable 

solutions to exploit that customer flexibility in a coordinated way 

and ensure a more reliable network performance. Surveys of DR 

algorithms can be found in [1] and [2]. 

 

Flexibility is generally defined as the amount of load that is 

shiftable over various time scales. More specifically, flexibility is 

quantized by 3 parameters: (1) the amount of deferrable energy 

(i.e., how much energy can be delayed without jeopardizing user 

convenience or quality of the task to be fulfilled by a smart 

device), (2) the time of availability (i.e., the time at which a user 

offers his device’s flexibility available for DR exploitation), and 

(3) the deadline to exploit the offered flexibility (i.e., the latest 

time by which the energy consumption can be delayed).  

Flexibility parameters are often assumed to be available as an 

input to DR algorithms [3]. However, in practice, accurate 

quantification is largely missing. This may be partly addressed by 

inferring the average parameters from questionnaires [4], but the 

accuracy of such estimates may be limited. Thus, analysis of 

flexibility potential that more closely models reality is crucial to 

design efficient DR algorithms that can adequately harness the 

unprecedented advantages offered by residential flexibility.  

Hence, residential flexibility is analyzed from various perspectives 

in the literature. A brief overview is presented in the next section.  

1.1 Related work 
De Coninck et al. [5] proposed a bottom-up approach for the 

quantification of flexibility service in the form of cost functions. 

From a similar perspective, Engels et al. [6] used a price elasticity 

matrix and regression analysis to quantify the flexibility of 

residential electricity demand. 

Instead of quantifying the cost of flexibility, Wattjes et al. [7] 

proposed a universal framework to estimate the flexibility of 

commercial and industrial customers. The proposed methodology 

assumed every company to be made up of handful of universal 

processes such as cooling systems, lighting, etc. The flexibility 

characteristics of each process was represented using a building 

block in terms of time interval as block length, amount of flexible 

power as block height and speed (response time). A day was then 

divided into several timeslots and the building blocks were placed 

into these timeslots (based on when the flexibility was available) 

and stacked to build the energy profiles and infer the flexibility 

potential.  Similarly, Abdisalaam et al. [8] associated flexibility 

parameters with each household appliance based on smart device 

characteristics and assessed the economic benefits of flexible 

residential load participation in the Dutch day-a-head auction and 

balancing market. Pipattanasomporn et al. [9] took a step further 

and assessed the flexibility potential of household appliances 

based on real world measurements (1 second measurements from 

two homes for four months). Alternative to sub-metering load 

profile of devices, Kouzelis et al. [10] proposed a methodology 
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for estimating residential heat pumps consumption in a 

probabilistic way from the aggregated load profile of the customer 

and analyzed their flexibility potential. The proposed 

methodology includes clustering algorithms, probability and 

statistics to compare the flexible customer with electrically similar 

non-flexible customers and infers the flexible consumption 

thereof. Labeeuw et al. [11] also determined demand reduction 

potential of wet appliances and derived a time series estimation by 

clustering customer’s load profiles. They additionally 

incorporated attitude measurements based on questionnaires in 

their studies to account for a customer’s willingness to participate 

in DR based on survey data.   

The aforementioned analyses aimed to assess the flexibility 

potential of various appliances from device specifications or load 

profiles. Despite valuable contributions in terms of amount of 

deferrable energy associated with flexibility sources, the other two 

parameters of flexibility (i.e., time of availability and deadline for 

exploitation), which are greatly influenced by a customer’s 

lifestyle, are not adequately addressed in the literature.  

