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Two-stage load pattern clustering
using fast wavelet transformation
Kevin Mets, Frederick Depuydt, Chris Develder, Senior Member, IEEE

Abstract—Smart grids collect large volumes of smart meter
data in the form of time series or so-called load patterns.
We outline the applications that benefit from analyzing this
data (ranging from customer segmentation to operational system
planning), and propose two-stage load pattern clustering. The first
stage is performed per individual user and identifies the various
typical daily power usage patterns (s)he exhibits. The second stage
takes those typical user patterns as input, to group users that are
similar. To improve scalability, we use fast wavelet transformation
(FWT) of the time series data, which reduces the dimensionality
of the feature space where the clustering algorithm operates in
(i.e., from N data points in the time domain to logN ). Another
qualitative benefit of FWT is that patterns that are identical in
shape but just differ in a (typically small) time shift still end
up in the same cluster. Furthermore, we use g-means instead of
k-means as the clustering algorithm. Our comprehensive set of
experiments analyzes the impact of using FWT vs. time-domain
features, and g-means vs. k-means, to conclude that in terms
of cluster quality metrics our system is comparable to state-
of-the-art methods, while being more scalable (because of the
dimensionality reduction).

I. INTRODUCTION

THE SMART METERING rollout as witnessed world-
wide, enables detailed measurements of power consump-

tion and production in real-time (or at least at a higher
frequency than the still quite common yearly manual meter
readings), and also enable, e.g., dynamic pricing schemes or
other demand side management approaches. In this paper,
we focus on the data analysis of such smart meter data
obtained from distribution grid end-points (e.g., households,
small businesses). The challenge of interpreting such a large
volume of metering data is commonly tackled with machine
learning techniques: in particular, clustering algorithms are
used to group similar load patterns, which eases the analysis
and interpretation of the metering data [1]. A “load pattern”
represents the demand over a specific period of time, e.g.,
24 hours with a resolution of 15 or 60 minute intervals.
The profiling of such load patterns serves a broad range of
applications, as discussed further in Section I-A.

We propose a hierarchical clustering scheme that comprises
two major stages, as illustrated in Fig. 1: (i) The first stage
analyses one user at a time and performs an unsupervised
clustering of his/her behavior into groups of daily load patterns
that are similar; (ii) The second stage takes the load patterns
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Fig. 1. Our two-stage clustering approach.

that represent each of the per-user clusters (i.e., the single
centroid pattern for every per-user cluster), and thus identifies
all possible daily load patterns seen across all users. (Note
that in a practical implementation, the per-user clusterings
in stage (i) can be executed in parallel, thus making this a
potentially very fast scheme.1) Eventually, we end up with K
global clusters, and each user can then be represented as a
vector in a K-dimensional feature space, where element ni,k
denotes the number of daily load patterns of user i that belong
to global cluster k. In this paper, we investigate the features
as well as the clustering algorithm to use for both load pattern
clustering stages.

In terms of features, we propose to use fast wavelet trans-
formation (FWT) of the load pattern, instead of the raw time
series itself (e.g., as used in [2]) or a fast Fourier transform
(FFT) (as in [3]). For the clustering algorithm, we suggest
to adopt the g-means algorithm [4], as an alternative for the
common k-means algorithm. G-means automatically selects
the optimal number of clusters, and makes less restrictive
assumptions about the cluster shapes. In terms of dataset,
we focus on a heterogeneous customer group connected to
the low voltage distribution grid, as opposed to industrial
medium voltage customers [1], [5] or nation-wide aggregated
load data [6].

Our main contribution is the proposal of an original combi-
nation of (1) a hierarchical clustering approach (i.e., split into
two stages), (2) adopting a wavelet transformation instead of
working directly on the time domain data, and (3) g-means
clustering instead of the more common k-means. While each
of those components have been suggested by themselves, we

1In our non-optimized proof-of-concept Java implementation the entire two-
stage clustering of 2 years of 15 min smart metering data from 244 users
completes in only a few minutes, including the calculation of cluster quality
metrics.
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do believe we are the first to put these three pieces together.
Moreover, we analyze — qualitatively and quantitatively (in
terms of cluster quality metrics) — the impact of (a) using
wavelet features vs. time domain features, as well as (b) using
g-means instead of k-means clustering.

Now, we will first provide a comprehensive overview of the
concrete applications that are served by profiling load patterns.
Then, Section II presents an overview of the related work in
load pattern clustering. In Section III we detail our proposed
clustering approach, and subsequently analyze its performance
through experiments in Section IV. Conclusions and future
work are summarized in Section V.

