
DYAMAND: DYnamic, Adaptive MAnagement of
Networks and Devices

Jelle Nelis, Tom Verschueren, Dieter Verslype, Chris Develder
Dept. of Information Technology - IBCN, Ghent University – IBBT

Ghent University – IBBT, Ghent, Belgium
Email: {jelle.nelis, chris.develder}@intec.ugent.be

Abstract—Consumer devices increasingly are “smart” and
hence offer services that can interwork with and/or be controlled
by others. However, the full exploitation of the inherent opportu-
nities this offers, is hurdled by a number of potential limitations.
First of all, the interface towards the device might be vendor
and even device specific, implying that extra effort is needed
to support a specific device. Standardization efforts try to avoid
this problem, but within a certain standard ecosystem the level of
interoperability can vary (i.e. devices carrying the same standard
logo are not necessarily interoperable). Secondly, different appli-
cation domains (e.g. multimedia vs. energy management) today
have their own standards, thus limiting trans-sector innovation
because of the additional effort required to integrate devices from
traditionally different domains into novel applications.

In this paper, we discuss the basic components of current
so-called service discovery protocols (SDPs) and present our
DYAMAND (DYnamic, Adaptive MAnagement of Networks and
Devices) framework. We position this framework as a middleware
layer between applications and discoverable/controllable devices,
and hence aim to provide the necessary tool to overcome
the (intra- and inter-domain) interoperability gaps previously
sketched. Thus, we believe it can act as a catalyst enabling trans-
sector innovation.

I. INTRODUCTION

In the last two decades, the home network evolved quite
rapidly. It started as a single computer that was responsible
for Internet access (internal modem) which quickly evolved
to a simple network in which an always-on device offered
Internet access for one or two computers in the network.
The evolution that can be seen now, is that nearly every
device in the home offers interaction with its environment
over a networked interface. Services are no longer limited to
Internet access: television sets, networked hard drives, printers,
laptops, etc. are offering their own specific services. Apart
from aforementioned devices, also a wide range of sensing
devices are able to provide context information.

Although a number of standardization efforts have tried
to create a generic technology platform achieving device
interoperability (e.g. UPnP [1] defines a common interface for
networked devices, SLP [2] has been developed for general
service discovery, etc.), the dream of seamless interoperation
of all “smart” devices is still far from a reality. Even within
certain application domains, problems still arise (e.g. vary-
ing UPnP implementations interpret the standard in another,
sometimes faulty, way). Furthermore, due to political agendas
or device limitations, certain device manufacturers choose one
technology over another, which effectively divides the network

in disjoint clusters of un-interoperable devices. Our work is
motivated by the observation that inter-domain operability is
still in its infancy, and the fact that device/service discovery
is an essential generic building block to realize future “smart-
house” services [3].

From an application developer’s perspective, the problem
of dealing with such a plethora of possible devices is difficult
to solve. Mostly, the problem is ignored and the application
developer will choose one or more popular technologies to
support (hence possibly ignoring a considerable chunk of the
market). On the other side of the spectrum, device manu-
facturers feel obliged to support as many technologies as
possible to be compliant with as many applications as possible,
which puts extra strain on the device’s resources. Alternatively,
closed ecosystems are formed combining devices with spe-
cific technologies and a set of associated applications. The
framework we propose in this paper tries to bridge the needs
of both application developers and device manufacturers: our
DYAMAND framework acts as a middleware layer between
the application developer and the controllable devices.

II. SERVICE DISCOVERY PROTOCOLS

A Service Discovery Protocol (SDP) is a protocol that
enables dynamic discovery of services on a network. Tech-
nologies such as Universal Plug and Play (UPnP [1]), Service
Location Protocol (SLP [2]) and Domain Name System Ser-
vice Discovery (DNS-SD [4] are traditional examples of SDPs.
A classification of a number of these popular examples can be
found in [5]–[7].

However, the above list is in no way complete. Non-IP stan-
dards such as Bluetooth, USB and Zigbee1 are technologies
that we consider to be SDPs. This paper does not intend to
provide an exhaustive list or comparison of all available SDPs.
We will, however, discuss the general model of an SDP, which
comprises up to three basic functions: (A) device and service
discovery, (B) control, and (C) eventing. From the discussion
thereof, we will derive the following interoperability issues:

1) different device and service models,
2) different service type representations,
3) different remote control protocols,
4) different service type semantics,
5) different eventing protocols,

1See resp. www.bluetooth.org, www.usb.org, www.zigbee.org



6) different event semantics.

