
Automatic fine-grained area detection for thin client systems

Bert Vankeirsbilcka, Dieter Verslypea, Nicolas Staelensa, Pieter Simoensa,b,
Chris Develdera, Bart Dhoedta, Filip De Turcka, Piet Demeestera

aGhent University - Department of Information Technology (INTEC), IBBT
Gaston Crommenlaan 8, bus 201, 9050 Gent, Belgium

bGhent University College - Department INWE, Valentyn Vaerwyckweg 1, 9000 Gent, Belgium

Abstract

The widespread availability of cloud infrastructures is fueling new interest in the thin client computing paradigm.
However, current thin client protocols are not designed to handle new content types as often encountered in state-of-
the-art applications (e.g. multimedia editing, gaming, multimedia playback). Conveying this content using traditional
thin client protocols typically results in a combination of excessive resource usage and low visual quality. In this
paper, we propose an approach where the content type can vary for different portions of the screen (e.g. combination
of static text and video). Once the different content types have been detected, each of them can be encoded using the
most appropriate algorithm. We present two algorithms for this runtime detection. The first algorithm is operating
at the pixel level, thereby being independent of the actual thin client protocol used. The second algorithm assumes
the presence of a rectangle-based thin client protocol (such as the popular VNC protocol), trading independence
for improved performance. The appropriate parameter settings for these algorithms are experimentally determined.
Furthermore, their influence is studied in detail in terms of detection accuracy, and the time to perform the algorithms
is analysed. Accurate hints are derived within less than 10 ms, indicating the high potential of this approach for use
in next generation thin client systems.

Keywords: Thin Client, Area Detection, Encoding, Differentiation, Content classification

1. Introduction

The thin client computing paradigm consists of
offloading as many resource intensive operations
as possible to a remote server and limits the client
functionality to forwarding user events to the server and
displaying the returned graphical content. The server
handles complex computations and remote storage.
The benefits from this approach are numerous and
well-known [1], including decreased exploitation cost,
prevention of data loss, shared hardware resources,
easier data exchange, universal access of applications,
easier software update management and maintenance,
etc. Clearly, the currently witnessed increase in cloud
deployment is a strong enabler to leverage the function-
alities and possibilities of the constrained devices such
as tablets and smartphones, used to access these cloud
infrastructures. Hence, a cloud architecture based on
thin client computing can provide access to data and

Email address: Bert.Vankeirsbilck@intec.UGent.be
(Bert Vankeirsbilck)

applications from any place, at any time with any device
and most importantly with unhampered user experience.

Given the current network connectivity and thin
client protocols to convey information between client
and server, the delivery of dynamic visual content
such as games and video is often an issue. Thin client
protocols are typically optimized for delivering static
content, and adopting the same approach for deliver-
ing dynamic content results in excessive bandwidth
usage and mediocre visual experience. An approach
frequently adopted in commercial thin client protocols
consists of redirecting multimedia content directly to
the client device for local decoding. The concept is
used in Microsoft Remote Desktop Protocol (RDP)
version 7 [2] and the High Definition User Experience
(HDX) MediaStream feature in Citrix’ products [3].
Although this approach works well for supported video
formats, it is not applicable to applications that do not
use a video playback codec for their visualization (such
as games and visualization software).

Preprint submitted to Journal of Network and Computer Applications February 11, 2012

To alleviate these problems, we have previously
proposed a hybrid approach [4] that switches between
two modes of operation: the classic thin client mode
(suitable for static content) and a media streaming
mode (preferable for dynamic content). However, a
single encoding is used for the complete screen, leaving
substantial room for further improvement by applying
different encoding methods for different areas of the
screen.

The contributions of this article can be summarized
as follows. We first identify the gains (in terms of
bandwidth efficiency and visual quality) of differen-
tiating dynamic from static content on a fine-grained
scale, i.e. by applying an optimized encoding for each
display area. Secondly, two algorithms to perform
the detection of different content types are proposed
and evaluated in terms of accuracy and performance.
One algorithm purely operates at the pixel level which
is the lowest layer in the rendering stack, thus being
highly system independent. The second algorithm uses
higher level information from a thin client protocol
(more specifically information on rectangles to be dis-
played), assuming the availability of this information,
thereby trading system independence for performance
(specifically in terms of analysis speed and runtime
overhead). Finally, these algorithms, together with their
appropriate parameter settings, are thoroughly studied
to highlight the potential of these novel approaches for
next generation thin client systems.

The remainder of the manuscript is organized as
follows. Section 2 presents an overview of related
research efforts addressing fine-grained area detection
for thin client systems. In Section 3, we propose a
generic architecture and building blocks to enable
the classification of screen content. Two strategies to
differentiate dynamic from static areas are discussed in
Section 4. Section 5 presents results obtained through
experiments with proof-of-concept implementations.
Conclusions are summarized in Section 6.

2. Related work

In a thin client system, remotely executing applica-
tions heavily use the server side graphics Application
Programming Interface (API) to render the content
they generate. Subsequently, this graphical information
is intercepted at a particular level in the visualization
stack, compressed, encapsulated and transmitted over

the network. The problem with this approach is that the
application output is already processed for visualization
and the server side of the thin client protocol is unaware
of the exact nature of the generated graphics. This
leads to the fundamental problem that the encoding
of the content is performed agnostic of the type of
graphics that is displayed. The most visible result of
this approach is the encoding of embedded video in a
pixel-format, leading to excessive bandwidth usage and
mediocre playback quality. The performance and issues
with classic thin client computing protocols have been
investigated thoroughly in [5, 6, 7], indicating the need
for designing intelligent thin client protocols given that
the user experience depends on network latency and
bandwidth.

The problem with multimedia has been partly ad-
dressed in newer thin client protocol versions. Virtual
Network Computing (VNC) [8] and FreeNX [9] include
audio support. Microsoft RDP 7 and Citrix provide a
similar solution (i.e. Windows Media Player redirection
and HDX MediaStream respectively) by intercepting
video files at the OS level and forwarding (possibly
after transcoding) this content directly to the client for
playback. However, for other dynamic content that is
not rendered through a video codec (such as games),
the screen rendering must still happen at server side and
will cause a considerable burden on the network [10].
Red Hat’s SPICE protocol [11] mentions heuristic
identification of video streams to transmit them as
M-JPEG video streams, while Teradici PC over IP
(PCoIP) does feature detection of text, graphics and
video on screen and encodes these accordingly to save
bandwidth, as described in [12]. As these solutions are
proprietary, no further information on these algorithms
is available.

Previously [4] we have proposed a remote rendering
architecture that differentiates screen content such
that the whole screen area is either transmitted as a
video stream or through a classic thin client protocol
encoding. In the current article we extend this concept,
aiming at finer-grained detection of dynamic and static
regions, to enable encoding of parts of the screen as
classic thin client protocol encoding and others as a
video stream simultaneously.

Recent research [13] hooks into the Linux X server
and monitors X protocol messages, resulting in an OS
dependent strategy to differentiate video content from
static content. By correlating image drawing commands
(e.g. putImage) per application and monitoring their

2

frequency, complete applications are classified as
visually dynamic or static. The knowledge of these
application windows’ size and position on screen is
used to differentiate between regions in the screen. The
authors show that this approach is computationally ben-
eficial, but also take the assumption that the presence of
all dynamic content can be detected based on repeated
invocations of the putImage()-method. However, not
all applications rely on putImage() calls to render their
content (e.g. GPU assisted applications). In addition,
some applications also use putImage() to render static
content, more specifically to refresh large portions of
the display at high frequency to ensure fast updates
(e.g. in games). Our proposed system focuses on pixel
level analysis, where the actual screen content can be
more accurately classified. By performing this analysis
at the pixel level, independence on other platform
components (e.g. graphics API, underlying OS and type
of thin client protocol) is achieved.

Currently available standards concerning represen-
tation of scenes and meta-data formats have built-in
support for content type differentiation. The MPEG
standards support this differentiated content by offering
multiple encoding channels in their scene formats,
e.g. Binary Format for Scenes (BiFS) and Lightweight
Adaptive Scene Representation (LASeR), both part of
the MPEG-4 standard [14]. Thus, a thin client system
using MPEG streaming could be developed based on
the work presented in this paper.