A. Applications of load pattern clustering

Load profiling, load pattern clustering, segmentation, etc.
are terms frequently used to describe the process of group-
ing similar load patterns into groups. Instead of describing
related algorithms in detail (as done extensively in [1]), we
comprehensibly present the applications that benefit from load
profiling. Clustering or profiling of customer load patterns has
many applications, including tariff design, load forecasting,
power grid planning and operations, demand response, and
energy efficiency programs.

1) Electricity demand analysis: From a high-level perspec-
tive, the power system consists of generation, transmission,
and distribution. Load profiling is used to study demand
patterns at these levels: e.g., nation-wide aggregated loads [6]
(e.g., for generation planning), substations [7], distribution
stations [8], large (industrial) customers [1], [9], [10], and
more recently small residential or commercial customers [2].

2) Customer segmentation, tariffs, billing and markets:
Currently, utility companies use demographic data (family
size, house size, location, etc.) as the basis for customer
segmentation and tariff design [11]. However, technological
advances (e.g., smart meters), and liberalized energy markets
lead to new possibilities in defining tariffs, exploiting detailed
knowledge of customer’s power consumption [1] to better
suit the needs of both customers and utilities. The authors
of [10], [12] propose load profiling for the purpose of pricing
differentiation or designing demand response tariffs. Similar
in spirit, [13] suggests load profiling information as the basis
for billing of consumers that deviate from their contracted
schedules. Load profiling can also be used to assist customers
in selecting an adequate tariff [5].

3) Load forecasting: Load forecasting is an essential part
of generation, grid operations, power markets, and regulation.
Load estimation or forecasting forms the basis for system
state estimation, which is used for power system planning
(e.g., transformer, conductor sizing). Customer classification
based on load patterns may provide relevant information
for short-term and mid-term load forecasting. In [14], [15],
the power system load is estimated by the aggregation of
representative load patterns. For obtaining the latter, clustering
is proposed [16]. Forecasting that relies on available data
from similar days as the one the load is to be forecast for,
clearly may benefit from load profiling to identify such similar
days [17]. In [18] the authors use clustering for dis-aggregated

electricity load forecasting. How exploiting customer grouping
benefits the accuracy of load forecasting, in the context of
market participation, is studied in [19]. The authors of [20]
show that the power consumption of groups of customers with
similar consumption patterns can be forecast more accurately
than that of random customer groups.

4) Demand response and demand side management: Load
profiling has been proposed as a means for enhancing target-
ing and tailoring of demand response and energy efficiency
programs as well as improving energy reduction recommen-
dations [2], [21]–[24]. Segmentation results are used to study
the variability in energy consumption in [2]: e.g., it might
be easier to target customers with low variability for demand
response programs, and those with high variability for sug-
gesting behavioral changes and energy efficiency programs.
Load profiling can support the assessment of the impact of
demand response programs [5], [16] and energy efficiency
programs [25]. Regression models for demand reduction based
on cluster analysis of load patterns are presented in [26].
In [27], load pattern data is used to infer occupancy states, to
group users, and to determine demographic, household, and
appliance stock characteristics. Clustering is used to identify
controllable heating loads from smart meter data in [28].

5) Power system planning and operation: Load profiling
may also be used to improve the planning and operation of the
power system, especially in low-voltage networks, for which
limited knowledge is available related to, e.g., the consumption
patterns of households. Highly generalized (average) load
patterns are typically used for decision making, but in reality
domestic consumption patterns are highly diverse. Load flow
simulations are often used as a tool for power system planning
and operations, and in [11] the authors suggest the use of
load profiling results to improve the accuracy of such power
grid simulations: in a case study, maximum line currents and
minimum node voltages were calculated both from realisti-
cally generated network load patterns (relying on clustering
analysis) and those using the generalized patterns. The values
obtained from simulations using the proposed clustering-based
model proved to be very close to the real system values,
as opposed to those using the generalized profiles. In [8],
clustering is used for the analysis of the load patterns at
distribution substations.

II. RELATED WORK

We discuss three aspects of load pattern clustering: (i) first
we present what features are typically used to represent the
load pattern, i.e., the feature space in which the clustering
algorithm is applied, (ii) subsequently the algorithm itself, and
(iii) finally, the commonly defined metrics to evaluate cluster
quality.

A. Features

The most commonly used features are the (daily) load
pattern time series values themselves. These load patterns are
typically preprocessed before clustering. A common step is
to normalize every daily load pattern, e.g., (i) by rescaling
it relatively between the minimum and maximum loads of
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the period under study [5], (ii) by dividing it by the user’s
reference power (e.g., peak power [1]), or (iii) by dividing it
by its total consumption [2]. Such normalization methods are
used to emphasize the shape of the load patterns, rather than
to focus on the absolute value of their amplitude.

