Introduction – Chris Develder

- PhD, Ghent University, 2003
 - "Design and analysis of optical packet switching networks"

- Professor at Ghent University since Oct. 2007
 - Research Interests: smart grids (optimization/scheduling algorithms for DSM/DR; data analytics), information retrieval/extraction (e.g., knowledge base population, event relations in news archives); optical networks (dimensioning, resilience schemes, ILP)
 - Visiting researcher at UC Davis, CA, USA, Jul-Oct. 2007 (optical grids)
 - Visiting researcher at Columbia Univ., NY, USA, 2013-14 (IR/IE)
- Industry Experience: network planning/design tools
 - OPNET Technologies (now part of Riverbed), 2004-05
- More info: http://users.atlantis.ugent.be/cdvelder

FACULTY OF ENGINEERING AND
ARCHITECTURE

Smart grid algorithms: Knowing and controlling power consumption

Chris Develder, Kevin Mets, Matthias Strobbe

Ghent University – iMinds Dept. of Information Technology – IBCN

Smart Grids

Power grid structure

Transmission network (operated by TSO)

Distribution network (operated by DSO)

Outline

1. Introduction

Part I: Algorithms for DSM/DR

- 2. Example 1: Peak shaving
- 3. Example 2: Wind balancing
- 4. Tools to study smart grid cases

Part II: Data analytics

5. Clustering smart metering data

K. Mets, R. D'hulst and C. Develder, "Comparison of intelligent charging algorithms for electric vehicles to reduce peak load and demand variability in a distribution grid", J. Commun. Netw., Vol. 14, No. 6, Dec. 2012, pp. 672-681. doi:10.1109/JCN.2012.00033

Example case study: EV charging

- Research questions:
 - 1. Impact of (uncontrolled) EV charging in a residential environment?
 - 2. Minimal impact on load peaks we could theoretically achieve?
 - 3. How can we minimize the impact of EV charging in practice?

Impact of EV charging

- Sample analysis for 150 homes, x% of them own a PHEV
- BAU = maximally charge upon arrival at home

Controlling EV charging?

Objectives:

- Reduce peak load
- Flatten (total) load profile (= reduce time-variability)
- Avoid voltage violations

Smart charging algorithms

Quadratic Programming (QP)

- Offline algorithm
- Planning window
- "Benchmark"
- Three approaches:
 - Local
 - Iterative
 - Global

Multi-Agent System (MAS)

- Online algorithm
- No planning window
 → current time slot info only
 (but EV bidding changes when charging deadline approaches)
- "Realistic"
- Single approach

Reference scenario: Uncontrolled charging

Smart charging: QP

Case study

63 Households

- Randomly distributed over 3 phases
- Spread over 3 feeders

Electrical vehicles

PHEV: 15 kWh battery

Full EV: 25 kWh battery

 Randomized arrivals (~5pm) and departures (~6am)

Scenario	PHEV 3.6 kW	PHEV 7.4 kW	EV 3.6 kW	EV 7.4 kW
Light	4	3	2	1
Medium	10	10	5	4
Heavy	17	16	7	7

Results (1) – Load profiles

Results (2) – Load peaks & variability

	Peak Load 📐			
Scenario	QP1	QP2	QP3	MAS
Light	29.62%	32.16%	32.16%	32.00%
Medium	53.84%	58.73%	58.73%	53.19%
Heavy	63.76%	70.00%	70.00%	54.04%

	Standard deviation \			
Scenario	QP1	QP2	QP3	MAS
Light	35.24%	41.63%	41.94%	25.29%
Medium	55.01%	60.50%	61.88%	34.91%
Heavy	60.22%	63.82%	65.84%	38.80%

$$QP1 = local$$
 $QP2 = iterative$ $QP3 = global$

Results (3) – Voltage deviations

Table 6. Average number of 5 minute time slots (out of the 288 time slots over the course of the considered one day period) during which voltage deviations

exceeding 10% are observed.

Scenario	BAU	QP1	QP2	
Light	22.17	3.90	3.31	
Medium	38.01	4.52	5.32	
Heavy	45.51	3.92	9.30	

Note: $10 \text{ slots} \sim 3.4\%$ of the time

Not solved entirely!

(No explicit part of objective function!)

Table 7. Average and maximum magnitude of voltage deviations.

	BAU		QP1		QP2	
Scenario	AVG	MAX	AVG	MAX	AVG	MAX
Light	20%	29%	13%	19%	13%	18%
Medium	29%	60%	13%	22%	13%	20%
Heavy	37%	65%	12%	20%	14%	22%

Outline

1. Introduction

Part I: Algorithms for DSM/DR

- 2. Example 1: Peak shaving
- 3. Example 2: Wind balancing
- 4. Tools to study smart grid cases

Part II: Data analytics

5. Clustering smart metering data

Distributed generation (DG)

Distributed generation (DG)

- Motivation for DG
 - Use renewable energy sources (RES) ⇒ reduction of CO₂
 - Energy efficiency; e.g., Combined Heat and Power (CHP)
 - Generation close to loads
 - Deregulation: Open access to distribution network
 - Subsidies for RES
 - ...