The concept of thin client based cloud computing
is an active research area [15], and has been found
interesting for enabling games on resource constrained
devices [16, 17]. In the current paper we focus on an
important building block of such systems and fill a
crucial algorithmic gap to classify screen content for
optimizing user experience and bandwidth consump-
tion.

3. Hybrid encoding architecture overview

3.1. Content analysis component

Figure 1 presents the hybrid thin client encoding
architecture, with an analysis component steering the
encoding process. The analysis component retrieves
information from various sources in the thin client
server, as will be elaborated on further in this section.
Based on this information, hints are given to the thin
client encoder about the content type of individual

Applications

OS graphics API

Frame buffer

Hardware

Analysis

Thin Client

Protocol

Server Side

Thin Client

Protocol

Client Side

Network

Fig. 1: Hybrid encoding architecture.

components, such as parts of the screen that are text,
dynamic content, available in the client side cache [18],
vector graphics encoded or to be fetched at the client
side from another source or from the client hard drive.
The thin client protocol encoder subsequently fetches
the required input, encodes this content in the appro-
priate format according to the hints provided. Thus,
the thin client server continuously sends appropriately
encoded screen content to the client, while the analysis
component is responsible for configuring the size
and position of the differently encoded regions. The
analysis component operates independently from the
thin client encoder, for multiple reasons. First of all,
this approach allows for hysteresis in the analysis,
i.e. that the output of the algorithms can be held in
deliberation for a period of time until it stabilizes,
before reconfiguring the encoding parameters. The
decoupling also ensures that the analysis algorithms can
be used irrespective of the specific thin client protocol
actually used. Furthermore, multiple encoding threads
can be active at the same time, each taking care of the
encoding of one or more specific regions and operating
with its own dedicated parameters. For instance, an ad-
vanced analysis scheme could detect 3 regions of high
motion content with different encoding needs. Three
separate encoding threads could then be activated, with
settings adapted to the specific content of the regions,
e.g. one encoder operating at 60 fps allowing slight
quality degradation, and the other at 30 fps with perfect
quality. With the independent operation of analysis
and encoding, the analysis component could be set
to operate at 5 fps, implying that not each and every
frame is subject to detailed analysis. This can limit the
computational overhead of the overall system, keeping
resources available for the graphics encoding.

3.2. Overview of interception options

As depicted in Fig. 1, the content detection could re-
trieve information from all layers of the visualization
stack.

3

• At application level, the programmer could explic-
itly indicate when and where dynamic content is
generated. The information on this level is ex-
pected to be very accurate. However, relying on
this application level information would limit the
support for legacy applications since explicit in-
put from the application developer is needed. Fur-
thermore, (partially) hidden application windows
would need to be monitored, as an application is
generally unaware of window manager functional-
ity.

• The OS level provides a graphics API that is used
by applications to draw to the screen. Informa-
tion can be fetched about drawing methods to track
frequently updated graphics. As mentioned be-
fore, this route has been explored in case of the
Linux operating system [13], and although being
effective, it also has considerable drawbacks (more
specifically dependency on specific API calls and
operating system are introduced). More impor-
tantly, since the applications are not developed to
execute over a (possibly high latency) network,
they are often designed using a greedy updating
strategy (i.e. updates are generated at the highest
possible frequency, possibly leading to superfluous
updates). This is typically the case for visualiza-
tion software and games that tend to redraw the
content as fast as possible while it is being gen-
erated.

• At frame buffer level, the graphic information that
should be represented at client side is available
as pixel data, and is in fact the only true source
for analysis of the dynamics of the on-screen be-
havior. In the thin client server, a common op-
timization is to track the modified region so that
the transferred graphical update represents only
what has changed on the screen in comparison
with the previous update. The information can be
considered very low level, since it concerns raw
pixel information. While other interception points
have more condensed and meta-information-rich
formats, analysis on the frame buffer level has the
drawback of being computationally intensive. Fur-
thermore, there is possibly a tendency of overesti-
mating motion regions, given that small areas can
accidently be classified as motion content. The lat-
ter also tends to lead to fragmentation of detected
motion regions, causing the analysis complexity to
increase.

• At hardware level, one could monitor the area on

screen to which graphics support (e.g. GPU or
video decoding) is granted and decide that these ar-
eas are high motion, or hook into the hardware ren-
dering driver as in [19]. However, besides having
static applications with GPU support, the diversity
of existing hardware makes universal application
of such an algorithm unfeasible in practice.

• Another source of information that can be taken
into account for deciding on the encoding mode
is that of network statistics. As reported in pre-
vious work [4], miscategorization of screen con-
tents leads to an increased usage of network band-
width and computing resources. At network level,
a straightforward strategy would be to switch
between streaming and classic thin client mode
based on bandwidth measurements, but this only
provides aggregate information on the complete
screen instead of identifying particular regions.

In conclusion, depending on the source of the informa-
tion the analysis component bases its decision on, the
hinting accuracy will differ, as will the genericity of the
analysis algorithm.

4. Area detection strategies for visual content

In this section we present and analyse the two
most promising detection approaches from the in-
terception possibilities highlighted above: the first
algorithm operates at the pixel level, while the second
approach assumes information of rectangle updates
made available by a separate system. Algorithms for
both strategies are discussed, and their algorithmic
complexity is deduced to indicate the parameters that
influence their performance.

4.1. Pixel analysis

Figure 2 depicts the proposed algorithm for realizing
a fine grained classification of screen content via pixel
analysis. The screen content is sampled in order to
speed up the analysis process. For this sampling, one
pixel is taken to represent multiple surrounding pixels.
This way, the number of pixels to analyse is lowered,
simplifying all following steps that depend on that
number. However, since one pixel represents a set of
different pixels, the accuracy is obviously expected to
be affected. The number of changes is recorded for
each sample, and a threshold is chosen to distinguish
static from dynamic sample areas. A blob detection
algorithm is subsequently used to construct rectangular

4

Sampling

(sample raster)

Time window

(number of changes)

Thresholding

(binarization)

Blobs

(rectangular, minimum size)

Input sequence

(pixel information)

Region hints

Encoding X: [x,y,w,h]

Default: encoding Y

Fig. 2: Schematic representation of the pixel analysis algorithm.

areas that are marked “static” or “dynamic”, which are
used as hints to the thin client protocol. Blob extraction
basically searches regions in images, by computing
the similarity of all pixels to a selection of their direct
neighbours, and deciding whether they are part of the
same visual object or rather form an independent part in
the image. This way, the image is divided into groups
of pixels, called blobs, which are considered to form a
unity.

Listing 1 Pixel analysis algorithm
1: DiffFrameN= Sample(ImageN − ImageN−1)
2: for all pixels i ∈ DiffFrameN do
3: if DiffFrameN(i) , 0 then
4: windowMatrix(i) ++

5: end if
6: end for
7: for all pixels i ∈ DiffFrameN−w do
8: if DiffFrameN−w(i) , 0 then
9: windowMatrix(i) −−

10: end if
11: end for
12: for all counters ∈ windowMatrix do
13: if counter ≥ motionThreshold then
14: binarized(counter) = 1
15: else
16: binarized(counter) = 0
17: end if
18: end for
19: return blobAlgorithm.computeBlobs(binarized)

Listing 1 presents this pixel analysis algorithm in
pseudocode format. The first line represents the cre-
ation of a difference frame between the screen content
at time N and the previous screen update (at time

N − 1). The resulting difference is sampled according
to a sampling raster and constitutes a difference frame
for the screen update at time N. Lines 2 to 11 deal
with the maintenance of the time window of a given
window size w, represented by a windowMatrix. All
pixels of the current difference frame are evaluated.
For pixels that have changed since the last screen
update, a corresponding counter in the windowMatrix
is incremented. Since the windowMatrix concerns
updates from a given windowsize w, the counters
corresponding to the content of the difference frame
representing the changed pixels at time N−w need to be
decremented. Lines 12 to 18 describe the thresholding.
All counters in the windowMatrix are checked against
the motionThreshold. Values under this threshold are
classified as static pixels, values above are classified as
motion pixels, represented in a binarized matrix as 0
and 1 respectively. Finally, in line 19, blob extraction
is performed with this binarized matrix resulting in
unambiguous hints about the division in motion and
static content.