Preprocessing (e.g., normalization) is not only done on a
per-pattern basis. The authors in [1] first group the daily
load patterns according to predefined loading conditions (e.g.,
season, day) for the period under study. A single typical
daily load pattern is then determined for each customer
and loading condition: i.e., multiple daily load patterns are
combined statistically (e.g., by taking the mean). Irregular
patterns (e.g., peaks) thus will have a limited impact on the
resulting typical daily load patterns (that will subsequently
be clustered). In addition, the amount of data to be clustered
is reduced significantly. However, because the thus defined
“typical load patterns” are much smoother compared to the
individual load patterns as measured, details and extremes of
the behavioral patterns are lost and only general trends remain.

As alternative to the raw time domain data, some approaches
use frequency domain features, based on a Fast Fourier
Transform (FFT) [3], [29]. However, FFT is designed for
stationary behavior, whereas load pattern time series over
reasonably long time periods typically exhibit non-stationary
behavior [6] (e.g., because of seasonal variations, or changes in
the household composition in terms of family members and/or
electric devices). In this setting, wavelet transformations are
better suited; related work has also shown promising results
when using wavelet-based features for clustering nation-wide
aggregated power consumption patterns [6].

B. Clustering algorithms

A wide variety of approaches has been proposed for
clustering load patterns: e.g., k-means, k-means++, fuzzy k-
means, hierarchical clustering, modified follow the leader [1],
Gaussian mixtures [11], self-organizing maps [3], [30]. We
describe the k-means and g-means algorithms and refer to,
e.g., [1] for a broader overview of the others.

1) K-means: Given a dataset X = {x1, x2, . . . , xN} (with
xi ∈ Rn), and an integer value K, the k-means algorithm
partitions X in a set of K clusters C = {C1, C2, . . . , CK}.
As output, each data point xi ∈ X is assigned to exactly
one cluster Ck ∈ C, which is characterized by a cluster
centroid µk. Starting from an initial set of cluster centroids
{µ1, µ2, . . . , µK}, which are typically selected at random from
X in classical k-means, the algorithm repeatedly executes
two steps until convergence (i.e., the cluster members do not
change anymore): (i) in the cluster assignment step, each data
point xi is assigned to the cluster with centroid µj that it
is closest to; (ii) the cluster update step re-calculates the
cluster centroid based on the current cluster members. For
the assignment step (ii), typically “closest” is defined by the
(squared) Euclidean distance:

cluster(xi) = argmin
k∈{1,...,K}

‖xi − µk‖2. (1)

Thus, the clustering algorithm actually aims to minimize the
cost function J (also called distortion function):

J =
1

N

K∑
k=1

∑
xi∈Ck

‖xi − µk‖2. (2)

In the update step (ii), new cluster centroids are calculated as
the average over current cluster members:

µk =
1

|Ck|
∑
xi∈Ck

xi (3)

The k-means algorithm is a simple and widely used algo-
rithm. Nevertheless, it has certain drawbacks. The number of
clusters K must be specified as input parameter, which is a
non-trivial problem in many applications. The resulting clus-
ters will be spherical because of the L2 cost metric, i.e., there
is a prior assumption that the data is distributed in spherical
clusters. The algorithm is also sensitive to the selection of the
initial cluster centroids: the worst case running time is super-
polynomial in the input size |X|, and the solution found may
be a local optimum that is arbitrarily bad with respect to the
optimization objective (minJ). To reduce the risk of ending
up in a local optimum, the algorithm can be executed multiple
times from which the best solution is selected (i.e., the one
attaining the lowest J). Alternatively, k-means++ can be used
to obtain a solution that better approximates the optimal J (i.e.,
with expected approximation ratio O(log k)) [31]: (i) select
the first center µ0 uniformly at random from X , (ii) select
the next center randomly, where any remaining x ∈ X is
chosen with a probability proportional to D(x)2, where D(x)
is the distance from x to the closest among the already selected
cluster centers µj , (iii) repeat the previous step until K centers
have been picked.

2) G-means: The g-means algorithm [4] can be seen as a
wrapper around the k-means algorithm, that determines the
optimal number of clusters and makes less assumptions about
how data points are distributed within clusters (i.e., they do
not necessarily need to be spherically distributed around the
center). G-means iteratively increases the number of clusters
as it progresses. In each iteration, every current cluster whose
member data points do not appear to come from a Gaussian
distribution is split into two. Between each round of splitting,
k-means is executed on the entire dataset using the current
cluster centroids to refine the solution. The statistical test, for
checking whether data within a cluster is Gaussian, is based on
the Anderson-Darling statistic, a powerful one-dimensional2

normality test. Thus, instead of specifying K, the user only
has to decide on the significance level α of the test. Yet,
note that, if so desired, we could also run the same splitting
procedure until reaching a given K (by iteratively splitting
that cluster that adheres least to the Gaussian data distribution
assumption).

