Introduction — Chris Develder

= Professor at Ghent University since Oct. 2007

* Research Interests: smart grids (data analytics; optimization/scheduling
algorithms for DSM/DR), information extraction (e.g., knowledge base
population, event relations in news archives); optical networks
(dimensioning, resilience schemes, ILP)

* Visiting researcher at UC Davis, CA, USA, Jul-Oct. 2007 (optical grids)
* Visiting researcher at Columbia Univ., NY, USA, 2013-14 (IE)

" Industry Experience: network planning/design tools
® OPNET Technologies (now part of Riverbed), 2004-05

= PhD, Ghent University, 2003

* “Design and analysis of optical packet switching networks”

= More info: http://users.atlantis.ugent.be/cdvelder
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Smart Grids

Value added

Fault detection? Restoration? P ke
Data processing? New services & business models &

Forecast
information

Privacy, security?
Pricing schemes?
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Power grid structure
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Outline
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K. Mets, R. D'hulst and C. Develder, "Comparison of intelligent charging algorithms for electric
vehicles to reduce peak load and demand variability in a distribution grid", J. Commun.
Netw., Vol. 14, No. 6, Dec. 2012, pp. 672-681. doi:10.1109/JCN.2012.00033
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Example case study: EV charging

= Research questions:
1. Impact of (uncontrolled) EV charging in a residential environment?

2. Minimal impact on load peaks we could theoretically achieve?

3. How can we minimize the impact of EV charging in practice?
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Impact of EV charging

= Sample analysis for 150 homes, x% of them own a PHEV
= BAU = maximally charge upon arrival at home
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Controlling EV charging?
— Charging schedule —
Power (W)

A

Max.

= Objectives:
* Reduce peak load f{harging Rate (W)

* Flatten (total) load profile
(= reduce time-variability)

* Avoid voltage violations -—
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Smart charging: QP

BAU Local control (QP)
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Case study

= 63 Households

e Randomly distributed
over 3 phases

* Spread over 3 feeders

= Electrical vehicles
* PHEV: 15 kWh battery

e Full EV: 25 kWh battery

* Randomized arrivals
(~5pm) and departures

(~6am)

250 kVA — = £ P
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—o— I T
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2 3 21
—————— >

PHEV PHEV EV EV
3.6 kW 7.4 kW 3.6 kW 7.4 kW
4 3 2 1

Light
Medium 10 10 5 4
Heavy 17 16 7 7
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Results (1) — Load profiles
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e Mets, F. De Turck and C. Develder, "Distributed smart charging of electric vehicles for
balancing wind energy", in Proc. 3rd IEEE Int. Conf. Smart Grid Communications
(SmartGridComm 2012), Tainan City, Taiwan, 5-8 Nov. 2012, pp. 133-138. doi:10.1109/
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Distributed generation (DG)
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A typical wind profile
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Wind balancing with EV charging
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Distributed control

Coordinator

Exchange of control messages
to iteratively negotiate
charging plans for a specific
period of time

| I
—
Balance Responsible EV EV
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Centralized Optimization Model

= Based on social welfare maximization Drawbacks:
1) Privacy: sharing of

cost & disutility
functions, arrival/

= Objective: L R
. min y  C(d:) + ) D Df(ar) departure info, ...

\2) Scalability /

e Minimize imbalance costs C
¢ Minimize user disutility D

= Global constraints:
K

de =Y =¥ vte{1,2,.,T}
k=1

= Local constraints:
® BRP: supply < limit
* EV: energy & time constraints
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Distributed optimization model

= Move demand-supply constraint into objective,
w/ Lagrange multiplier 4,

T K T
> Cd)+ ) Y (D (f) + e (27, — d))

k=1 t=1

= Notice: Objective function is separable into K+1 problems that can
be solved in parallel (assuming A, are given)

T
1 BRP [Z (C(d /\tdt] [ZZ Dk: 37t )+ A\ tﬂ K subscriber

problem | P problems

= |teratively update pricing vector A, ...
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Distributed optimization model scheme:

Coordinator distributes virtual prices =

BRP solves local problem

Subscribers solve local problem [ " Parallel

A

Coordinator collects schedules:
e BRP: d' = [di,d5,...,d7]

. ki _ ke _ka k.
°EVs: ¢ = [z17 257, 27

5. Coordinator upndates virtual prices:
K
1" = dé]
k=1

6. Repeat until demand = supply

AT =y
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Case study: Algorithms