Clearly, sampling the image and updating the
counters is of complexity O (res × S), where res
represents the resolution expressed total number of
pixels while S stands for the sampling rate (with 0
< S ≤ 1). In addition, N sampled difference frames
should be kept in memory, allocation of which requires
O (res × S × N) operations. Therefore, lines 1 to 18
require O (res × S × N) operations. The complexity
of the blob detection step depends on the particular
blobbing algorithm that is used. Connected Component
Labeling (CCL) is an algorithm that is frequently used
in digital image processing. The algorithm uses two
variants of patterns for modeling connectivity between
neighbouring pixels, i.e. 4 connectivity where only
the pixel to the North and West are considered to
determine a pixel’s label and 8 connectivity where
the pixels North-West and North-East are considered
as well. As described in [20], the original algorithm
featured a two-pass approach but has been optimized to
a single-pass version for streaming video processing.
If the latter is used, the blob algorithm evaluates all
pixels of the binarized window matrix once, leading to
O (res × S) complexity. As proven in [21, 22], the CCL
algorithm scales linearly with the number of pixels to
be analysed. The resulting overall complexity of the
algorithm is O (res × S × N).

5

Time window

(number of changes)

Thresholding

(binarization)

Region hints

Encoding X: [x,y,w,h]

Default: encoding Y

Input sequence

(modified region)

Blobs

(rectangular, minimum size)

Fig. 3: Schematic representation of the thin client protocol rectangle
analysis algorithm. In contrast to Fig. 2, the input sequence is in the
form of modified regions, resulting in an algorithm that operates on
different data.

4.2. Thin client protocol rectangle analysis

We assume a thin client protocol to be rectangle-
based and to have knowledge about what has changed
between consequent updates, i.e. modified regions are
specified as a set of rectangles (this approach is adopted
by VNC [8]). Therefore, hints are received from the
OS about the modified areas on screen. This is an
approach that most thin client protocols use in order
not to encode the full screen, thus saving bandwidth
and unnecessary computing cycles. The thin client
protocol rectangle analysis algorithm depicted in Fig. 3
augments this approach and uses it to find frequently
updated areas on the screen. Over a time window
of given size, the number of changes of the pixels
are recorded. Using a threshold to classify motion
and static pixels, binarization of the time window is
achieved, which can be fed into the blob detection
algorithm to extract rectangular areas to construct the
hints for the thin client protocol encoder.

Lines 1 to 6 in Listing 2 relate to maintaining the time
window, which is represented by a windowMatrix. For
this rectangle analysis, the rectangles in the update at
time N represent the changes with respect to the visual
content at time N − 1. In the windowMatrix, the corre-
sponding counters for the rectangles are incremented.
Also, the counters corresponding to rectangles from the
update that are out of scope of the time window i.e.
at time N − w, need to be decremented. Lines 7 to 13

Listing 2 Thin client protocol rectangle analysis algo-
rithm

1: for all rectangles ∈ updateN do
2: windowMatrix.add(rectangle)
3: end for
4: for all rectangles ∈ updateN−w do
5: windowMatrix.remove(rectangle)
6: end for
7: for all rectangle ∈ windowMatrix do
8: if rectangleupdatecount ≥ motionThreshold

then
9: binarized(rectangle) = 1

10: else
11: binarized(rectangle) = 0
12: end if
13: end for
14: return blobAlgorithm.computeBlobs(binarized)

concern the thresholding step of the analysis. As with
the pixel analysis, a binarized matrix is constructed
representing values above the motionThreshold by
ones and values under the motionThreshold by zeroes.
Finally, the results are computed from this binarized
matrix in line 14 through blob dectection.

To assess the complexity of this algorithm, we note
that the complexity of maintaining the data on the
rectangular updates (lines 1 to 6) amounts to O (R),
with R representing the average number of rectangular
updates for each screen update. Determining the
static or dynamic behavior of each sampled pixel
(lines 7 to 13) requires O (res × S) operations, while
maintaing this information over N timeframes requires
O (res × S × N). As mentioned before, computing the
blobs happens in linear time, so the overall complexity
of the algorithm is O (res × S × N). However, we
expect the average case behavior to be considerably
better than for the first algorithm, since advantage can
be taken of the rectangular updates (allowing for more
efficient classification than in the pixel based analysis).

4.3. Qualitative trade-off discussion
Comparing the pixel analysis with the thin client pro-

tocol rectangle analysis, the pixel analysis has higher
potential to perform accurate detection of motion in a
graphical session. Since it uses information about the
actual changes between screen updates, it is able to
monitor for each pixel exactly how often it changes.
For the thin client protocol rectangles, the information
comes from the operating system, that gives hints on

6

what area of the screen that has been redrawn. However,
this does not necessarily mean that the content of this
modified area has changed. For instance, if a video con-
taining solid black frames is displayed, the video player
will request the operating system to draw each frame,
since the video player is unaware of the nature of the
video it is playing. The OS will do so, and thus will
also mark the area of the video as modified although
visually for the user, nothing has changed. The same
holds for padding black rectangles of videos to scale to
different resolutions. This observation means that the
thin client protocol rectangle analysis will perform an
overestimation of modified areas between updates. The
impact of this behavior will be high for applications that
focus on achieving high frame rates, such as games and
all kinds visualization software. These applications are
most often implemented using a visualization loop that
aims to redraw the content of the screen as fast as pos-
sible, irrespective of the content that needs to be drawn.
Pixel analysis overcomes this issue, hence the potential
for higher accuracy over thin client protocol rectangle
analysis.

5. Experimental results

Both approaches (i.e. pixel analysis and rectangle
analysis) were prototyped in C, and evaluated in terms
of their detection accuracy. Besides presenting the ex-
perimental environment and the applied measurement
methodology, the following most prominent research
questions in this section are addressed:

• Does fine-grained detection offer significant ad-
vantages in terms of bandwidth requirements and
visual quality (5.2)?

• Which are the effects of the parameters of the pro-
posed detection algorithms (5.3)?

• Is real-time analysis with the proposed algorithms
possible (5.4)?

• How do the algorithms perform under new scenar-
ios and for larger resolutions (5.5)?

• How do inaccuracies of the detection algorithms
manifest themselves (5.6)?

5.1. Setup

An H.264 encoding type was added to Tight VNC
version 1.3.10, using the x264 encoding library through
ffmpeg at server side, and ffmpeg for decoding at client

Applications

OS graphics API

Frame buffer

Hardware

Pixel Analysis

VNC rectangle Analysis

Hybrid VNC + x264

(through ffmpeg)

Hybrid VNC viewer

(using ffmpeg)

Network

(100 Mbps)

Fig. 4: Experiment setup.

Table 1: Hardware and software configuration used for experiments.
Server Pentium R©Dual-Core CPU

E5400 @ 2.70 GHz
4 GB RAM

Client Intel R©CoreTM2 Duo CPU
P8600 @ 2.40GHz
4 GB RAM

Video codec ffmpeg version SVN-r20467
H.264 encoding x264 library version 0.78, ultra-

fast, zero latency profile
Thin client sys-
tem

Tight VNC version 1.3.10

Blob detection
library

IPL98 version 2.20

side. The x264 ultrafast, zero latency profile was used.
Dynamic control over this adapted VNC system was
enabled, such that multiple dynamic regions can be
defined via a simple TCP-based message protocol.
Finally, the output of the designed analysis component
is coupled to this interface. Table 1 summarizes the
hardware and software used for the experiments, Fig. 4
presents the setup that was used.

The network traffic was monitored using tcpdump,
avoiding interference of the network monitoring with
the data transfer. The frame rate was measured at the
VNC viewer, which has been instrumented (the method
where content is written to the screen is adapted). This
influence is actually negligible since we can acquire a
maximum frame rate of 55 frames per second with a
viewer that requests frame updates as fast as possible,
for a resolution of 1920 × 1080. At times the orig-
inal frame sequences were to be recorded, the server
writes the screen content to a file since we have taken
the analysis offline in our experiments. The machine we
performed this capturing on, is equipped with a solid
state hard drive, of which we have measured a writing
throughput of 248 MB/s using the Linux command line
tool dd. The graphical updates are written to that solid
hard hard drive in raw format, i.e. 3 Bytes per pixel.
For a resolution of 1920 × 1080 and at a rate of 30
frames per second, the needed throughput towards the

7

hard disk is (1920 × 1080) pixels/frame × 3 B/pixel ×
30 frames/s = 186.624 MB/s which is well under the
available 248 MB/s. Also, during our capture, we mon-
itored the CPU load of the server and assured it stayed
well under 100%, and could also monitor the frame rate
of writing to the screen by the viewer and assured that
30 fps were maintained. Screen captures at the client
side were performed from within the viewer, by means
of executing Linux screen shot utility scrot after each
screen update operation, thereby specifically capturing
the output of the vncviewer application. Since these
captures were only performed for low motion scenarios,
the impact on interactivity and frame rate was negligi-
ble.