2To reduce the data (n-dimensional vectors) to a single dimension, each
point is projected on the line connecting the two candidate centers of the
splitted clusters (e.g., along the first principal component of the data).
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C. Evaluation criteria
Several evaluation criteria have been defined for the task

of load pattern clustering, as detailed in [1] and summarized
below. They rely on the following distance definitions:
• between two n-dimensional vectors (e.g., load patterns):

d(xi, xj) =

√√√√ 1

n

n∑
k=1

(xi,k − xj,k)2 (4)

• between a vector xj and a cluster Cj :

d(xj , Cj) =

√√√√ 1

|Cj |
∑
xk∈Cj

d(xj , xk)2 (5)

• within a set (e.g., cluster) Cj :

d(Cj) =

√√√√ 1

2|Cj |
∑
xi∈Cj

d(xi, Cj)2 (6)

The Mean Index Adequacy (MIA) is used to measure the
compactness or homogeneity of the clusters:

MIA =

√√√√ 1

K

K∑
k=1

d(µk, Ck)2. (7)

Other indicators consider not only the compactness of the
cluster, but also the separation of clusters or distance between
clusters. Noting the set of cluster centroids as R, the Cluster
Dispersion Indicator (CDI) is:

CDI =
1

d(R)

√√√√ 1

K

K∑
k=1

d(Ck)2. (8)

The Davies-Bouldin Index (DBI) represents the system-wide
average of the similarity measures of each cluster with its most
similar cluster:

DBI =
1

K

K∑
k=1

max
i6=j

{
d(xi, Ck) + d(xj , Ck)

d(R)

}
. (9)

The Similarity Matrix Indicator (SMI) is defined as the max-
imum off-diagonal element of the symmetrical similarity ma-
trix, whose elements are computed using logarithmic function
of the Euclidean distance between pairs of cluster centroids
(i.e., representative load patterns):

SMI = max
i>j

i,j∈{1,...,K}

{(
1− 1

ln d(µi, µj)

)−1}
(10)

The ratio of “within cluster sum of squares to between cluster
variation” (WCBR) is the ratio of the sums of the square
distances between each input vector and its cluster’s centroid
vector and the distances between the clusters’ centroids:

WCBCR =

∑K
k=1

∑
xk∈Ck

d(µk, xk)
2∑K

1≤q<p d(µp, µq)
2

(11)

Compactness and cluster separation show opposing trends,
e.g., compactness increases with the number of clusters, but
separation decreases. We will use these evaluation metrics as
indicators of clustering quality in Section IV: the lower any
of these metrics, the better.

III. TWO-STAGE LOAD PATTERN CLUSTERING ALGORITHM

We have opted for a completely unsupervised approach, and
thus do not rely on any a priori defined loading conditions,
i.e., our input data only comprises the actual measured load
patterns. Moreover, we jointly consider all types of low
voltage customers, e.g., comprising residences as well as small
businesses, for which it is difficult define a priori a single
set of common loading conditions. For example, stores in
Belgium are typically open on Saturday but not on Sunday,
and have an additional closing day during the week: making
an a priori distinction between weekdays and weekends does
not necessarily make sense for all users. Further, we typically
represent users with realistic, detailed behavioral patterns,
i.e., we do not use profiles that are the mean of a set of
actual patterns (which could be an acceptable representation
of an aggregate of many such users). This is motivated by,
e.g., demand response applications that may want to identify
specific behavior (e.g., to target relevant customers, identify
flexibility, steer demand), or energy efficiency applications
that may target old or faulty appliances that exhibit irregular
behavior. (We will provide samples of such mean profiles vs an
actual single representative pattern in the experiments, Fig. 2
and 6). In terms of representing the load pattern, we have use
wavelet-based features (as motivated in Section II-A), derived
in a preprocessing stage detailed in Section III-A.

After that preprocessing, our clustering approach comprises
two major stages illustrated in Fig. 1, following the same
principle as [5]: (i) the first stage clusters the daily load pat-
terns of a single user, and finds his/her representative patterns,
while (ii) the second stage considers all user’s representative
patterns, which allows to group similar users. Both stages
employ the same clustering algorithm to process the set of
load patterns they take as input: the time series are converted
to FWT-based feature vectors [6], which are then clustered
using g-means [4]. Practical benefits of our approach are:

• The two-stage approach groups load patterns both on a
per user level (leading to insights in personal behavior
patterns), and on a user group level.

