

FACULTY OF ENGINEERING AND
ARCHITECTURE

Time-varying resilient virtual network mapping for multi-location cloud data centers

Minh Bui¹, Ting Wang¹, Brigitte Jaumard¹, Deep Medhi² and <u>Chris Develder</u>³

CSE, Concordia University, Montreal, Canada
 CSEE, University of Missouri, Kansas City, MO, USA
 INTEC – IBCN, Ghent University – iMinds, Ghent, Belgium

Optical clouds

Optical networks crucial for increasingly demanding cloud services, e.g.,

- Computing:
 - High energy physics
 - Amazon EC2, Microsoft Azure
- Online storage:
 - Dropbox, Google Drive, etc.
- Collaboration tools:
 - MSOffice 365, Google Docs
- Video streaming:
 - Netflix, YouTube

C. Develder, et al., "Optical networks for grid and cloud computing applications", Proc. IEEE, Vol. 100, No. 5, May 2012, pp. 1149-1167.

Network virtualization

Physical network is logically partitioned in isolated virtual networks

Virtual Network Operators
 (VNO) operate logically
 separate networks

Physical Infrastructure
 Providers (PIP) have full control over infrastructure (fibers, OXCs)

J.A. García-Espín, et al., "Logical Infrastructure Composition Layer: the GEYSERS holistic approach for infrastructure virtualisation", in Proc. TERENA Networking Conference (TNC 2012), Reykjavík, Iceland, 21-24 May 2012.

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Resiliently provisioning virtual cloud networks

How to choose the virtual to physical mapping, such that

Services remain available in case of network failures

Bandwidth for providing services is minimal

Note:

- Anycast: requests coming from users can be served by any server
- Cloud services offered by VNO
- Cloud services run on top of PIP

B. Jaumard, A. Shaikh and C. Develder, "Selecting the best locations for data centers in resilient optical grid/cloud dimensioning (Invited Paper)", in Proc. 14th Int. Conf. Transparent Optical Netw. (ICTON 2012), Coventry, UK, 2-5 Jul. 2012.

Two proposed protection schemes:

This paper

M. Bui, B. Jaumard, and C. Develder, "Anycast endto-end resilience for cloud services over virtual optical networks" (Invited Paper), in Proc. 15th Int. Conf. Transparent Optical Netw. (ICTON 2013), Cartagena, Spain, 23-27 Jun. 2013.

Related work: Static traffic scenarios

- Traditional dimensioning (no virtualisation, no resilience):
 - Develder et al. 2009: Anycast, flexibility in choosing data center
- Resilient dimensioning problem:
 - Shaikh et al. 2011, Develder et al. 2013: scalable method, no synchronization between working and backup DCs
- Routing cloud service requests and mapping a VNet to the physical infrastructure separately:
 - Lee et al. 2009, Yu et al. 2010: Survivable VNet embedding, but assume VNet is given
 - Jiang et al. 2012, Alicherry et al. 2012: Optimal server selection and routing of anycast services in the physical layer for intra- and inter-DC networks but no resilient network design in the virtual layer
- VNet planning problem:
 - Barla et al. 2012, Barla et al. 2013: using mixed integer linear programming, but no synchronization between working and backup DCs
 - Bui et al. 2013 (ICTON): first model that incorporates synchronisation path, but still static traffic!

Problem statement

- Study time-varying traffic:
 Traffic pattern changes from one period (t) to the next (t+1)
- Key research question: Benefit (in network resource usage) of changing routes for legacy traffic, i.e., that continues from t to t+1?
 - Does it help to only change backup paths?
 - Or do we need to change working as well?
 - For all legacy traffic?

Problem statement

- Cloud network topology: G = (V, L), with V = nodes, L = links
- Locations of the data centers, $V_D \subseteq V$
- Set of service requests, K partitioned into
 - K^{LEG} : requests in period t, that continue into the next t+1
 - K^{ADD} : requests in subsequent period t+1

and characterized by

- v_k : source of service
- Δ_k : bandwidth requirement in period t
- Services originating from the same source are aggregated
- Routing of the requests in period t: K^{LEG}

Given:

- Find: Choice of primary and backup $\underline{DC locations}$ for each service in period t+1Primary, backup and synchronization \underline{paths} in period t+1

- Such that:

 Total network bandwidth utilization is minimized

 KLEG are (i) unchanged, (ii) only changed for backup, (iii) freely changed

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Solution: Column generation model