5.2. The penalty of misclassification
Misclassifying visual content causes suboptimal

encoding, leading to either excessive bandwidth usage
(due to inappropriate compression) or a severe visual
quality reduction, or possibly both. When an appro-
priate encoding scheme is adopted for a given visual
content item, ideally the bandwidth usage would be low
and the resulting visual quality high. In practice how-
ever, often a trade-off is to be made, sacrificing some
bandwidth to improve visual quality. This trade-off is
investigated for the hybrid streaming/VNC encoding
approach.

To investigate the effect of classifying content either
as motion (and stream it with a video codec) or static
(and transfer it using a thin client protocol), we as-
sessed both the bandwidth, achievable frame rate and
visual quality using manually configured encodings for
known content. We therefore recorded a desktop session
combining static areas and a single video, for which the
size was varied between 0% and 100% of the screen of
1024×576 pixels. (The screen resolution was chosen to
equal that of the video source file, as to avoid the need
for upscaling or padding.) The manually configured en-
coding was either (i) full screen video streaming, rep-
resenting classification of the entire screen as motion,
(ii) full screen VNC encoding, representing non-motion
classification, and (iii) a perfect detection. For the latter,
since the location for video playback is configured we
know the exact size and position of the video (and hence
no classification algorithm is used), but directly config-
ure the encoder to stream exactly the video rectangle,
and use VNC for the remaining static content. Thus, the
latter serves as a theoretical approach assuming perfect
classification, for benchmarking purposes.

Using the “Big Buck Bunny”
(http://www.bigbuckbunny.org) movie with a play-

back rate of 24 fps, the consumed bandwidth was
measured, together with the frame rate achieved and the
resulting screen update quality for each motion region
size. Each experiment was executed 10 times to reduce
measurement noise.

0,1

1

10

100

C
o

n
su

m
e

d
 b

a
n

d
w

id
th

 (
M

b
p

s)

0,001

0,01

0 10 20 30 40 50 60 70 80 90 100

C
o

n
su

m
e

d
 b

a
n

d
w

id
th

 (
M

b
p

s)
Motion area (% of screen)

Full screen VNC Full screen streaming Perfect detection

Fig. 5: The effect of misclassification on bandwidth: bandwidth con-
sumed for transmitting a scene as a function of motion region size,
with different unoptimized encoding strategies in comparison to per-
fect detection. Measurements for 1024 × 576 screen resolution. The
error bars indicate the minimum and maximum of the recorded values.

Figure 5 presents the average bandwidth used to
transfer the graphics of a session for varying area size
of motion content. The figure clearly shows that VNC
consumes considerable resources and is therefore less
suited to support this scenario. However, the protocol
is very well suited for static content and consumes no
bandwidth when no screen updates take place. The
approach used by VNC for encoding screen content is
to divide a screen update in rectangles that are indi-
vidually compressed and transmitted to the viewer for
presentation. In the first part of the graph the consumed
bandwidth raises proportionally with the video size
since more pixels need to be encoded. At a given
point this behavior changes since the rectangulation
and encoding consumes more time, causing a drop in
rate of encoded screen updates, as visible in Fig. 6.
While providing this degraded visual performance,
the consumed bandwidth of VNC encoding exceeds
60 Mbps. Depending on the overestimation of the
motion area, full screen streaming consumes more
bandwidth compared to perfect detection. In addition,
the dedicated encoding approach ensures optimal deliv-
ery quality for both content types, as visible in Table 2.
Since for larger video sizes, motion vectors can be used
efficiently for video coding, both graphs saturate. The
maximum consumed bandwidth for video streaming
is 2.33 Mbps, and is reached at 70% motion area size.

8

The overhead in comparison with 100% motion area
size is mainly caused by the static region confusing the
motion vectors onto which the video codec is based
to compress efficiently. For this experiment, the upper
bound on standard deviation for all measured values of
consumed bandwidth amounts to 3.78 for full screen
VNC encoding, 0.02 for full screen streaming and 0.21
for perfect detection.

10

15

20

25

30

F
ra

m
e

 r
a

te
 (

fp
s)

0

5

10

0 10 20 30 40 50 60 70 80 90 100

Motion area (% of screen)

Full screen VNC Full screen streaming Perfect detection

Fig. 6: The effect of misclassification on frame rate which has a di-
rect impact on user experience. Measurements for 1024 × 576 screen
resolution.

Figure 6 shows the frame rate that is reached as a
function of the size of the motion region on screen.
With 0% motion, VNC only delivers graphical updates
when user interaction occurs. In our experiment, this
resulted in a frame rate of 1 fps, while the full screen
streaming encoding delivers this static content at an
unnecessary 26 fps. When motion content is visible on
screen, the frame rate VNC encoding manages to offer
is limited by its encoding speed. Since this encoding
is inefficient for dynamic content, the maximum frame
rate that can be reached is 20 fps for a relatively small
video area, and for larger motion areas the frame rate
drops under 10 fps. With the video streaming encoding,
the frame rate is above 24 fps, independent of the
encoded content. A slightly increased frame rate is
reached for smaller motion areas, since the similarity
of the static areas of the screen can be encoded faster
than large motion areas that need somewhat heavier
encoding. Perfect detection combines best of both
worlds, providing over 24 fps for the motion area, while
the static area updates are transmitted upon user input.

However, the achieved frame rate is only one of the
two factors that determine the visual quality experi-
enced by the user. The second metric concerns the

Table 2: Comparison of degradation caused by video streaming and by
VNC encoding, using Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) metrics.

Content Encoding PSNR SSIM
Static text H.264 35.05 dB 0.9734

VNC 39.28 dB 0.9979
Video H.264 62.88 dB 0.9989

similarity between the frames delivered at the viewer
side and the original rendered content at the server side.
VNC divides screen updates into rectangles, with opti-
mized encodings for e.g. text, gradients and lines, to en-
code these rectangles efficiently in high quality. Video
streaming codecs encode motion content well, but their
lossy, motion vector based encoding makes them less
appropriate for static content that most often consists of
text and lines. Table 2 depicts the similarity between
server-side rendered text displayed with gedit text edi-
tor and the resulting delivered update at the thin client
viewer side, for both video encoding and VNC encod-
ing. This similarity is evaluated using two metrics com-
monly used in the field of video coding: the Structural
Similarity (SSIM) score [23] and the Peak Signal-to-
Noise Ratio (PSNR). The PSNR of an image frame rep-
resents the pixel-per-pixel deviation (measured as the
Mean Squared Error (MSE)) from the original content.
Although this is an objective metric (not capturing sub-
jective effects), it is frequently used in the field of video
encoding to assess Quality of Experience (QoE) [24]1.
Both metrics indicate that VNC is able to represent text
very well. The small divergence from 100% similar-
ity is caused by the viewer-side rendered mouse overlay
which does not appear in the server side frame buffer
capture. In contrast, when applying the video coding
for the static text content the representation improves
gradually, starting from a blurred, unreadable text to a
slightly blurred, readable text. This effect is clearly vis-
ible for the end user, as the correct representation of the
text is shown by the thin client viewer after more than
30 frames (corresponding to over 1 second). In the ta-
ble the average values over the 30 frames are reported,

1Note that both PSNR and SSIM metrics require a reference for
quality assessment. In contrast to purely video coding scenarios, in
thin client computing, this reference is not always easy to acquire.
For these tests, we specifically had the reference of a static scene.
However, for dynamic content the acquisition of reference material is
more complex due to the differing frame rate delivered compared to
the original. In this case, there is also no consensus on which metric
value to take for frames that do not occur in the degraded sequence.
Active research towards no-reference subjective quality metrics is cur-
rently conducted, but for now none of those correlate well enough to
the subjective standardized metrics [25].