• Results from the first stage can be used for, e.g., load
forecasting of customers, tariff selection, demand side
management, energy awareness programs, etc. Results
from the second stage can be used for power system
planning, customer segmentation, tariff design, etc.

• We adopt a fully unsupervised strategy, and thus avoid a
priori definition of loading conditions and corresponding
typical load patterns, but instead derive everything from
the data itself.

• We focus on grouping load patterns that exhibit similar
behavior, and do not care so much about exact timing: we
want to treat (slightly) time-shifted but otherwise similar
shaped patterns as “similar”.

• The selection of input data for stage two of the algorithm
can be customized to the specific application.

More technical benefits are:

• The number of clusters is determined automatically using
a single intuitive configuration parameter: the confidence
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level used to determine whether to split a cluster or not.3

• Features computed from the wavelet transform result in
a significant reduction of the dimension of the feature
vectors, thereby reducing computation time, memory, and
storage requirements.

• Time invariance is reflected in the features, instead of
handled by the clustering algorithm (e.g., the k-spectral
centroids (KSC) algorithm used in [24]).

• The two-stage approaches improves scaling to large
datasets: stage 1 can process all users in parallel4, and
limits the set of load patterns to cluster in stage 2.

A. Stage 0: Data pre-processing and feature extraction

Our aim is to cluster load patterns into compact and distinct
groups. We deal with time series data representing energy
consumption of low voltage customers, e.g., households or
small businesses, usually obtained from smart meters. Such
measurements (e.g., average net power consumption over a
given interval) are typically performed on a 15 minute basis,
resulting in load patterns of 96 samples per day (i.e., a 96-
dimensional vector x). We will transform those original feature
vectors x to meet two objectives: (i) keep the feature space
dimensionality compact, as to improve scalability (especially
when smart metering would happen on even finer resolutions
than our example of 15 min), and (ii) provide a degree of
invariance to temporal translations (e.g., slight shifts in time),
to focus on what behavioral patterns occur and less on their
exact timing.

For the latter, it has been shown that using time domain
features combined with the L2 norm (as adopted in many
clustering algorithms) causes problems [24] (e.g., a “double
penalty” is applied to patterns that are only slightly different
in timing when peaks occur). While the clustering algorithm
itself can adopt a more appropriate “similarity” notion that
achieves a degree of time invariance (as is the basic idea of,
e.g., the k-spectral centroids algorithm (KSC) used in [24]),
we achieve a similar result purely by our choice of features.

Instead of using the time series data itself (as is the common
approach), we convert it to a lower dimensional representation
(i.e., with fewer features). Inspired by [6] we adopt the Fast
Wavelet Transform (FWT) with Haar wavelets to transform a
time series data vector x. Wavelets capture the general trend
of the input data in an approximation component, while the
localized changes are kept in the detail components. Wavelet
representation describes the time series in both time and
frequency domain. However, before the FWT can be applied,
the time series must be upsampled to obtain N = 2L samples
(e.g., using linear interpolation): in our example, we transform
a 96-dimensional original time series vector x to a 128-
dimensional upsampled vector xU. Next, we apply a FWT
transformation Wψ , to obtain xW, describing the variations
at different temporal scales (frequencies) (d0, . . . , dL−1) and
a constant approximation term c0. At each scale dj , the data

3As pointed out before, if one really wants to specify the number of clusters
exactly, we can still accommodate that.

4Note that also the FTW features can be calculated independently for each
daily pattern and thus in parallel.

is observed with a finer resolution (at higher frequency), i.e.,
in 2j points. Thus, we have [6]:

Wψ : RN → RN ,xU → xW , (c0, d0, . . . , dL−1) (12)

where dj , (dj,0, . . . , dj,2j−1) (13)

From the FWT result xW, we extract the coefficients for each
scale and calculate the energy therein to obtain a feature
vector f = (f0, . . . , fL−1) (i.e., the “absolute contributions”
representation of [6]):

fj , ||dj ||2 j ∈ {0, 1, . . . , L− 1} (14)

Thus, detailed timing information is removed, and the feature
vector dimensions are reduced (in our example from N = 96
for x, to only L = 7 for f ). An important consequence of
disregarding the approximation term c0 is that the features
will be invariant to vertical shifts of the load patterns (i.e.,
adding/subtracting a constant value to/from the whole load
pattern time series) — still, if the application so requires, the
approximation term of the wavelet coefficients can also be
included, leading to a feature vector f ′ = (c0, f0, . . . , fL−1).
Finally, we perform range normalization, i.e., from f to a
normalized f N with each f N

j ∈ [0, 1], before using them as
input to the clustering algorithm.