1.2 Motivation and Contributions 
Residential customers’ flexibility, despite offering non-negligible 

economic and operational benefits [8], highly depends on various 

types of uncertainty due to their lifestyle. However, any 

assessment of customer’s flexibility behavior in literature is 

merely inferred from survey data; a generative model of 

customer’s flexibility potential based on real world data is 

missing. In this paper, we aim to fill this gap by presenting a 

comprehensive analysis of user’s flexibility behavior (i.e., when 

and how long a flexible load is made available for DR 

exploitation by its owner). The analysis is based on a dataset from 

the Linear project [12] that contains flexibility data (configuration 

time and deadline to utilize the offered flexibility) of users for 

washing machine, tumble drier and dishwasher. We exploit this 

unique dataset and contribute the following: (1) a quantitative 

specification of user flexibility, (2) a systematic methodology to 

derive a generative model for user flexibility behavior from data, 

(3) application of the methodology on a real-world data set from a 

field trial with smart appliances, and (4) analysis of factors 

determining that flexibility. Our study also offers the following 

advantages:  

a) A generative model of user’s flexibility behavior sharpens 

the definition of flexibility and provides a more realistic 

estimation of flexibility potential by taking into account not 

only the device characteristics, but also uncertainty due to 

user’s attitude and lifestyle. Parametric models also enable 

close-to-reality synthetic data generation for simulation 

purposes. Additionally, parametric modeling allows for 

comparison among users and selection of relevant users for 

DR algorithms while preserving user’s privacy. Finally, 

parametric models could be used to offer consultations to 

users and utilities to improve their energy efficiency or 

enhance their flexibility potential. 

b) Identification of factors influencing flexibility behavior 

allows more accurate assumptions about potential flexibility 

and helps to improve the accuracy of flexibility prediction. 

The 1st and 2nd contributions are presented in Section 2. The 3rd 

and 4th contributions are discussed in Section 3. Section 4 

concludes the paper and suggests the future contributions. 

2. METHODOLOGY 
In this section, we first represent the underlying flexibility data for 

individual users in terms of time of configuration of the flexible 

device and the corresponding deadline to exploit the offered 

flexibility. We then propose a two-stage algorithm to model the 

flexibility behavior of a single user. Stage I utilizes a hard 

clustering algorithm to identify typical clusters of deadlines and 

obtain P(deadline), the probability distribution of deadlines in 

each cluster.  For each cluster of deadlines identified in Stage I, 

we model the corresponding configuration times in Stage II to 

obtain P(configuration time| deadline) using parametric 

probability distributions.  

2.1 Representation of Flexibility  
We represent flexibility using 2 parameters: time of configuration 

and a deadline. Time of configuration is the time of the day at 

which the user configures his device flexibly. Deadline is the 

latest start time of the device.  The flexibility duration is then 

calculated by taking the interval between the time of configuration 

of the device and the corresponding deadline. We do not 

parameterize flexibility by amount of deferrable power since this 

aspect is extensively studied in the literature as mentioned in 

Section 1.1. Figure 1 shows the flexibility behavior of three 

randomly selected users. Each point on graphs of Figure 1 

represents the time of configuration on the x-axis and the 

corresponding deadline on the y-axis. Users’ data in Figure 1 

suggests that there are usually typical deadlines in each user’s 

flexibility data (see the data points concentrated along horizontal 

line). Hence, stage I of our proposed algorithm aims to identify 

these typical deadlines. This algorithm is presented in the next 

subsection.   

2.2 Stage I: Identification of Deadlines 
The main objective of this stage is to identify typical clusters of 

deadlines and parameterize the deadline distribution in each 

cluster. We adapt the G-means [13] clustering algorithm to this 

end by changing its hypothesis test for this purpose.   For 

completeness, the G-means algorithm and our modifications are 

explained below.  

A wide variety of algorithms have been proposed for clustering 

load profiles, e.g., k-means, Expectation Maximization (EM), 

fuzzy k-means, hierarchical clustering and self-organizing maps. 

An extensive overview of these algorithms and their performance 

comparison can be found in [14]. G-means is a wrapper around 

the k-means algorithm that determines the optimal number of 

clusters dynamically using hypothesis tests. The key advantage of 

G-means is that is circumvents the challenges of choosing the 

right number of clusters at the input of the k-means algorithm. G-

means is an iterative algorithm that starts with a small value of k, 

Figure 1: Flexibility data of 3 randomly selected users 



i.e., the number of centers. The initial value could be k = 1 if no 

prior knowledge is available about the data. In each iteration the 

k-mean center whose data does not appear to be Gaussian is split 

into two new centers. Between each round of splitting, k-means is 

executed on the entire dataset using the current cluster centroids 

in order to refine the solution. The decision to split the cluster is 

based on the Anderson-darling test of normality performed for the 

data assigned to each center. 