= Uncontrolled business as usual (BAU)
® EV starts charging upon arrival
® EV stops charging when state-of-charge is 100%
* No control or coordination

= Distributed algorithm
e Executed at the start of each time slot

 “Ideal world” benchmark

e Offline all-knowing algorithm determines schedules for ALL sessions
* No EV disutility function 2 maximum flexibility
® Objective:

k=1

S K 2
min E wy — Z zk
t=1
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Results: Uncontrolled BAU vs. Distributed
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Results: Distributed vs. Benchmark
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Results: Energy Mix

Contribution from RES Reduction of CO2 emissions
40% 68% 73%
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HRenewables CNon renewables Renewables: 7.4 CO2 g/kWh

Non Renewables: 351.0 CO2 g/kWh
= Total energy consumption = 6.8 MWh
= Substantial increase in the use of renewable energy
= Reduced CO, emissions
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Conclusions

= Objective: balance wind energy supply with electric vehicle
charging demand

= Method: Distributed coordination algorithm where participants
exchange virtual prices and energy schedules

= Performance: Distributed coordination significantly better than
BAU, close to “ideal world” benchmark
* Increased usage of renewable energy sources
* Reduction of CO, emissions
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K. Mets, F. Depuydt. and C. Develder, "Two-stage load pattern clustering using fast wavelet
transformation", |IEEE Trans. Smart Grid, 2015. doi:10.1109/T5G.2015.2446935
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Clustering smart metering data

= Goal: Identify different types of daily power consumption time
series
1. Single household: distinct types of daily load patterns?
2. Over whole population: distinct groups of users?

= Why?
e Demand analysis (nation-wide, distribution substations, ... single houses)
* Customer segmentation, tariffs, billing...
* Power system planning
* Load forecasting
* Demand response programs
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Two-stage load pattern clustering

Can run in parallel, Representative pattern
simultaneously for all users = real pattern closest to center
N (i) typical patterns per user \ (i) overall load pattern clustering
Al E— N
e a N

> o

y /

* —y > o \ global cluster 1
cluster select

o \ :  representative obal cluster 2
<Nqpy e Nig> pattern > global cluster
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Core ideas

= Hierarchical scheme
= \Wavelet transformation:

* Dimensionality reduction
* Invariance/tolerance to time shifting

Upsampling Fast Wavelet

Energy per

Linear .
( Transform detail scale

Interpolation) (Haar wavelet)

96 features/day 128 features/day 128 features/day 7-8 features/day

= G-means (instead of k-means) [Hamerly2003]

G. Hamerly, C. Elkan, “Learning the k in k-means”, NIPS 2003

/P® iMinds
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Sample result: Single user

For alpha = 0.01% = low number of clusters
Note: representative # arithmetic mean

Power consumption (kWh)
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Because of FWT: similar time shifted
patterns are clustered together!
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Time vs wavelet domain: Number of clusters
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Conclusions

= Totally unsupervised clustering process
* No a priori definition of ‘typical day’, groupings into weekday/weekend ...
e Cluster size/quality controllable via parameter a

= Note on scalability:
e Stage 1 = executed per user (in parallel)

* Stage 2 = number of profiles to cluster is limited, by reducing
‘representative’ profile

e Vector space dimensionality is reduced by FWT (96 = 7 or 8 features)
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C. Develder, N. Sadeghianpourhamami, M. Strobbe, N. Refa, “Quantifying flexibility in EV
charging as DR potential: Analysis of two real-world data sets”, submitted 2016
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EV charging analysis: Research questions

1. Types of user behavior?
® Clustering

e Generative models

2. Quantification of flexibility?
® Sojourn vs idle time

* Demand response potential
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Input: Two real-world data sets

iMove
Period Mar 2012 — Mar 2013 Jan 2011 — Dec 2015
# Sessions 8,520 1,141,849
# Users' 134 53k
Car type Full EV Unknown mix
Charge point At home Public
Trip details Yes No

*: Results are based on sessions from 1 Jan 2015 — 31 Mar 2015 (N = 90,562)
. In iMove, at any point in time, up to 50 users were active. For ElaadNL, sessions are tied to a

particular charging card.
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User behavior: 3 Types of behavior

Daytime charging, Scattered throughout day,
High flexibility Low flexibility
Q
P
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= S 9O
£ £
o o
£ o £ o
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o} .QQ o O R ot £
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=© Nighttime charging, L
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UNIVERSITEIT I'%ﬁ&%‘ggﬁ C. Develder, et al., "Algorithms and comms for smart grids: Knowing and controlling power consumption", 10 Jun. 2016 ﬁ
GENT '