B. Stage 1: Typical load patterns per user
The first stage comprises two steps: (i) clustering of the

daily patterns of individual customers, and (ii) selection of
representative patterns (to be used as input for Stage 2).
In a certain sense this step corresponds to a data driven
unsupervised alternative to the a priori definition of loading
conditions and derivation of typical load patterns.

1) Individual user clustering: This stage treats each cus-
tomer individually, i.e., takes as input the dataset of daily
load patterns from a single consumer (which is assumed to
have been preprocessed to extract the features and prepare for
clustering as laid out in Section III-A). Clustering is performed
using the g-means algorithm. Note that individual customers
can easily be clustered independently and in parallel. Loading
conditions can be determined from these results, and used as
selection criteria for stage 2 inputs.

2) Selecting representative patterns: We will use selected
representative patterns as input for stage two. In [5] the
cluster centroid from the largest cluster is chosen in the
context of setting tariffs. Instead, we have chosen to select
a representative pattern from each of the user’s clusters to
keep as much information as possible, and thus represent
a user by a set of patterns rather than just a single one.
We thus have a more detailed and complete view of a user
compared to [5]. Further, we still adopt the wavelet features for
such a representative pattern, as opposed to the time domain
representation used by [5].

C. Stage 2: Overall load pattern clustering
The input for stage 2, after range normalization, is clustered

using the same approach as in stage 1 of the algorithm. The
resulting clusters group similar patterns from multiple users,
after which each user can be represented in terms of how many
of his day patterns belong to what global cluster.
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Fig. 2. The clusters as found in Stage 1 for a single user, with α = 0.01%.

IV. EXPERIMENTAL RESULTS

We evaluate the two-stage load profiling algorithm on a
dataset covering one year of 15 min resolution power con-
sumption measurements at Belgian user connection points
in the low voltage distribution network. After filtering out
customers that did not have a full year of data (e.g., equipment
failures, or because the smart meters were installed later in
the year), we retained a set of 244 users (that include both
residences as well as small businesses, e.g., shops).

In Section IV-A we analyze stage one of the algorithm
in detail, in terms of (i) number of clusters per customer,
(ii) wavelet vs time domain features, and (iii) k-means vs
g-means. In Section IV-B we report cluster quality metrics
for the complete two-stage algorithm output. We recall that
cluster quality metrics are those defined in Section II-C.

A. Stage 1: Typical load patterns on a per user basis

1) Example user: Figure 2 shows an illustrative result of
the clusters obtained after stage one of the algorithm using a
significance level α = 0.01% in the g-means algorithm: this
user exhibits three distinct patterns. Choosing larger values for
α will result in more clusters and thus a more detailed view,
however low values are useful to determine the general trends
as we do here. The first cluster contains load patterns without
much activity (e.g., vacation): low consumption with few
peaks. Although the peaks occur at different times, the pattern
is similar. This demonstrates the time invariance built into
our wavelet features. The second cluster groups the general
demand patterns of the household. The third group comprises
patterns that exhibit high demand around midday, which
we found to occur primarily on Wednesdays in spring and
summer.5 Finally, we point out that the “average pattern” (i.e.,
the cluster centroid as often used by others) obviously has a
fairly smooth curvature and thus would not be representative of
any single real pattern (including our “representative pattern”),
which is more spiky.

2) Number of clusters per user: One of the benefits of
g-means is that it automatically determines the number of
clusters, which will depend on the setting of the significance
level α (lower α means fewer clusters). Figure 3 and Table I
show the histogram and average of the number clusters per

5This possibly indicates a family with children home on Wednesday, yet
we do not have metadata asssociated with the households, so this is mere
speculation.
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Fig. 3. Histograms of cluster sizes per user (obtained after stage 1) for
different significance level parameter values α used by the g-means algorithm:
the y-value is the number of users (out of the 244) that exhibit a number of
clusters amounting to the x-value. (Note that the Y-axes have different ranges
for different α.)

Table I
AVERAGE NUMBER OF CLUSTERS PER USER OBTAINED AFTER stage 1.

significance level α
15% 10% 5% 2.5% 1% 0.01%

Wavelet 28 21 15 12 10 6
Time 54 41 27 20 14 6

user for varying α. These results also compare the number of
clusters among both wavelet based and time domain features.