The key assumption in G-means is that data points within a single 

cluster follow a normal distribution. Since deadlines are strictly 

positive, we change the assumed distribution to be a gamma 

distribution. This amounts to replacing the Anderson-Darling test 

for normality to a Kolmogorov–Smirnov (k-s) test. We refer to 

this adaptation as ᴦ-means. Based on experiments on a tuning data 

set, we choose to use a significance level of 1% for the k-s test. 

2.3 Stage II: Parameterizing the Distribution 

of Configuration Times 
In this stage, for each cluster of deadlines from Stage I, a 

parametric distribution is fit to model the distribution of the 

corresponding configuration times. 

Qualitative exploration of tuning data showed the existence of 

multiple modes, skewness and heavy tails in the empirical 

distributions. This suggested that single unimodal distributions 

are not an appropriate model. Hence we resorted to Finite Mixture 

Models (FMM) as a parametric alternative to represent the 

unknown distributions in terms of mixtures of known 

distributions. In the following subsections, we discuss FMMs and 

the algorithm employed for model parameter estimation.  

2.3.1 Finite Mixture Model Definition  
Suppose that a data set ),...,( 1 NxxX consists of N i.i.d. 

observations of a random variable arising from a mixture of K 

probability distributions. The probability density of the mixture 

distribution is then defined as: 





K

k
kixkfkixmixf

1

)|()(                                                 (1) 

where )|( kik xf  is the probability density distribution from a 

known parametric distribution family )( and ).,...,( 1 k   

The weight distribution of the underlying mixture distributions is 

given by ),...,( 1 kη with constraints 10  k and 

1...1  k . 

2.3.2 Parameter Estimation Using Markov-Chain 

Monte Carlo 
Parameter estimation for FMMs involves estimating the parameter 

vector ),( ηθ , based on the data .X We employ a Bayesian 

approach based on data augmentation and Markov-Chain Monte 

Carlo (MCMC) as described by Schnatter [15]. MCMC is an 

improvement to the classical Maximum Likelihood (ML) 

estimation based on the EM algorithm. The main difference is the 

inclusion of a prior distribution in the estimation of component 

parameters. Also standard errors and confidence regions are 

directly available in the Bayesian approach, whereas their 

calculation in the ML case may be inaccurate for small data sizes. 

The Bayesian based data augmentation and MCMC algorithm by 

Schnatter [15] is briefly explained here for completeness.  The 

algorithm estimates the augmented parameter ),( S by sampling 

from the complete-data posterior distribution )|,( xp S . This 

posterior is given by Bayes’ theorem as )|,( xp S  

)()|(),|(  ppxp SS , where ),...,( 1 NSSS is the allocation 

vector denoting the allocation of each observation to its 

corresponding component in the mixture. Sampling from the 

posterior is most commonly carried out by the MCMC sampling 

scheme shown in Algorithm I.  The algorithm starts with initial 

classification and runs for 0MM  iterations. In each iteration, 

  is sampled conditional on knowing S, and S is sampled 

conditional on knowing . At the end of the algorithm, the first 

0M draws are disregarded.  

2.3.3 Choosing the Optimal Number of Mixture 

Components 
One of the main challenges in FMM is choosing the right number 

of components autonomously. Some of the informal methods of 

choosing the number of components include mode hunting in the 

graphical representation of posterior draws or comparing 

statistical moments of different models. Alternatively, Likelihood 

based or point estimators for the model parameters such as Akaike 

Information Criteria (AIC) are also used for deciding on the 

number of components. However, they favor the goodness of fit 

instead of model complexity. Bayesian Information Criterion 

(BIC) is another measure that additionally takes into account the 

model complexity by penalizing the higher number of 

components. Other alternatives are Bayesian approaches like 

trans- dimensional MCMC [15] which allows jumps at each stage 

of the chain from one model to another, computing the marginal 

posterior density )|( Xkp  where k is a model with k 

components [16].  