Technologies

- Wind turbines
- Photovoltaic systems
- CHP (based on fossil fuels or RES)
- Hydropower
- Biomass

Technical impact of DG?

Wind turbines

- Horizontal axis
 - Upwind vs downwind
 - Needs to be pointed into the wind
 - High rotational speed (10-22 rpm)
 - Needs a lot of space (cf. 60-90m high; blades 20-40m)

Vertical axis

- Omnidirectional
- No need to point to wind
- Lower rotational speed
- Can be closer together

E.g., http://www.inflow-fp7.eu/

Darrieus

Savonius

A typical wind profile

Case Study

K. Mets, F. De Turck and C. Develder, "Distributed smart charging of electric vehicles for balancing wind energy", in Proc. 3rd IEEE Int. Conf. Smart Grid Communications (SmartGridComm 2012), Tainan City, Taiwan, 5-8 Nov. 2012, pp. 133-138. doi:10.1109/SmartGridComm.2012.6485972

Wind balancing with EV charging

Supply/demand imbalance

- Inefficient use of RES
- Imbalance costs
- High peak loads

High peak loads

Undesirable!

Distributed control

Electric vehicle model

- Minimize disutility:
 - Charging schedule variables: $x_t^k = \text{charging rate for } \underline{\text{user } k}$ at $\underline{\text{time } t}$
 - Spread demand over time, preferably at the "preferred charging rate" (p_k) , which is the maximum supported charging rate in our case
 - Model behavior/preferences of the subscriber (β_k)

$$D_t^k \left(x_t^k \right) = \beta_k^t \cdot \left(p^k - x_t^k \right)^2 \tag{1}$$

Charging schedule for a window of T time slots: Minimize disutility

$$\sum_{t=1}^{T} D_t^k \left(x_t^k \right)$$
 Respect energy Requirement:
$$\sum_{t=1}^{T_k} x_t^k = E_k$$
 (3)

$$\sum_{t=1}^{n} x_t^k = E_k \tag{3}$$

Vehicle can only be charged between arrival time S_k and departure time T_k

Balance Responsible Party (BRP) Model

- Imbalance Costs
 - Minimize imbalance costs: Penalty cost if supply ≠ demand
 - Supply: Wind energy (w_t)
 - Demand: Total of all electric vehicles (d_t)
 - Tuning parameter: α
 - Cost function: $C_t\left(d_t
 ight) = lpha \cdot \left(w_t d_t
 ight)^2$
- For a planning window of T time slots, minimize: $\sum_{t=1}^{T} C(d_t)$

Centralized Optimization Model

- Based on social welfare maximization
 - Minimize imbalance costs
 - Minimize user disutility
- Objective: $\min_{d_t, x_t} \sum_{t=1}^T C(d_t) + \sum_{k=1}^K \sum_{t=1}^T D_t^k(x_t^k)$

Drawbacks:

- 1) Privacy: sharing of cost & disutility functions, arrival/departure info, ...
- 2) Scalability

Global constraints:

$$d_t = \sum_{k=1}^{K} x_t^k, \forall t \in \{1, 2, ..., T\}$$

- Local constraints:
 - BRP: supply < limit
 - EV: energy & time constraints

Distributed optimization model

• Move demand-supply constraint into objective, w/ Lagrange multiplier λ_t

$$\sum_{t=1}^{T} C\left(d_{t}\right) + \sum_{k=1}^{K} \sum_{t=1}^{T} \left(D_{t}^{k}\left(x_{t}^{k}\right) + \lambda_{t}\left(x_{k}^{t} - d_{t}\right)\right)$$
original objective constraint

• Notice: Objective function is separable into K+1 problems that can be solved in parallel (assuming λ_t are given)

$$\begin{array}{c} \textbf{1 BRP} \\ \textbf{problem} \end{array} \underbrace{\sum_{t=1}^{T} \left(C\left(d_{t}\right) - \lambda_{t} d_{t} \right)}_{} + \underbrace{\sum_{k=1}^{K} \sum_{t=1}^{T} \left(D_{t}^{k}(x_{t}^{k}) + \lambda_{t} x_{t}^{k} \right)}_{} \underbrace{K \, \text{subscriber}}_{} \\ \textbf{problems} \\ \end{array}$$

Iteratively update pricing vector...