User behavior: Distributions of arrival times

Different week vs Slightly more Shift to later times
weekend pattern spread in weekend in weekend
Park to charge Charge near home Charge near work
0.157 0.2 057
0.15¢
0.1
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0.05}
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[ Weekends 7] Weekdays
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User behavior: Session duration — Weekdays
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User behavior: Session duration — Weekends

Charging duration:
Week = weekend

Histogram of duration for sessioMn 1 day —— Weekend days
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User behavior: Statistical models

Table II: Fitted distributions for total sojourn and idle times

Sojourn time (§570urn)

Idle time (§'dle)

Cluster Sub-cluster ~ Fraction Distr. Normalized distr. [min, max] Distr. Normalized distr. [min, max]
departures parameters™ (hours) parameters ™ (hours)
Park to in 1%t 24h 98.9% Beta a=1.91, 8 =14.22 [0.02,23.91] Beta a =0.31, 8 =10.04 [0,23.66]
charge in 2" 24 h 0.9% Gamma a=1.24, 3 =6.40 [24.00,36.11]  Logistic pn = 0.64, s = 0.06 [5.05,32.35]
(61.5%) in 3" 24h 0.1% Gamma a=1.40, 8 =5.01 [48.01,59.93]  Logistic pw=0.62, s =0.08 [34.21,55.11]
Charge in 1%24h  954%  Logistic p=0.56, s=0.08  [0.02,23.99] Normal p=0.42,02=0.17  [0,23.53]
near home  in 24 24h  3.3% Beta  a=259, 8=195 [28.13,47.95] Normal p=0.57,02=0.16 [19.37,47.86]
(29.1%) in 39 24h 0.8% Beta a=2.44, 8 =1.61 [62.84,72.00] Normal pw =057 0c=021 [47.25,70.00]
in4h 24h  0.3% Beta  a=2091,8=139 [74.75,95.86] Normal u =0.64, 02 =0.20 [69.05,93.73]
Charge
near work in 15t 24h 99.6% Logistic u=0.27, s = 0.06 [5.00,18.52] Logistic pw=0.35, s =0.07 [0,15.54]
(9.4%)

* The parameters of distributions are the following: (i) Normal: mean p and variance o2, (ii) Beta: shape parameters o and 3, (iii) Gamma: shape «
and rate 3, (iv) Logistic: location parameter p and scale parameter s. Note that the parameter values are reported for fits of normalized data, i.e.,

d—min

durations are rescaled per sub-cluster as dpormalized = hax — min”

9% ___

29%
62%
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Quantification of flexibility: Calculation

Upper bound: we disregard impact of using/
suppressing power in [t,t+A] on flexibility at
other times t’

P ex(t, A) = Maximal power that DR could either consume

constantly, or not at all, in interval [t, t+A]
® Charging session has to include [t, t+A]
® Charging duration > A
* Flexibility = session duration — A > charging duration
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Quantification of flexibility: Result
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" Park to charge:
e Daytime flexibility
e Weekend: = volume,
but # timing
= Near home:
* Nighttime flex
* Weekend: lower &
more spread
= Near work:
* Daytime flex
* Low in weekend
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Conclusion on flexibility analysis EVs

= Real world data set

= Three major types of charging sessions
= Statistical models of user behavior

= Methodology to quantify flexibility

= Application?
E.g., extrapolation of iMove data to 3% of Flemish fleet by 2020:
e ~100k cars out of ~¥3.2M

® E.g., noon in weekend => can have ~7MW extra for 2h

P® iMinds C. Develder, et al., "Algorithms and comms for smart grids: Knowing and controlling power consumption”, 10 Jun. 2016
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Outline

1. Introduction

Part I: Algorithms for DSM/DR

2. Example 1: Peak shaving

3. Example 2: Wind balancing

Part Il: Data analytics

5. Clustering smart metering data
6. EV usage analysis

Part lll: Communication middleware

7. C-DAX: A cyber-secure data and control cloud for power grids

W.K. Chai, et al., “An information-centric communication infrastructure for real-time state
estimation of active distribution networks”, IEEE Trans. Smart Grid, Vol. 6, No. 4, Jul. 2015, pp.
2134-2146. doi:10.1109/T5G.2015.2398840
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‘ C-DAX: Cyber-secure Data and
©DAX Control Cloud for power grids