Assuming equal priors on the models, )|( Xkp  is given using 

Bayes’ rule as )()|()|( kkk ppp  XX  and the marginal 

likelihood )|( kp X  is found by integrating the likelihood 

function over all possible parameters.  

 

Algorithm I 

(a) Parameter simulation conditional on a known classification S: 

(a1) Sample ),...,( 1 kη from the Dirichlet distribution 

))(),...,(( 1 SeSeD K where ),()( 0 SS kk Nee   

Kk ,...,1 ,  kSN ik #)(S  and 0e is parameter of 

Dirichlet prior.  

(a2) For each Kk ,...,1 , sample the component parameter 

k from the complete-data posterior ),|( xp k S . 

(b) Classification of each observation ix conditional on knowing 

  by sampling iS  independently for each Ni ,...,1          

from the following discrete distribution: 

kkiii xpxkSp  )|(),|(   



3. RESULTS AND DISCUSSIONS 
We base our analysis on the data from year-long measurements in 

the Linear project. The data is obtained from smart meters and 

logging is performed on 15 minute basis. In other words, a day is 

partitioned into 96 slots and any user configuration within the 15 

minutes long slots was shown at the end of the interval. In order 

to avoid overfitting and make our data continuous, we introduced 

noise from uniform distribution and spread the measured data in 

the preceding 15-minute interval.  The proposed algorithm and the 

corresponding results are for modeling a single user’s flexibility 

in using his dishwasher. However, the analysis is easily applicable 

to other white good appliances.  There were 157 households with 

smart dishwashers in the  Linear project, of which we picked 16 

as a test set, selecting users with at least 100 flexible usage 

sessions for the chosen appliance.  It is noteworthy that all the 

upcoming algorithms are implemented in MATLAB. 

The results are presented in two subsections. In the first 

subsection, the result and analysis of Stage I are presented and 

factors influencing typical user deadlines are analyzed. In the 

second subsection, the clusters of deadlines of the user from Stage 

I are modeled with FMMs and the unmeasured heterogeneities are 

investigated. The results of the second subsection correspond to 

Stage II of our algorithm. 

3.1 Stage I: Typical Deadlines and 

Influencing Factors 
Figure 2 shows the resulting clusters of deadlines of 4 different 

users randomly chosen from the test set at the output of Stage I. It 

is noteworthy that the clustering is based on the deadline feature 

(y-axis) only, however, the corresponding configuration times are 

also shown. As seen from Figure 2, for most of the users, typical 

deadlines are around early morning (4-5am), late morning (10-

11am) and in the afternoon (around 3-5pm). Configurations with 

early morning deadlines are more frequent and are usually made 

in the afternoon. Additionally, some users have a more 

deterministic behavior compared to others. For example, user B 

has substantial amount of his data in the cluster corresponding to 

the early morning deadline. We have calculated the percentage of 

data in each cluster for all the 16 users in our test set. The results 

are depicted in Figure 3(a). It is clear from Figure 3(a) that data is 

not evenly distributed across the clusters and most users usually 

have a cluster containing more than 90% of their input. This 

cluster represents the dominant habit of a user and other clusters 

usually reflect the activities on the exceptional days.  

We investigated three potential factors influencing the typical 

deadlines of the user: seasons, holidays and day of the week. It 

was found that the day of the week and holidays have influence on 

the behavior of user in setting deadlines for his dishwasher. 

However, the seasonal changes were not substantially influential.  

To demonstrate the effect of holidays, we selected two users and 

depicted their flexible configurations on holidays vs. normal days 

in Figure 4. As seen from Figure 4, the afternoon and the evening 

deadlines (which correspond to smaller clusters) are usually 

configured during holidays, although a substantial amount of 

configurations with early morning deadlines are still present 

during holidays. However, the conclusion from Figure 4 should 

not be extrapolated to all user populations because holidays do 

not affect all users’ behaviors similarly. This is depicted in Figure 

3(b), which shows the percentage of configurations during 

holidays in each cluster. The deadline of user 6 and 8 do not seem 

substantially influenced by holidays whereas the influence is more 

dominant in users 2, 3, 10, 12 and 13. This conclusion further 

confirms the fact that analysis of flexibility potential based on 

merely the appliance characteristic and assuming that customers 

use their device potential in similar manner is far from reality. 