As intuitively expected, using time series features typically
results in more clusters per user, given that wavelet represen-
tations incur some time shift insensitivity (as was our aim) and
inherently have lower dimensionality. But for decreasing α, the
distributions of the number of clusters per user converges for
both feature representations and almost coincide for α = 0.01.

3) Comparison between time and wavelet based clustering:
We now analyze the difference between using time series
features vs wavelet based features. We have just shown that
the number of clusters obtained with g-means and a given
α may lead to significantly different number of clusters for
wavelet vs time domain features (Fig. 3). Thus, we will
compare clustering results with the same number of clusters k
to focus on the influence of the data representation. We adopt
the approach discussed in [29] for comparing results obtained
from different feature sets.

We proceed as follows, for each feature set individually:
(i) we first use g-means algorithm using different values for
the significance level α to determine the number of clusters
for each user, and then (ii) use these cluster counts as input
for the k-means algorithm. We then calculate the cluster
quality metrics over each stratum of user profile clusters with
k clusters (where a particular cluster may be the result of
different α for different users), where profiles are represented
in the time domain (to allow direct comparison of the metric
for time- vs wavelet based clusters). Figure 4 shows the
average performance for user profile clusters with the same
k, for both feature types. The time series based features lead
to the best result (i.e., lower values for the evaluation criteria).
This should be no surprise because the evaluation criteria
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Fig. 5. Histograms comparing the cluster quality indicators for the g-means
and k-means algorithm. The y-value of a bar represents the number of cases
where the quality indicator amounted to the x-value.

are designed for and calculated using time series data: the
distance measures in that domain penalize grouping time-
shifted patterns (as in wavelet based clustering). Nevertheless,
the quality metrics for wavelet based clusters demonstrate very
similar trends.

4) K-means vs. g-means: To compare the performance
of the g-means algorithm with the k-means algorithm6, we
proceed as follows: (i) we first cluster the load patterns of
a single user with g-means, and (ii) then take the number

6The results presented are the best solution over 100 distinct k-means runs
with random initializations. We validated that using k-means++ led to the
same results.

of clusters found by the g-means algorithm as input for
k-means. We calculate various cluster quality indicators for
both algorithms, over the clusters found per user. Figure 5(a)
shows the histogram of the cluster quality indicator values
over the whole user population for both g-means and k-means
algorithms, when using wavelet features. Figure 5(b) shows
the same for clustering with time domain features. We observe
that the results are very similar for both g-means and k-means,
independent of the features used. Still, the prior assumptions
made by the respective algorithms are different, thus results
are not exactly the same. The k-means algorithm assumes that
data points in each cluster are spherically distributed. More
generally, the g-means algorithm assumes a multi-dimensional
Gaussian distribution (while in practice testing that assumption
along the first principal component).

B. Stage 2: Typical load patterns of a user group

To analyze the complete two-stage algorithm, Fig. 6 shows
the ten largest clusters obtained from stage two, visualized in
the time domain. Performance metrics are listed in Table II
for different values of α. Cluster 8 could be considered a
commercial cluster (e.g., shop or office) because most con-
sumption occurs during typical office hours. The remaining
clusters correspond to patterns associated to different types of
residential customers.

1) Number of clusters: We first look at the final number of
clusters obtained after stage two, using wavelet based features
for clustering. Table II shows the number of clusters obtained
after stage one and two for different hyper-parameter choices,
using the same α for both stages of the algorithm. We used
the cluster centroids from the individual users as input data for
stage 2. Note that one may opt to use different significance
levels for stage 1 and stage 2: e.g., a high significance level
may be specified for stage 1 to maintain a more detailed view
of individual behavior. However, it is difficult to specify an
optimal choice for the significance level and therefore the
significance level should be chosen in function of the target
application of the clustering results.

2) Clustering performance evaluation: Table II provides
values for the evaluation criteria defined in Section II-C
for different choices of the confidence level α. We do not
provide a comparison to a time domain feature set because the
two-stage approach and g-means clustering algorithm would
make comparisons difficult (e.g., different number of clusters).
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Fig. 6. Ten largest stage two (α = 1%) clusters visualized in time domain, normalized to emphasize load pattern shape.

Table II
PERFORMANCE INDICATORS OF THE TWO-STAGE ALGORITHM USING WAVELET BASED FEATURES.