9

while the PSNR increases from 25.4 dB to 38.5 dB, and
the SSIM from 0.85 to 0.99.

5.3. Algorithm Sequence Parameter Settings

Fig. 7: Screenshot of the application layout in the experiments, dis-
playing a YouTube movie and a Linux command shell window.

Parameter settings were optimized using the fol-
lowing scenario: a session with two active windows
is displayed on the screen. One window plays a
YouTube movie2, while the other windows displays
a Linux command shell window, as shown in Fig. 7.
This scenario was controlled so that the exact position
and size of the video was known, enabling correct
assessment of the accuracy (expressed as the number of
pixels that were incorrectly classified) of the analysis.
The exact same sequence was processed with both
the pixel analysis and the VNC rectangle analysis
algorithm. The outputs of both are compared to the
known positions of the motion regions, allowing
to assess the accuracy of the system. Apart from
evaluating the accuracy, we have also measured the
processing time required to perform the analysis,
indicating the feasibility for real-time processing and
hinting of motion regions. These experiments were
performed for a desktop with a resolution of 1024×768.

5.3.1. Sampling
Decreasing the number of samples that are taken

into account has a positive effect on processing speed
of the complete analysis, but will limit the accuracy
of the derived hints, as can be seen in Fig. 8(a). If
all pixels of the screen are included to find motion
region, the average accuracy in our test scenario is
97.69%. Sampling only 12.5% of the pixels degrades
the accuracy by 1.22%. The effect of sampling on the

2Awareness test, http://www.youtube.com/watch?v=oSQJP40PcGI

complete pixel analysis time is depicted in Fig. 8(b).
As expected from the complexity analysis presented
in Section 4.1, this analysis time is linearly depen-
dent of the number of samples taken. For sampling
100% of the pixels, the analysis takes 127.46 ms. Sam-
pling 12.5% of the pixels decreases that time to 8.89 ms.

96,6%

96,8%

97,0%

97,2%

97,4%

97,6%

97,8%

A
v

e
ra

g
e

 A
cc

u
ra

cy

95,8%

96,0%

96,2%

96,4%

12,5 25 50 100

A
v

e
ra

g
e

 A
cc

u
ra

cy

Subsampling (% of pixels)

(a) Variation of sampling raster sizes, influence on pixel analysis ac-
curacy.

127,46

65,67

60

80

100

120

140

To
ta

l
a

n
a

ly
si

s
ti

m
e

 (
m

s)

24,65

8,89

0

20

40

100502512,5

To
ta

l
a

n
a

ly
si

s
ti

m
e

 (
m

s)

Subsampling (% of pixels)

(b) Variation of sampling raster sizes, influence on analysis time.

Fig. 8: Influence of sampling raster sizes.

In addition to the number of samples taken per
frame, also the analysis frequency has an impact on
the computational requirements. More specifically,
both parameters influence the amount of memory used
to store a time window of screen captures. While the
upper bound of the sampling frequency is limited by
the capacities of the server, the lower bound for the
sampling frequency is defined by the threshold for
classifying dynamic parts over static ones. E.g. when
the threshold to categorize content as motion is set to
15 changes per second, at least that amount of samples
needs to be taken per second to be able to detect motion
content. For our experiments, the thresholds and

10

window sizes were varied, while keeping the sampling
frequency fixed at 30 Hz.

5.3.2. Sliding Time Window Size
Figure 9 shows that the sliding time window size,

denoted as w in Listing 1 and Listing 2, affects the
reaction speed of the system. This reaction speed could
be seen as the time between a change in content type on
screen, and the analysis detecting this change. On the
other hand, the time window size also mitigates small
temporary variations in content type. In the experiment,
the YouTube video started playing after 60 frames. At
frame number 338, the video paused and subsequently
resumed at frame 506. The figure depicts 4 different
window sizes, with a motion threshold (referred to as
motionThreshold in Listing 1 and Listing 2) set to 10
changes per second, which at the configured sample
frequency of 30 Hz amounts to a motion threshold of
20 for a window size of 60 frames, motion threshold 10
for window size 30, and motion threshold 5 for window
size 15. This motion threshold setting of 10 changes
per second was determined from experimentation with
the test scenario, and represents the point with the
best accuracy from the training set, as presented in
Fig. 10(a). Considering that an average typist reaches
about 200 keystrokes per minute (or somewhat less than
4 per second) and video files are conveniently encoded
above 15 frames per second, a value in between as
motion threshold is reasonable. When the window size
is chosen too large, e.g. 60 frames, the system reacts
very slow to changes. Quick variations in content type
are filtered out, e.g. during the “video pause” part,
while detection of actual changes of content type is
delayed. On the other hand, configuring the window
size too small, e.g. 4 frames, the system reacts fast to
actual changes but exhibits some classification errors as
shown in the “video pause” part. Compared to the ideal
sliding window size (i.e. 15 frames), both deviations
lead to longer periods of non-optimal encoding and
visual artifacts. This is also clear from Fig. 10(a),
where this window size clearly exhibits the highest
accuracy values.

5.3.3. Motion Threshold
Figure 10(a) presents the average accuracy of the

complete session, for varying motion thresholds with
multiple window sizes. As explained earlier, the win-
dow size of 15 frames leads to the maximum accuracy
due to an adequate reaction speed. From the results
in the figure, we derived an optimal configuration of

motion threshold 5 for a window size of 15 frames
(amounting to 10 changes per second). The curves in
the figure show that deviations from this optimum lead
to decreased accuracy. This can be clearly explained
using Fig. 10(b). For low motion thresholds, samples
are considered to be part of motion content when they
change relatively infrequent. Thus choosing the motion
threshold too low increases the share of static pixels
incorrectly classified as motion. Likewise, for high
motion thresholds, samples are considered to be part
of motion content when they change very frequently.
Configuring the motion threshold too high increases
the share of motion pixels incorrectly classified as static.

88%

90%

92%

94%

96%

98%

100%
A

v
e

ra
g

e
 A

cc
u

ra
cy

80%

82%

84%

86%

0 5 10 15 20 25 30

Motion threshold (Hz)

60 30 15 4Window sizes

(a) Influence of motion threshold on pixel analysis accuracy.

4%

6%

8%

10%

12%

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
p

ix
e

ls

o

n
 s

cr
e

e
n

0%

2%

4%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
p

ix
e

ls

o

n
 s

cr
e

e
n

Motion threshold

motion pixels incorrectly classified as static static pixels incorrectly classified as motion

(b) Influence of motion threshold on incorrect classification for a win-
dow size of 15 frames.

Fig. 10: Variation of motion threshold. Remark that in figure (b), the
window size of 15 frames implies that a motion threshold of 5 leads to
a minimum classification errors. This value corresponds to a motion
threshold of 10 Hz as used as the unit in figure (a), for which the
maximum accuracy can be read for window size 15.

11

86%

88%

90%

92%

94%

96%

98%

100%

D
e

te
ct

io
n

 A
cc

u
ra

cy

Video playingNo video Video pause Video playing

80%

82%

84%

0 100 200 300 400 500 600

D
e

te
ct

io
n

 A
cc

u
ra

cy

Frame number in sequence

20/60 10/30 5/15 1/4Threshold/Windowsize

Fig. 9: Variation of sliding window sizes, influence on pixel analysis accuracy.

5.3.4. Blob Extraction
For blob extraction, the minimum size and the form

of the blobs can be configured. For all experiments, the
IPL98 library was configured to detect blobs of mini-
mum size width and height of 64 pixels, as such small
regions are considered to be efficiently encodable with
VNC encoding. The hybrid video encoder requires the
specification of rectangular zones (that will be encoded
using either a thin client protocol or video encoding),
hence the need to convert the blobs to rectangles. Given
the support from the video encoder, a rectangular form
for the blobs is requested. The blob library was con-
figured to use the 8-connected variant of the Connected
Component Labeling (CCL) algorithm. However, the
library does not implement the linear time optimization
described in [21].

Experimentation with the blob sizes teached us
that configuring the blob sizes very small results in
decreased accuracy due to small but frequent changes
that are classified as a motion region. However, such
small regions do not require specific video encoding as
it can be handled well by the VNC encoding as well.
More interestingly, we have found that, for a controlled
test with a video region of known size and blob sizes
above 50 by 50 pixels, the accuracy remains unaffected
by the blob size until it is configured to be greater than
the actual video itself.