Hence, it is crucial to investigate the users individually to identify 

the uncertainty contributed by their lifestyle.  

Similar conclusions are drawn from the analysis on the influence 

of the day of the week on users’ behavior. However, the results 

are not shown due to space limitation.   

 

Figure 2: Clusters of deadlines for 4 users. Each cluster is 

being shown with distinct color 

 

Figure 3: Percentage of (a) data (b) holidays in each cluster 

 

Figure 4: Example of two users’ flexible configurations during 

holidays vs. normal days over their cluster of deadlines 



3.2 Stage II: Analysis of the Distribution of 

the Configuration Times 

3.2.1 Descriptive model 
In this section, we present a parametric model representing the 

distribution of configuration times of a cluster of a user from 

Stage I. Looking back at Figure 2, we see that for some clusters 

(e.g., the ones with early morning deadlines), the data in the left 

corner of the figure is related to that in the right corner.  For 

example, it makes sense to say that the activities shortly after the 

midnight are tails of the ones in the evening and they might be 

coming from the same distribution. To account for this, we 

changed the reference point from midnight to the middle of the 

largest gap seen in the configuration times of each cluster of data.  

We first focus on testing our methodology on clusters with a large 

amount of data (at least 100 data points) to ensure reliability of 

our conclusion and then apply the method to smaller clusters. Our 

initial approach was to fit single distributions to configuration 

times of the chosen clusters. The non-central student distribution 

was identified to fit the clusters whom could be represented using 

a single distribution. However, as mentioned in Section 2.3, the 

characteristic of empirical distributions suggested to use FMM. 

Based on the initial observations which suggested non-central 

student distribution as a suitable fit and the fact that non-central 

student distribution is approximated by the normal distribution for 

large enough samples, we fit and compare the FMMs from two 

families of distributions; (1) mixture of normal and (2) mixture of 

student. As a measure of fitness to compare the performance of 

different families of distributions, we use BIC as mentioned in 

Section 2.3.3.  

Table 1: log of marginal posterior density, )|( Xkp   

Cluster  k = 1 k = 2 k = 3 k = 4 

A -553.95 -545.34 -595.17 -548.91 

B -595.53 -554.89 -554.84 -559.87 

 

To choose the optimum number of mixtures in each family, we 

use log-marginal likelihood values as explained in Section 2.3.3. 

We also use point process representation of posterior draws from 

MCMC approach to avoid overfitting. Point process 

representation is a viewpoint introduced by [17], which represents 

every component of the mixture in terms of its parameters using a 

scatter plot. Next, we describe an example to explain this 

procedure.  

Table 1 shows log-marginal likelihoods for fitting a mixture of 

normal distributions with different components for two example 

users. Referring to Table 1, the optimum number of components 

for cluster A is k = 2, which corresponds to the largest value of the 

log-marginal likelihood. The corresponding point process 

representation of posterior draws and Probability Density 

Function (PDF) of the best fit is shown in Figure 5(a). Point 

process representation for k = 2 components appear in two well-

separated clusters and confirm the validity of the selection 

according to the log-marginal likelihood values. However, for the 

cluster B in Figure 5(b), the suggested value of k = 3 in Table 2 is 

overfitting, hence k = 2 is chosen. It is noteworthy that in Figure 

5(b), the x-axis is changed from time to time slot of a day (i.e., a 

value between 0 and 95) for the ease of comparison between point 

process representation and best fits. Testing on various clusters 

reveals that when the difference in log-marginal likelihood of k 

and k+1 components is smaller than 1, smaller components should 

be chosen to avoid overfitting.  

Table 2 presents the BIC values of the selected clusters to 

compare the best fit of a mixture of normal distributions with that 

of a mixture of student distributions. The BIC values indicate that 

a mixture of normal distributions is more suitable for descriptive 

representation of a user’s configuration time distribution.   

