

FACULTY OF ENGINEERING AND
ARCHITECTURE

Resilient backbone networks for multi-site data centers: Exploiting anycast (re)routing for multi-period traffic

Ting Wang¹, Brigitte Jaumard¹ and Chris Develder²

1: CSE, Concordia University, Montreal, Canada 2: INTEC – IBCN, Ghent University – iMinds, Ghent, Belgium

Optical clouds

Optical networks crucial for increasingly demanding cloud services, e.g.,

- Computing:
 - High energy physics
 - Amazon EC2, Microsoft Azure
- Online storage:
 - Dropbox, Google Drive, etc.
- Collaboration tools:
 - MSOffice 365, Google Docs
- Video streaming:
 - Netflix, YouTube

C. Develder, et al., "Optical networks for grid and cloud computing applications", Proc. IEEE, Vol. 100, No. 5, May 2012, pp. 1149-1167.

Network virtualization

Physical network is logically partitioned in isolated virtual networks

Virtual Network Operators
 (VNO) operate logically
 separate networks

VNO 1 VNO 2

Physical Infrastructure
 Providers (PIP) have full control over infrastructure (fibers, OXCs)

J.A. García-Espín, et al., "Logical Infrastructure Composition Layer: the GEYSERS holistic approach for infrastructure virtualisation", in Proc. TERENA Networking Conference (TNC 2012), Reykjavík, Iceland, 21-24 May 2012.

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Resiliently provisioning virtual cloud networks

How to choose the virtual to physical mapping, such that

Services remain available in case of network failures

Bandwidth for providing services is minimal

Note:

- Anycast: requests coming from users can be served by any server
- Cloud services offered by VNO
- Cloud services run on top of PIP

B. Jaumard, A. Shaikh and C. Develder, "Selecting the best locations for data centers in resilient optical grid/cloud dimensioning (Invited Paper)", in Proc. 14th Int. Conf. Transparent Optical Netw. (ICTON 2012), Coventry, UK, 2-5 Jul. 2012.

Two proposed protection schemes:

M. Bui, B. Jaumard, and C. Develder, "Anycast end-to-end resilience for cloud services over virtual optical networks" (Invited Paper), in Proc. 15th Int. Conf. Transparent Optical Netw. (ICTON 2013), Cartagena, Spain, 23-27 Jun. 2013.

This paper

Related work: Static traffic scenarios

- Traditional dimensioning (no virtualization, no resilience):
 - Develder et al. 2009: Anycast, flexibility in choosing data center
- Resilient dimensioning problem:
 - Shaikh et al. 2011, Develder et al. 2013: scalable method, no synchronization between working and backup DCs
- Routing cloud requests and <u>mapping a VNet</u> to physical infrastructure separately:
 - Lee et al. 2009, Yu et al. 2010: Survivable VNet embedding, but assume VNet is given
 - Jiang et al. 2012, Alicherry et al. 2012: Optimal server selection and routing of anycast services in the physical layer for intra- and inter-DC networks but no resilient network design in the virtual layer
- VNet planning problem:
 - Barla et al. 2012, Barla et al. 2013: using mixed integer linear programming, but no synchronization between working and backup DCs
 - Bui et al. 2013 (ICTON): first model that incorporates **synchronisation path**, but *still static traffic!*
 - Bui et al. 2014 (ICTON): first model for <u>multi-period</u> scenario, but just considers 1 transition from a period T to T+1
 - Develder et al. 2015 (ICTON): first true multi-period model, cyclic sequence of periods

Problem statement

- Study time-varying traffic:
 - Traffic pattern changes from one period (t) to the next (t+1)
 - Optimize routes jointly for a <u>sequence of periods</u>
- Key research question: Benefit (in network resource usage) of changing routes for multiperiod traffic, i.e., that continues from t to t+1?
 - Does it help to only change backup paths?
 - ... or do we need to change working as well?
- Further analysis:
 - Impact of traffic: (i) varying fraction of traffic spanning multiple periods,
 (ii) varying number of regions with different traffic timing
 - Scalability: parallel solution scheme for column generation model

Problem statement

- Cloud network topology: G = (V, L), with V = nodes, L = links
- Given:
 Locations of the (candidate) data centers, V_D ⊆ V
 Topology nodes are partitioned in <u>time zones</u>

 - Time is divided in multiple periods (time slots) w/ different traffic

- Choice of primary and backup <u>DC locations</u> for each service,
 Primary, backup and synchronization <u>paths</u> in period t+1,
 in <u>each of the time slots</u> it lasts

Such that: Total network bandwidth cost is minimized

Where routing is:

- Scenario I: unchanged,
- Scenario II: only changed for backup/synchronization paths
- Scenario III: freely changed (i.e., also allowed for working path)

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Solution: Column generation model

- Column generation idea:
 - Many different "configurations"
 - Start from a restricted subset of such "configurations"
 - Iteratively find additional configurations that reduce the cost:
 - (1) Restricted Master Problem (RMP) to use best existing configurations
 - (2) **Pricing Problem (PP)** to construct new configurations
- A configuration =
 - Working path from source to primary DC
 - Backup path from source to secondary DC
 - Sync path between the primary & backup DCs

Column generation solution algorithm

Solve PP(v) for all sources v in parallel RMP Output / **Solve RMP** as LP: **PP Input:** Selection of the best Solve PP(v, t): configurations in each Generation of a new time slot Values of the dual promising configuration for variables source v at t **PP Output / RMP Input:** Move to other t New promising configuration c_v for New (at least some) source nodes v configuration w/ negative reduced Yes cost? No Solve RMP as LP is optimally All t successfully solved **ILP** tested? No Yes

Restricted Master Problem (RMP)

$$\begin{aligned} & \min \ \ \sum_{\ell \in L} \underbrace{\beta^{\text{W}}_{\ell} + \beta^{\text{B}}_{\ell} + \beta^{\text{S}}_{\ell} \cdot \|\ell\|}_{\text{BW}_{\ell}} \\ & + \text{PENAL}^{\text{DISRUPT-BS}} \sum_{v \in V} \sum_{t \in T^{\star}} x^{\text{BS},t}_{v} \\ & + \text{PENAL}^{\text{DISRUPT-W}} \sum_{v \in V} \sum_{t \in T^{\star}} x^{\text{W},t}_{v} \end{aligned}$$

Constraints:

- Assure all requests are granted
- Count configuration changes x^{BS,t}, x^{W,t}
- Compute W, B, S bandwidths

Case (ii): minimize # disruptions of B/S path of multi-period traffic

Case (iii): minimize # disruptions of W path of multi-period traffic

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Case study

- Topology:
 - 24 nodes, 43 links
 - Data centers in ☆:
 CA, WY, TX, OH

- Traffic: 3-region case
 - Total traffic: 33.3% region 1, 37.5% region 2, 29.2% region 3
 - Three periods: A: 14%, B: 38%, C: 48%
 - Region 1: A, B, C
 - Region 2: B, C, A
 - Region 3: C, A, B
 - Duration:
 - Pattern #1: 20% two-period, 80% single period traffic
 - Pattern #2: 80% two-period, 20% single period traffic

Results: Net total bandwidth savings?

- 1. Relative total cost savings up to nearly 8% (pattern #2, i.e., more multi-period traffic)
- 2. Capacity savings are realized mainly by **sharing of backup** (backup savings >15%)
- Saving by only changing backup/synchronization (Scenario II) almost as good as when also changing working (Scenario III)

Results: Net total bandwidth savings for 4 regions

- 1. Relative total cost savings up to nearly **10%** (pattern #2, i.e., more multi-period traffic)
- 2. Capacity savings are realized mainly by **sharing of backup** (backup savings >15%)
- Saving by only changing backup/synchronization (Scenario II) almost as good as when also changing working (Scenario III)

Solution scheme: serial vs parallel

Solution scheme: serial vs parallel

Solve PP(v) for all sources v in parallel RMP Output / **Solve RMP** as LP: **PP Input:** Selection of the best Solve PP(v, t): configurations in each Generation of a new time slot Values of the dual promising configuration for variables source v at t **PP Output / RMP Input:** Move to other t New promising configuration c_v for New (at least some) source nodes v configuration w/ negative reduced Yes cost? No Solve RMP as LP is optimally All t successfully solved **ILP** tested? No Yes

Scalability: Time savings by parallel PP solving

Only re-solve RMP after adding multiple configurations (i.e., for multiple source nodes)!

Scalability: Time savings by parallel PP solving

Only re-solve RMP after adding multiple configurations (i.e., for multiple source nodes)!

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Conclusions

- Scalable column-generation method (w/ parallel solving of multiple PPs) for resilient VNet planning of time-varying traffic, <u>over all</u> <u>periods together</u>
- Our (relatively limited) case study shows that:
 - Changing routing from one period to the next saves several % of the total bandwidth cost (mostly backup cost savings)
 - ... but we need only to change about 50% of them
 - ... and only changing backup/synchronization seems to suffice
 - Savings seem to increase for (i) more multi-period traffic,
 (ii) more regions
- Future work: Optimize DC locations (e.g., 'scattered' vs 'paired', see ICTON 2013)

Thank you ... any questions?