5.3.5. VNC rectangle parameter settings
The same scenario as before (Fig. 7) was used to

assess the VNC rectangle approach, investigating the
motion threshold and time window size parameters.
The results are presented in Fig. 11. Overall, the accu-
racy reaches a maximum of 90.56%. This optimum is

reached using motion threshold 26 for a time window
size of 30 frames. In comparison to the pixel analysis,
this is a relatively high threshold. Inspection of the
analysis output from the session depicted in Fig. 12
shows that the hints delivered with these settings have
a large variance which is rather difficult to be used as
input for the thin client encoder.

88%

90%

92%

94%

96%

98%

100%

A
v

e
ra

g
e

 A
cc

u
ra

cy

80%

82%

84%

86%

0 5 10 15 20 25 30

Motion threshold (Hz)

60 30 15 4Window sizes

Fig. 11: Influence of motion threshold on VNC rectangle analysis
accuracy.

Figure 13 presents the accuracy of the VNC rectangle
analysis compared with that of the pixel analysis, for
identical settings i.e. motion threshold 5 for time
window size 15. The results show that the accuracy
of the rectangle analysis is lower than that of the pixel
analysis. This can be attributed to padding for scaling
the video according to its aspect ratio, and the pauze in
the video which are filtered out by the pixel analysis.

The difference with pixel analysis is that even video

12

85%

90%

95%

100%

D
e

te
ct

io
n

 A
cc

u
ra

cy

Video playingNo video Video pause Video playing

75%

80%

85%

0 100 200 300 400 500 600

D
e

te
ct

io
n

 A
cc

u
ra

cy

Frame number in sequence

26/30

Fig. 12: Classification per frame in sequence for VNC rectangle anal-
ysis with motion threshold 26 for a window size of 30 frames.

80%

85%

90%

95%

100%

D
e

te
ct

io
n

 A
cc

u
ra

cy

Video playingNo video Video pause Video playing

70%

75%

0 100 200 300 400 500 600

D
e

te
ct

io
n

 A
cc

u
ra

cy

Frame number in sequence

pixel analysis rectangle analysis

Fig. 13: Comparison of classification per frame in sequence for VNC
rectangle analysis and pixel analysis with motion threshold 5 for time
window size 15 frames.

files that contain static scenes are still transported as
video, causing a significant bandwidth increase. How-
ever, it is clear that the thin client protocol rectangle
analysis tends to overestimate the dynamic regions in
the screen (as explained before in Section 4.3). This
knowledge can be used to improve the performance
of the pixel analysis. Indeed, we could combine both
approaches as follows: use rectangle analysis to decide
on the static regions, and refine the classifications of
“dynamic” regions by pixel analysis. This limits the
more complex pixel analysis to a subset of the entire
screen.

5.4. Analysis time evaluation

For both implemented algorithms, we have sepa-
rately recorded the time to compute all steps. For a
proof-of-concept software implementation, the results
are presented in Table 3, showing that sampling is
a good strategy to decrease the time needed for the
complete pixel analysis, as it scales nearly linearly

with the number of samples taken. This is also clear
from the order of complexity as expected based on the
analysis presented in Section 4.1. For blob detection,
the execution time is more than halved when halving
the number of samples. This non-linear behavior is due
to the IPL library that does not implement the linear
time CCL algorithm optimization. However, compared
to difference frame computation and thresholding, the
blob detection is a minor piece of the total execution
time. For the rectangle analysis, the difference frame
computation is not required as the modified regions are
used as input for the algorithm. The maintenance of
the time window happens faster than for pixel analysis
because it is executed in the rectangle domain. For
thresholding and blob detection, the analysis needs to
be done at pixel level, causing the total analysis time
to add up to 11.368 ms. Remark that this should be
compared to 100% sampling and is 10 times faster than
pixel analysis in this case. Thus, the rectangle analysis
can be optimized for computation speed by either
sampling when converting between the pixel and the
rectangle domain, or by performing the entire analysis,
i.e. including the thresholding and blob detection step,
in the rectangle domain.

5.5. Validation

To validate the parameters found in Section 5.3, this
configuration was applied to two new scenarios. With
the first scenario, the accuracy of the detection system
is challenged against motion content with different char-
acteristics. The second scenario against which we val-
idate our algorithms represents a real life scenario with
user actions such as typing text, scrolling through a text,
watching pictures and moving windows around. The
same hardware setup as described in Section 5.1 was
used to perform both experiments.

5.5.1. Four movies validation scenario
The first scenario consists of four videos with

different characteristics, that were played back one at
the time on different positions on screen. The first video
that was played is a computer generated animation
movie that can be catalogued as visually dynamic. The
second sequence is an action scene from a visually dy-
namic natural movie. The third movie in the sequence
is a rather visually static natural movie. The last shown
video is a visually static computer generated animation

13

Table 3: Time analysis of detection algorithms.
sampling and
diff. frame
computation?

windowing† thresholding‡ blob detection◦ total

Pixel analysis
100% sampling 50.834 ms 8.610 ms 52.502 ms 15.517 ms 127.463 ms
50% sampling 28.048 ms 4.330 ms 28.809 ms 4.477 ms 65.665 ms
25% sampling 9.993 ms 2.245 ms 12.097 ms 0.317 ms 24.651 ms
12.5% sampling 5.465 ms 1.181 ms 2.153 ms 0.093 ms 8.892 ms
Rectangle analysis n/a 1.189 ms 4.630 ms 5.368 ms 11.368 ms
? downsampling an input frame and computing the difference with the previous input frame. For rectangle analysis this step
is not needed, hence the non applicable (n/a) value.
† creating and maintaining the time window over which the motion values are computed.
‡ computing the binarized motion frame that is acquired through the threshold step of the algorithms.
◦ extracting blobs in the binarized motion frame.

movie3. The times at which the videos were visible
on screen are indicated in the figures reporting results
obtained with this scenario. The screen resolution of
the thin client session was 1024 × 768.

Figure 14 presents the results of the first validation
experiment. Figure 14(a) shows the accuracy with pixel
analysis for both 100% and 12.5% of the pixels used as
samples for the analysis. Apparently, for the settings
used, i.e. motion threshold 5 for a window size of 15
frames, the subsampling has a very small effect on
accuracy. The pixel analysis shows good performance
for dynamic content and is able to detect relatively
static natural moving content very well, but shows
lower accuracy for detecting low dynamic computer
generated content. Figure 14(b) compares the accuracy
of the pixel analysis with the VNC rectangle analysis
and shows that the VNC rectangle analysis is able to
detect the low dynamic computer generated content
well, but has the clear tendency to overestimate motion
regions. This is the case for both natural movie parts in
the scenario, where the padding for correct resolution
scaling is redrawn with the video frames, transparently
for the VNC analysis (as explained in Section 4.3). This
overestimation is visible in Fig. 14(c), where — except
for during content changes — the share of incorrect
classifications is entirely caused by static pixels that are
classified as motion content. In summary, the average
accuracy achieved with both pixel analysis and VNC
rectangle analysis for the four different content types in

3The respective videos that were used are “Sintel”
(http://www.sintel.org), a trailer from “Spiderman”, a trailer
from “Das Leben Der Anderen” and finally “Big Buck Bunny”
(http://www.bigbuckbunny.org).

Table 4: Average accuracy depending on content type.
pixels (sampling) rectangles
100% 12.5%

Dyn. Animation 99.93% 99.67% 100%
Dynamic Natural 99.54% 99.42% 96.49%
Static Natural 99.58% 99.46% 96.50%
Static Animation 92.03% 92.21% 99.92%

the experiment is reported in Table 4.

5.5.2. High Definition validation scenario
In the second validation scenario, the desktop session

was performed in High Definition (Full HD, 1920×1080
pixels) resolution. A series of actions that occur fre-
quently in a normal day-to-day computer usage cycle
was performed: opening and closing applications, edit-
ing text, scrolling through a large document, watching
a series of pictures, rotating a picture, dragging a win-
dow over the screen and minimizing and maximizing a
window. The same settings were applied as identified
appropriate before, i.e. motion threshold of 5, window
size of 15 frames and 12.5% sampling.