# Clusters Cluster Quality Metric for Stage 2
α Stage 1 Stage 2 J MIA CDI SMI DBI WCBCR

15.00% 7045 476 0.017 0.050 0.269 0.815 0.502 0.002
10.00% 5486 291 0.020 0.054 0.299 0.801 0.505 0.006

5.00% 4261 175 0.025 0.057 0.327 0.795 0.519 0.016
2.50% 3523 112 0.028 0.058 0.350 0.795 0.515 0.041
1.00% 2892 112 0.027 0.055 0.338 0.800 0.490 0.034
0.01% 1775 68 0.033 0.058 0.334 0.821 0.495 0.060

However, the results presented in Section IV-A3 provide more
information on the impact of feature extraction and selection.

Note that the absolute values of various performance metrics
for the global representative pattern clusters are lower (thus
better clusters, in terms of homogeneity and/or separation) than
for the per-user clusters (recall Fig. 5(a)). A possible reason
is that the representative patterns (i.e., cluster centroids from
stage 1) that we cluster in stage 2 are more smooth: they
exhibit lower variance as opposed to the single user original
patterns.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a two-stage approach for clustering
daily load patterns of a group of low voltage distribution
grid customers: (i) first cluster similar daily load patterns
per user to find each user’s typical daily patterns, (ii) then
cluster the complete set of typical user patterns over all users
together. We propose to perform the clustering in a space
of lower dimensionality (than the original time domain) by
transforming the time series data using fast wavelet transfor-
mation. In addition, we advocate for the use of the g-means
clustering algorithm rather than the popular k-means (e.g., with
optimized initialization, such as k-means++).

We apply it on a set of load patterns from individual users
— as opposed to earlier work using a similar (single phase)
strategy, that considered aggregated consumption patterns [6].
(Note that our case forms a more challenging task because
of the larger variety and variability in load patterns.) This
analysis of power consumption of individual customers can be
used to provide feedback on, e.g., energy consumption, tariffs
selection, and load forecasting (e.g., for demand response).
The main benefits of our approach can be summarized as:

• The clustering process is entirely unsupervised and thus
does not need the a priori definition of a representative
day or mean day as suggested by other authors [5].
Moreover, the strategy for selecting the patterns to cluster
in stage 2 (e.g., mean profiles per stage 1 cluster versus
an individual representative one) can be adapted to the
specific application.

• The two-stage approach leads to a more scalable system.
Stage 1 can be performed in parallel for each user,
and stage 2 operates only on representative data from
stage one, rather than the complete consumption data
of all customers: alternative methods instead execute a
clustering algorithm on the full dataset.

• That scalability of the clustering step is also improved by
the feature dimension reduction (from N to lgN , e.g.,
from 96 time measurements per day to a 7-dimensional
vector) through fast wavelet transformation. An additional
benefit thereof is that the proposed transformation results
in grouping of similar patterns, even if they are slightly
time-shifted.

• By using g-means (instead of, e.g., k-means++), the num-
ber of clusters is automatically picked based on setting
an intuitive7 parameter, the significance level (α) for the
statistical test used by the g-means algorithm. (Yet, the
clustering algorithm can still be applied to obtain a given
number of K clusters as well.)

The contribution of our work also pertains to studying the

7We note that in practice, it may take some experimental tries to determine
the most suitable α. Post hoc inspection of the results, i.e., of how “similar”
the patterns within individual clusters are, and/or of the number of clusters
obtained may be necessary to qualitatively validate the clusters are meaningful
for the application at hand.
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impact of the wavelet representation (vs. the original time
domain data) and the g-means algorithm (vs. k-means):
• The results of using wavelet based features show the

same trend compared to clustering in the time domain,
despite the strong dimensionality reduction (e.g., with
a factor of more than 10×, from 96 to 7). We have
confirmed this both qualitatively and quantitatively. (For
the latter, we stress that in absolute values, metrics
are calculated in the time domain, which penalizes the
insensitivity to temporal shifts as exhibited by our wavelet
representation: that results in lower absolute values of the
performance metrics [24].)

• The cluster quality metrics from the the g-means algo-
rithm’s clusters show similar distributions and values as
those of k-means clusters. Thus, g-means proves to be
a viable alternative, with a more flexible and intuitive
configuration (cf. the significance level α).

Future work comprises incorporating the proposed two-
stage approach into demand response (DR) applications, e.g.:
• Improved load forecasting of individual customers and/or

a group of customers (taking the cluster analysis as input).
• Detect and predict flexibility in power consumption, to

analyze the potential of DR and eventually exploit it.
(A starting point would be taking the insights in typical
consumption patterns from the clustering analysis, e.g.,
to compare “business-as-usual” behavior with the effect
of adopting a DR program.)

• Automatically learn flexibility, from minimally intrusive
measurement data, reducing or even eliminating the need
for manual user input (e.g., avoid users to have to explic-
itly indicate flexibility through manual configuration).
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