Distributed optimization model scheme:

- 1. Coordinator distributes virtual prices
- 2. BRP solves local problem
- 3. Subscribers solve local problem \(\)
- 4. Coordinator collects schedules:
 - BRP: $d^i = [d^i_1, d^i_2, ..., d^i_T]$
 - EVs: $x^{k,i} = [x_1^{k,i}, x_2^{k,i}, ..., x_T^{k,i}]$
- 5. Coordinator updates virtual prices:

$$\lambda_t^{i+1} = \lambda_t^i + \gamma \cdot \left[\sum_{k=1}^K x_t^{k,i} - d_t^i \right]$$

6. Repeat until demand = supply

Case study: Assumptions

- Wind energy supply ≈ EV energy consumption
 - Energy supply = 6.8 MWh
- 100 Electric vehicles
 - Battery capacity: 10 kWh battery
 - Maximum charge power: 3.68 kW
 - Arrivals & departures: statistical model
 - Charging at home scenario
- Time
 - Simulate 4 weeks
 - Time slots of 15 minutes
 - Planning window of 24 hours

Case study: Algorithms

Uncontrolled business as usual (BAU)

- EV starts charging upon arrival
- EV stops charging when state-of-charge is 100%
- No control or coordination

Distributed algorithm

Executed at the start of each time slot

"Ideal world" benchmark

- Offline all-knowing algorithm determines schedules for ALL sessions
- Objective:

$$\min \sum_{t=1}^{S} \left(w_t - \sum_{k=1}^{K} x_t^k \right)^2$$

Results: Uncontrolled BAU vs. Distributed

—Wind energy

Time

Results: Distributed vs. Benchmark

Results: Energy Mix

Contribution from RES

Reduction of CO2 emissions

Renewables: 7.4 CO2 g/kWh Non Renewables: 351.0 CO2 g/kWh

- Total energy consumption ≈ 6.8 MWh
- Substantial increase in the use of renewable energy
- Reduced CO₂ emissions

Conclusions

- Objective: balance wind energy supply with electric vehicle charging demand
- Method: Distributed coordination algorithm where participants exchange virtual prices and energy schedules
- Performance: Distributed coordination significantly better than BAU, close to "ideal world" benchmark
 - Increased usage of renewable energy sources
 - Reduction of CO₂ emissions

Outline

1. Introduction

Part I: Algorithms for DSM/DR

- 2. Example 1: Peak shaving
- Example 2: Wind balancing
- 4. Tools to study smart grid cases

Part II: Data analytics

5. Clustering smart metering data

K. Mets, J. Aparicio and C. Develder, "Combining power and communication network simulation for cost-effective smart grid analysis", IEEE Commun. Surveys Tutorials, Vol. PP, 2014, pp. 1-26. doi:10.1109/SURV.2014.021414.00116

Problem Statement

- Simulators are already used in the two domains:
 - **Communication** network engineering
 - **Power** engineering

- In a co-simulation approach, power & communication are loosely coupled
 - Requires careful synchronisation
 - Drawback: no integration of tools

Challenge for co-simulation: Synchronisation

- Stands for a round of power system dynamic simulation
- Stands for a communication network event

Our proposed solution

Integrated (combined) power grid and communication network simulation

→ Large scale smart grid simulations

Outline

1. Introduction

Part I: Algorithms for DSM/DR

- 2. Example 1: Peak shaving
- 3. Example 2: Wind balancing
- 4. Tools to study smart grid cases

Part II: Data analytics

5. Clustering smart metering data

K. Mets, F. Depuydt. and C. Develder, "Two-stage load pattern clustering using fast wavelet transformation", IEEE Trans. Smart Grid, 2015, to appear

Clustering smart metering data

- Goal: Identify different types of daily power consumption time series
 - 1. Single household: distinct types of daily load patterns?
 - Over whole population: distinct groups of users?

Why?

- Demand analysis (nation-wide, distribution substations, ... single houses)
- Customer segmentation, tariffs, billing...
- Power system planning
- Load forecasting
- Demand response programs
- ...

Two-stage load pattern clustering

Core ideas

- Hierarchical scheme
- Wavelet transformation:
 - Dimensionality reduction
 - Invariance/tolerance to time shifting

G-means (instead of k-means) [Hamerly2003]

Sample result: Single user

For alpha = $0.01\% \rightarrow low number of clusters$

Note: representative ≠ arithmetic mean

Time vs wavelet domain: Number of clusters

Time vs wavelet domain: Cluster quality (in time domain)

Conclusions

- Totally unsupervised clustering process
 - No a priori definition of 'typical day', groupings into weekday/weekend ...
 - Cluster quality not
- Note on scalability:
 - Stage 1 = executed per user (in parallel)
 - Stage 2 = number of profiles to cluster is limited, by reducing 'representative' profile
 - Vector space dimensionality is reduced by FWT (96 → 7 or 8 features)

Wrap-up

Summary

- Challenge: deal with renewable sources
- Demand response algorithms: initial feasibility studies
 - How close to "best" possible? scalable?
 - What are achievable benefits?
- Get insight in consumption/production: e.g., clustering as first step
- Quantify flexibility = amount of "shiftable" power + what time?
- What's next?

E.g., refine "disutility" from user; "imbalance" from business perspective; evaluate using real(istic) data...

- Can we <u>learn/predict</u> flexibility, e.g., from smart metering data?
- Can we infer <u>user behavior</u>, and from there (context-aware) preferences?
- Evaluate <u>business case</u> of flexibility?
- Convincingly demonstrate flexibility exploitation in the real world?

Thank you ... any questions?

Thank you ... any questions?

Chris Develder

chris.develder@intec.ugent.be

Ghent University – iMinds