As expected for opening and closing applications,
editing text, watching a series of pictures, rotating an
image, and minimizing and maximizing an application,
our algorithms classified the screen entirely as static
content. For these actions, the changes do not occur
frequently enough or are too small to be identified as a
dynamic region worth video streaming. For scrolling
through a large document, an all-static classification
was obtained. Although such action might be expected

14

85%

90%

95%

100%

D
e

te
ct

io
n

 A
cc

u
ra

cy

Dynamic

Animation Movie

Dynamic

Natural Movie

Static

Natural Movie

Static

Animation Movie

75%

80%

85%

0 100 200 300 400 500 600 700

D
e

te
ct

io
n

 A
cc

u
ra

cy

Frame number in sequence

100% sampling 12.5% sampling

(a) Pixel analysis.

85%

90%

95%

100%

D
e

te
ct

io
n

 A
cc

u
ra

cy

Dynamic

Animation Movie

Dynamic

Natural Movie

Static

Natural Movie

Static

Animation Movie

75%

80%

85%

0 100 200 300 400 500 600 700

D
e

te
ct

io
n

 A
cc

u
ra

cy

Frame number in sequence

VNC rectangle analysis 12.5% sampling pixel analysis

(b) VNC rectangle analysis.

15%

20%

25%

30%

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
p

ix
e

ls
 o

n
 s

cr
e

e
n

Dynamic

Animation Movie

Dynamic

Natural Movie

Static

Natural Movie

Static

Animation Movie

0%

5%

10%

0 100 200 300 400 500 600

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
p

ix
e

ls
 o

n
 s

cr
e

e
n

Frame number in sequence

Motion content incorrectly classified as static Static pixels incorrectly classified as motion

(c) VNC rectangle analysis, share of incorrect classifications.

Fig. 14: Validation scenario with 4 videos.

to receive a high motion classification at first sight, the
resulting window matrices consist of scattered changes
that are too small to be detected as motion areas. Indeed,
the content alters greatly during scrolling, but given the

more textual nature, the difference frames are consti-
tuted merely of coincidental similarities and dissimilar-
ities.

The most challenging part of the experiment occurred
when dragging a window over the screen. A video was
played back in windowed mode (i.e. non full screen) and
was detected as a motion area with a similar accuracy
as in the previous experiments. Then, while playing the
movie, this window is dragged over the screen. At its
new position, the video region was classified as motion
accordingly. However, during the dragging itself, clas-
sification accuracy is decreased. Namely, in the win-
dow matrix, the locations the motion region moves away
from, and new locations of the motion region, respec-
tively fade out and fade in slower than actually occur-
ring on screen. An intersection of the dragged content
over the time window is detected as motion. Such phe-
nomena are easily detectable, and could be accounted
for by excluding the derived classifications as hints to
the encoder until they are stabilized or residing to a par-
ticular solution for such scenarios. For example, a par-
ticular solution could be to encode the entire screen as
VNC encoding, since the contents of dragged windows
typically are less of interest to the user until it gets in
its proper place, although further investigation would be
needed to conclude this formally. Repeated experiments
with the dragging of a window with a single image (i.e.
non-motion content) lead to the same conclusion.

The computation times recorded for this High Defini-
tion resolution scenario are presented in Table 5. The to-
tal time needed to analyse one frame using 12.5% sam-
pled pixel analysis results to 15.4 ms with the proof-of-
concept software implementation. So also for Full HD
resolutions, real-time analysis is feasible.

5.6. Interpretation of experimental results

Concerning the interpretation of the accuracy metric
used in this paper, the location of wrongly classified pix-
els has been analysed for the scenario used in Fig. 7,
with a motion threshold of 5 and a window size of 15
frames. Figure 15 presents the impact of misclassifica-
tion, expressed as the deviations from the boundaries of
the hints with respect to the actual dynamic region. Neg-
ative values mean that the dynamic region has been un-
derestimated, positive values indicate overestimations.
E.g. a value of -10 means that the border of a dynamic
region has been estimated to lay 10 pixels within the

15

Table 5: Time analysis of detection algorithms for Full HD validation scenario.
sampling and
diff. frame
computation

windowing thresholding blob detection total

Pixel analysis
12.5% sampling 6.543 ms 2.890 ms 3.477 ms 2.463 ms 15.373 ms

actual region (+10 implies a border position 10 pixels
outside the actual region). In the case that all pixels are
evaluated, i.e. 100% sampling shown in Fig. 15(a), the
majority of misclassifications is due to a hint that de-
viates only by 1 to 2 pixels. The maximum recorded
misclassification amounts to 10 pixels underestimation
of the dynamic content, and only occurs in less than
10% of the errors. When 12.5% of the pixels are sam-
pled, boundary errors are distributed differently because
of rescaling, as presented in Fig. 15(b). These results
show that estimation errors manifest themselves primar-
ily at the borders of the regions. Therefore, the impact
for the user is expected to be limited, as for video re-
gions in most cases the interesting information is more
or less centered. More generally, we could pose that
cases where the boundaries contain critical information
for which optimal encoding is crucial are rather rare, al-
though this needs to be investigated more thoroughly.

In this section, a variety of parameters has been inves-
tigated with respect to their impact on the performance
of the proposed algorithms. The main conclusions and
trade-offs are summarized below:

• Sampling: In the case of pixel analysis, sampling
has a major effect on the analysis speed, as it has a
direct influence on the number of pixels and conse-
quently the amount of computations that need to be
performed. However, this speed-up comes at the
cost of decreased accuracy of the algorithm out-
put. The computational complexity scales linear
with the number of pixels analysed. Our proof-
of-concept software implementation shows to be
able to process Full HD content in real-time un-
der 12.5% sampling, i.e. 15.4 ms are needed per
iteration of the algorithm.

• Sliding window size: the size of the sliding win-
dow determines the reaction speed of the anal-
ysis component. Choosing a large sliding win-
dow makes the system react slowly to effective
changes in the session, avoiding unnecessarily fast
switches. Conversely, small window sizes result in
a system that detects changes faster but is also sus-

ceptible to hasty classifications of certain content
types. From our experiments, we found that con-
figuring a sliding window size of 15 frames at a
sampling rate of 30 Hz, i.e. a window size of 0.5 s,
gave the best trade-off between reaction speed and
accuracy.

• Motion threshold: the motion threshold determines
the actual differentiation between motion versus
static content. The actual setting of the mo-
tion threshold depends on the sliding window size
and the sampling rate, in that an absolute motion
threshold of X Hz at a sampling rate of Z Hz re-
sults in a configuring motion threshold of X × Y

Z
frames for a window size of Y frames. In our tests,
a motion threshold of 10 Hz, i.e. 5 frames for a
window size of 15 frames at 30 Hz sampling rate,
resulted in the highest accuracy for the proposed
algorithms.

• Blob sizes: the blob size can be determined as the
minimum size of motion regions that are to be de-
tected. All motion regions smaller than the blob
size will be filtered out and considered static af-
ter blob detection. The setting used for the exper-
iments in this article was a blob size of 64 by 64
pixels, and gave satisfactory results.

Misclassification effects: classification errors are con-
centrated around the boundaries of detected regions.
The majority of the misclassifications result in 1 to 2
pixels incorrectly detected, and a maximum deviation
of 10 pixels off was recorded.

6. Conclusions

This article proposes algorithms for automatic detec-
tion of different content types for encoding the visual
content for thin client computing. The approach sepa-
rates the content type detection and thin client protocol
encoding, in order to enable them to perform at differ-
ent speeds and to allow for hysteresis in the detection
component so that hints given to the encoder can be sta-
bilized. The need for a detection system is shown via

16

30%

40%

50%

60%

70%

80%

F
re

q
u

e
n

cy

0%

10%

20%

30%

-50 -10 -5 -3 -2 -1 1 2 3 5 10 50

Boundary deviation (pixels)

(a) Histogram of boundary deviations for 100% sampling.

15%

20%

25%

30%

35%

F
re

q
u

e
n

cy

0%

5%

10%

-50 -10 -5 -3 -2 -1 1 2 3 5 10 50

Boundary deviation (pixels)

(b) Histogram of boundary deviations for 12.5% sampling.