- Column generation idea:
 - Many different "configurations"
 - Start from a restricted subset of such "configurations"
 - Iteratively find additional configurations that reduce the cost:
 - (1) Restricted Master Problem (RMP)
 - (2) Pricing Problem (PP) to find new configs
- A configuration =
 - Working path
 - Backup path
 - Sync path between the primary & backup DCs

Column generation solution algorithm

Restricted Master Problem (RMP)

$$\min \sum_{\ell \in L} \frac{\beta_{\ell}^{\mathrm{W}} + \beta_{\ell}^{\mathrm{B}} + \beta_{\ell}^{\mathrm{S}} \cdot \|\ell\|}{\mathrm{BW}_{\ell}} + \mathrm{PENAL}^{\mathrm{DISRUPT-B}} \sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG-BS}} + \mathrm{PENAL}^{\mathrm{DISRUPT-W}} \sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG-W}} + \sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG-W}}$$

$$\sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG-W}} + \sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG-W}}$$

$$\sum_{k \in K^{\mathrm{LEG}}} x_{k}^{\mathrm{LEG}}$$

- Assure all requests are granted
- Count legacy changes x^{LEG_BS}, x^{LEG_W}
- Compute W, B, S bandwidths
- Check capacity constraints on data centers

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Case study

- Topology:
 - 24 nodes, 43 links
 - Data centers in ☆:
 CA, WY, TX, OH
- Traffic:
 - **Total** of 20...80 requests (same for t and t+1) with Δ_k in [0,1] units; synchronisation fraction $\delta_k = 0.1$
 - Period t: 30% region 1, 50% region 2, 20% region 3
 - Period *t*+1:

Scenario	Region 1	Region 2	Region 3		
40% legacy	20% drop	30% drop	10% drop		
	20% add	10% add	30% add		
60% legacy	10% drop	20% drop	10% drop		
	10% add	10% add	20% add		
80% legacy	10% drop	10% drop	-		
	10% add	-	10% add		

Results: Net total bandwidth savings?

- Only changing backup (II,----) does not save much; changing also working (III, - - -) does
- 2. Capacity savings are realized through sharing of backup
- 3. Savings obviously diminish with decreasing legacy fraction $(L \rightarrow R)$

Results: Change all legacy routes?

Of the legacy requests, we typically change >50%, but only about 20% need to reroute the working path

Legacy	[*] I Path changes		Total o	$lpha_{ ext{\tiny LEG}}$ over					
traffic			30	40	50	60	70	80	all demands
80%	Scen. II – Changed B and/or S	9.6	12.8	16.6	17.2	20.6	22.6	22.8	46.73%
	Scen. III – Fixed W, changed B/S	6.2	8.2	12.4	16.8	16.2	18.0	25.6	37.08%
	Scen. III – Changed W	3.2	3.8	6.8	5.6	10.0	12.8	7.8	18.14%
	Scen. III – Total changes	9.4	12.0	19.2	22.4	26.2	30.8	33.4	$\boxed{55.22\%}$
60%	Scen. II – Changed B and/or S	8.0	10.0	12.2	15.6	17.4	19.6	15.2	50.25%
	Scen. III – Fixed W, changed B/S	4.8	6.2	8.8	12.2	11.4	11.8	16.0	34.98%
	Scen. III – Changed W	3.0	3.0	5.8	6.0	9.4	11.4	6.6	21.83%
	Scen. III – Total changes	7.8	9.2	14.6	18.2	20.8	23.2	22.6	56.82%
40%	Scen. II – Changed B and/or S	5.8	7.0	9.4	12.2	10.6	13.4	11.6	54.12%
	Scen. III – Fixed W, changed B/S	3.0	3.6	6.8	7.4	7.2	7.6	11.2	34.16%
	Scen. III – Changed W	1.8	2.4	4.2	3.6	5.8	6.0	4.4	20.87%
	Scen. III – Total changes	4.8	6.0	11.0	11.0	13.0	13.6	15.6	55.03%

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

- 1. Introduction
- 2. Problem statement
- 3. Model & solution approach
- 4. Case study
- 5. Conclusions

Conclusions

- Scalable column-generation based method for resilient VNet planning of time-varying traffic
- Our case study shows that:
 - Changing legacy traffic from one period to the next only really saves if we allow changing the working paths
 - ... but we need only to change around 20% of them
- Future work:
 - Optimization of choice of DC locations (e.g., 'scattered' vs 'paired', see ICTON 2013)
 - Extensive studies of different traffic patterns, over multiple periods

Thank you ... any questions?