= Project FP7-ICT-2011-8 /.
NATIONAL
= Oct. 1, 2012 — Feb. 19, 2016 INSTRUMENTS
= Budget: 4.3M EUR -
EU-funding: 2.9M EUR \. amgider
UNIVERSITY OF .\ UMC @ St Radboud
= More info: SURREY /.
hl‘tp://WWW.CdaX.eu smEs EBERHARD KARLS
UNIVERSITAT
IF% iMinds @- U ViRsiTs

e

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

)
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Smart grid communication pattern variation

= 1-to-1: e.g., control messages for specific assets
= 1-to-M.:
® Broadcast: e.g., energy offers in demand response schemes

* Anycast: e.g., offer for voltage regulation by any suitable subset of EVs
located in a certain area

= M-to-1: e.g., energy consumption reports in demand response or
smart metering

= M-to-N: e.g., multiple charging offers from different charging
stations to multiple EVs

= Asynchronous communication in dynamic scenarios:

e.g., EVs come and go, retrieve/deliver data while connected to
the network

|"7 |Mmds C. Develder, et al., "Algorithms and comms for smart grids: Knowing and controlling power consumption”, 10 Jun. 2016 —_ =
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ICN = Information Centric Networks

= Alternative for Point-to-point networks
* Explicit point-to-point connections from producer to predefined consumers
- need to know/config all IPs
= |CN paradigm = based on topic rather than IP address
® Consumers “pull” or “subscribe to” the data “topics”
e Agnostic of who produced and when/where info is stored
e Decoupling of producers/consumers

= Advantages:
* Inherent security: hosts do not know each other’s locations
® QOverlay network management:

= Management of IP connections, optimal placement of the data within
the cloud, resilience...

" In-network management and processing (e.g., caching, aggregation,
filtering, rate adaptation, traffic engineering ...)
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Topic-based Communication

Publisher A Subscriber 1
Publisher B
Subscriber 2
Pub/sub middleware
Publisher
C Subscriber 3

Benefits of decoupling publishers and subscribers
e Communication partners do not need to know each other
* Asynchronous communication possible
* Facilitating extensibility, management and configurability
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Use Cases Future retail
energy market

—)» Monitoring

‘ C-DAX client

Energie Data
Services Nederland

E-Mobility
Service Provider

solar panels

substation
Nieuwe Meer

' smart meter vehicle

station

PMU-based real-time state
estimation (RTSE) in MV conealcortrl room
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Use Case: Real-time state estimation of ADNSs

Monitoring

Network in normal operation: Network in emergency conditions:
* Congestion management * Islanding detection

* Optimal V/P control * Fault identification

* Optimal dispatch of DER * Fault location
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Field trial setup: Feeder of Alliander (Arnhem, NL)
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Field trial setup: Alliander data center
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Phasor Measurement Units — The EPFL PMU

- First PMU worldwide specifically designed for ADN operating conditions
- Rugged and compact NI-compactRIO enclosure to fit in reduced spaces
- First worldwide FPGA-based PMU (high speed and determinism)
- Equipped with a £100 ns (max error) stationary GPS module
- Metrologically characterized at Swiss Federal Institute of Metrology (METAS)
- Steady state accuracy: 10 ppm (independently of harmonic distortion)
- Measurement reporting latency: 37 ms
- Reporting rates: 10-20-50-100-200 fps
- |EEE Std. C37.118 class-P comliant
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Substation setup

Industrial-grade 4G router

- - compactRIO-based PMU
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Synchrophasor data latencies (4G network)
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Synchrophasor data latencies (4G network)
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Estimated vs measured voltage profiles
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Wrap-up
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Summary

= Challenge: deal with renewable sources
= Demand response algorithms: initial feasibility studies

* How close to “best” possible? Scalable? What are achievable benefits?
= Get insight in consumption/production: e.g., clustering as first step
= Quantify flexibility, e.g., the EV case study
= Flexible data communications platform w/ C-DAX middleware

E.g., refine “disutility” from user; “imbalance” from
business perspective; evaluate using real(istic) data...

= \WWhat’s next?

e Can we learn/predict flexibility, e.g., from smart metering data?

* Can we infer user behavior, and from there (context-aware) preferences?
* Evaluate business case of flexibility?

* Convincingly demonstrate flexibility exploitation in the real world?
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Thank you ... any questions?

Chris Develder
chris.develder@intec.ugent.be

Ghent University — iMinds