Fig. 15: Histograms of boundary deviations, indicating the effect of
misclassification. The deviations represent the differences between
the four boundaries (upper, lower, left and right) of the hints and those
of the actual dynamic region. These results relate to the scenario de-
scribed in Section 5.3, using motion threshold 5 and window size of
15 frames.

experimental results on both consumed bandwidth and
user experience, and two algorithms are discussed to
perform such detection, i.e. pixel analysis and thin client
protocol rectangle analysis. The detection accuracy of
both algorithms is evaluated, as well as the performance
in terms of computation speed.

Overall, we conclude that both levels of analysis have
their own advantages. Thin client protocol rectangle
analysis can work faster than pixel analysis because this
algorithm operates in the rectangle representation do-
main, which allows optimized mathematics and aggre-
gated evaluation of areas on screen. Pixel analysis is
computationally more intensive (although this can be
greatly alleviated by performing subsampling), but is
able to overcome overestimation issues specific to rect-
angle analysis, leading to higher accuracy. For low mo-
tion, computer generated dynamic content, the rectan-

gle analysis outperforms pixel analysis. Given these
findings, a combined approach is expected to be ben-
eficial for both analysis speed and accuracy. The thin
client protocol rectangle analysis could perform a rapid
coarse grained scan to be used as input for the pixel
analysis, leading to focused sampling and fine grained
area detection. Experiments with prototypes of both al-
gorithms result in accuracies between 92% and 100%,
within 8.892 ms with the pixel analysis algorithm and
11.368 ms with the rectangle analysis algorithm. Also
for Full HD content, the proof-of-concept software im-
plementations of the proposed algorithms show to be
viable for real-time analysis of the desktop session.

Future work includes automatic deduction of optimal
parameter settings for the detection algorithms, the
detection of additional content types besides dynamic
and static, and feedback of user perceived quality
to guide the hinting algorithms. It would also be
interesting to study the decoupling and synchronization
between analysis and encoding components in more
detail. Furthermore, we expect adaptive thresholds
to build in intelligent inertia for switching between
modes to be beneficial. Also the solution proposed for
dragging windows over the screen, i.e. on detection of
this case, the system should reside to full screen VNC
encoding, should be investigated more thoroughly.

Acknowledgement

This work has been partly funded by the European
Community’s Seventh Framework (FP7/2007-2013) un-
der grant agreement no. 216946, in the scope of the
MobiThin project and by the Research Foundation –
Flanders (FWO – Vlaanderen) in the scope of the Thin
Client Network Management project (G.039107N).
Vankeirsbilck is funded by a Ph.D. grant of the Institute
for the Promotion of Innovation through Science and
Technology in Flanders (IWT). Develder is supported
in part as a post-doctoral fellow of FWO – Vlaanderen.

References

[1] T. Petrovic, K. Fertalj, Demystifying desktop virtualization, in:
9th WSEAS International Conference on Applied Computer
Science (ACS’09), Recent Advances in Computer Engineering,
WSEAS, Genoa, Italy, 2009, pp. 241–246.

[2] Microsoft Corporation, Description of the Remote Desktop
Connection 7.0 client update for Remote Desktop Services
(RDS) for Windows XP SP3, Windows Vista SP1, and Windows
Vista SP2, http://support.microsoft.com/kb/969084.

[3] Citrix Systems, Inc., HDX(TM) Media Stream, High Definition
User Experience, http://hdx.citrix.com/hdx-mediastream.

17

[4] P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter,
L. Deboosere, F. De Turck, B. Dhoedt, P. Demeester, De-
sign and implementation of a hybrid remote display proto-
col to optimize multimedia experience on thin client devices,
in: Telecommunication Networks and Applications Confer-
ence, 2008. ATNAC 2008. Australasian, 2008, pp. 391–396.
doi:10.1109/ATNAC.2008.4783356.

[5] J. Nieh, S. J. Yang, N. Novik, Measuring Thin-Client Perfor-
mance using Slow-Motion Benchmarking, ACM Trans. Com-
put. Syst. 21 (1) (2003) 87–115. doi:10.1145/592637.592640.

[6] A. M. Lai, J. Nieh, On the performance of wide-area thin-client
computing, ACM Trans. Comput. Syst. 24 (2) (2006) 175–209.
doi:10.1145/1132026.1132029.

[7] A. Lai, J. Nieh, On the performance of wide-area thin-client
computing, ACM Trans. Comput. Syst. 24 (2) (2006) 175–209.
doi:10.1145/1132026.1132029.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hopper, Vir-
tual network computing, IEEE Internet Computing 02 (1) (1998)
33–38. doi:10.1109/4236.656066.

[9] NoMachine, FreeNX, http://freenx.berlios.de/.
[10] Microsoft Corporation, Remote desktop protocol performance

improvements in windows server 2008 r2 and windows 7, Tech.
rep., Microsoft (January 2010).

[11] Red Hat, Spice protocol, http://www.spice-space.org/.
[12] Teradici Corporation, PC-over-IP remote display technol-

ogy: true zero client desktop virtualization - PCoIP,
http://www.teradici.com/.

[13] K.-J. Tan, J.-W. Gong, B.-T. Wu, D.-C. Chang, H.-Y. Li, Y.-M.
Hsiao, Y.-C. Chen, S.-W. Lo, Y.-S. Chu, J.-I. Guo, A remote thin
client system for real time multimedia streaming over vnc, in:
Multimedia and Expo (ICME), 2010 IEEE International Confer-
ence on, 2010, pp. 992–997. doi:10.1109/ICME.2010.5582993.

[14] ISO/IEC, MPEG 4 Standard JTC1 SC29 WG11 (2002).
[15] Y. Lu, S. Li, H. Shen, Virtualized screen: A third element for

cloud-mobile convergence, Multimedia, IEEE 18 (2) (2011) 4
–11. doi:10.1109/MMUL.2011.33.

[16] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David,
J. P. Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari,
P. Perälä, A. De Gloria, C. Bouras, Platform for distributed 3d
gaming, Int. J. Comput. Games Technol. 2009 (2009) 1:1–1:15.
doi:10.1155/2009/231863.

[17] A. Boukerche, R. W. Pazzi, J. Feng, An end-to-end virtual en-
vironment streaming technique for thin mobile devices over
heterogeneous networks, Computer Communications 31 (11)
(2008) 2716 – 2725, end-to-End Support over Heterogeneous
Wired-Wireless Networks. doi:10.1016/j.comcom.2008.02.032.

[18] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere,
F. De Turck, B. Dhoedt, P. Demeester, Bandwidth optimiza-
tion for mobile thin client computing through graphical update
caching, in: Telecommunication Networks and Applications
Conference, 2008. ATNAC 2008. Australasian, 2008, pp. 385
–390. doi:10.1109/ATNAC.2008.4783355.

[19] W. Shi, Y. Lu, Z. Li, J. Engelsma, SHARC: A scalable 3d
graphics virtual appliance delivery framework in cloud, Jour-
nal of Network and Computer Applications 34 (4) (2011) 1078
– 1087, advanced Topics in Cloud Computing. doi:DOI:
10.1016/j.jnca.2010.06.005.

[20] R. Walczyk, A. Armitage, D. Binnie, Comparative study on con-
nected component labeling algorithms for embedded video pro-
cessing systems., in: H. Deligiannidis (Ed.), IPCV’10, Vol. 2,
CSREA Press, Las Vegas, USA, 2010.

[21] F. Chang, C.-J. Chen, C.-J. Lu, A linear-time component-
labeling algorithm using contour tracing technique, Computer
Vision and Image Understanding 93 (2) (2004) 206 – 220.
doi:10.1016/j.cviu.2003.09.002.

[22] K. Suzuki, I. Horiba, N. Sugie, Linear-time connected-
component labeling based on sequential local operations, Com-
puter Vision and Image Understanding 89 (1) (2003) 1 – 23.
doi:10.1016/S1077-3142(02)00030-9.

[23] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image qual-
ity assessment: From error visibility to structural similarity,
IEEE Transactions on Image Processing 13 (4) (2004) 600–612.
doi:10.1109/TIP.2003.819861.

[24] S. Winkler, P. Mohandas, The evolution of video qual-
ity measurement: From psnr to hybrid metrics, Broad-
casting, IEEE Transactions on 54 (3) (2008) 660 –668.
doi:10.1109/TBC.2008.2000733.

[25] Video Quality Experts Group, Report on the validation of video
quality models for high definition video content, Tech. rep.,
http://www.vqeg.org/ (2010).

18