Table 2: BIC of best mixture of normal fit vs. that of mixture 

of student distributions for randomly selected user clusters 

Mixture  A B C D E 

Normal 1095.3 1402.9 803.7 945 818.8 

Student 1105.9 1421.4 809.7 961 828.3 

3.2.2  Analysis of Unmeasured Heterogeneity  
FMMs provide a mechanism that can account for unobserved 

heterogeneity in the data. In this section, we analyze the effect of 

seasonal changes, holidays and day of the week on the time of 

configuration of a cluster of deadlines in a user. To reach a robust 

conclusion, we focus our analysis on larger clusters (more than 

100 in size).  

We use a Maximum-a-Posteriori soft-clustering algorithm to 

determine with certain probability, to which component of the 

mixture each data point belongs. We then analyze the effect of the 

aforementioned factors on the resulting clusters. Figure 6 shows 

the effect of holidays on 12 clusters. Each cluster belongs to a 

different user and corresponds to the largest cluster of the 

respective user, hence, representing the dominant user deadline. 

Each bar of a cluster corresponds to members of the mixture 

components (i.e., soft clusters of Stage II). As seen from Figure 6, 

holidays affect clusters’ time of configuration however, the effect 

varies from one cluster to the other. A similar conclusion is also 

drawn for the day-of-the-week effect. Whereas, the seasonal 

changes were not influential. The effects of a day-of-the-week and 

seasons are not demonstrated due to space limitation.  

Figure 6: Effect of holidays on configuration times  

Figure 5: Point process representation of posterior draws and 

PDF of the best fit for two randomly selected users 

 (a) 

 (b) 



4. CONCLUSION AND FUTURE WORK 
This paper looked into the characterization of flexibility, i.e., the 

potential of shifting power consumption in time. How exactly to 

exploit (and optimize) that flexibility is the subject of DR 

algorithm (and remained out of scope here). Extensive research is 

done to analyze the flexibility potential of various devices in 

terms of their deferrable energy. However, little attention is 

devoted to modeling a user’s flexibility behavior, which 

influences the time and duration of availability of flexibility 

potential of smart devices. In this paper, we addressed this need 

and presented a systematic two-stage approach to sharpen the 

analysis of flexibility by deriving a generative model for user 

flexibility behavior from data. The first stage of the algorithm 

employed a hard clustering algorithm to identify and model the 

typical deadlines of a user. For each cluster of deadlines from 

Stage I, a parametric distribution was fit to model the distribution 

of corresponding configuration times. The proposed methodology 

was then applied on a real-world data set from a field trial with 

smart appliances. Analysis from Stage I revealed the existence of 

uneven clusters of deadlines for most users, with one cluster 

containing more than 90% of the data. This implied that these 

users had a dominant preference in using their dishwasher and it 

corresponded to early morning deadlines. Additionally, the 

distribution of deadlines in each cluster followed a Gamma 

distribution. Analysis in Stage II showed that the distribution of 

time of configurations in each cluster of deadlines is best modeled 

by a mixture of normal distributions. Additionally, the effects of 

the-day-of-the-week, holidays and seasons were investigated over 

user’s clusters in both stages. It was found that, day-of-the-week 

and holidays affect the user’s flexibility behavior. However, not 

all the users were affected similarly by these factors. Seasonal 

changes did not have substantial influence.   

For users that exhibit a wide range of deadlines (which in our data 

set is a minority), we noticed that the distribution of configuration 

times is similar (for at least a subset of deadlines). In such case, 

we might be able to describe a more compact model by directly 

modeling P(configuration time, deadline) in a single step rather 

than the two stage approach which first identifies P(deadline) in 

Stage I and then P(configuration time| deadline) in Stage II. Such 

a single stage methodology using multivariate FMMs is left for 

future work.  

Finally, our analysis focused on describing a single user at a time. 

Note that privacy concerns require that the measurement data is 

adequately protected (e.g., the model anonymized) Further, from a 

utility’s perspective, residential flexibility is likely to be exploited 

at an aggregated level. Hence, we will extend our analysis to 

cluster similar users and model their aggregated behavior. Such 

aggregate user model would also be less privacy sensitive.   
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