A. Discovery
As discussed above, the sine qua non functionality a Service

Discovery Protocol must offer is discovery of devices and/or
services. UPnP uses the following model: a UPnP root device
can contain services and embedded devices which in turn can
contain both services and embedded devices. SLP, in contrast,
does not have a notion of devices. SLP only announces
services identified by a given URL. The way information about
these services is acquired, also differs among SDPs: for UPnP
the so-called description phase needs to take place, i.e. the
device and service descriptions need to be fetched and parsed
to get the information about the discovered devices/services.
These description files follow a UPnP-specific XML format.
SLP on the other hand, embeds the service information in the
announced URL.

Additionally, each technology uses its own definition of
service types. UPnP uses the following form: urn:schemas-
upnp-org:service:typename:version, while DNS-SD uses type-
name. tcp or typename. udp. Apart from the different syntax,
the service type names used are different as well. If we take
the simple case of a printer, the type name is PrintBasic or
PrintEnhanced in the case of UPnP, SLP uses printer and
DNS-SD uses printer.

The incompatibilities presented here lead to a first level
of interoperability issues (1, 2) related to service awareness.
This means that without any interoperability effort, with full
SDP support, you will only be able to present the user with a
random service type string, but it will not be possible to give
any meaning to that service type.

B. Control
An SDP can contain support to control the discovered

services (an example of one that does is UPnP). This implies
that after discovering a service, all information is available to
perform a syntactically correct action (even without grasping
the semantics of that action). UPnP uses the Simple Object
Access Protocol (SOAP) to actually support this. Alternatively,
an external Control Protocol must be used. Which protocol to
use is embedded in the service information discovered in the
previous step: both SLP and DNS-SD are examples of such
protocols and embed this information in the service type.

Service types are defined for a specific SDP. The UPnP
Forum defines so-called Device Control Protocols (DCP) in
Working Committees, the currently standardized DCPs can be
found in [8]. SLP defines the way service templates must
be registered in [9] and [10] keeps a list of all registered
templates. Similarly, DNS-SD keeps a list of registered service
types in [11]. In the same way, Zigbee defines Application
Profiles and USB defines Device classes [12]. This discussion
defines a new interoperability problem, namely that of service
type semantics: we end up with additional issues 3 and 4.

C. Eventing
As with control, eventing can be supported by the Service

Discovery Protocol itself or by an external protocol. UPnP

embeds the General Event Notification Architecture (GENA)
to support eventing. Others like SLP and DNS-SD rely on
the external protocols as presented in section II-B. The inter-
operability issues encountered for eventing are similar to that
encountered for remote control: the protocol used for eventing
needs to be supported and the event semantics needs to be
addressed (issues 5 and 6).

III. RELATED WORK

In the previous section, we identified a number of interop-
erability issues of the concept of Service Discovery Protocols.
We would like to stress that these issues are a problem for
currently known SDPs as well as future technologies. An SDP
always makes trade-offs specific for the area in which the
technology will be used. An interoperability framework for
networked devices should thus take into account current and
future differences in technologies.

In [13] and [14] an architecture is presented to respectively
map Jini and Zigbee to UPnP. Although this might be a start
for interoperability, limiting your architecture to incorporate
specific technologies inherently limits the applicability.

The architecture for interoperability of SDPs presented
in [15] seems to not address the resolution of differences in
device/service types across SDPs. Furthermore, the framework
concentrates on service lookup and invocation (e.g. no event-
ing), where service access across varying SDPs is realized
by dynamically binding an abstract control mechanism to the
respective concrete SDP-dependent ones, which incurs a non-
negligible performance penalty.

Another interoperability framework [16] abstracts service
access, yet fails to explain how the semantic difference of
services across SDPs is solved. Furthermore, applications need
to be rewritten to take advantage of this framework.

In [17] an event-based SDP interoperability framework is
discussed. It focuses on external interoperability, i.e. a client
of SDP1 must be able to interact with a service of SDP2.
It uses internal events to model the inner workings of an
SDP and performs a direct mapping of an action in one
SDP onto one or more actions in the receiving SDP. In our
DYAMAND approach, we have an extra abstraction layer
formed by an SDP-independent model, i.e. we would have an
SDP-independent model in between SDP1 and SDP2. Thus
we only need to relate each SDP-specific model just to the
single SDP-independent model.

The results shown in the current paper are the result of
follow-up research based on our earlier work [18] (where
we positioned the seminal ideas of our DYAMAND work)
and [19] (which in essence describes a precursor of the proof-
of-concept application sketched in V-B).

IV. ARCHITECTURE

A. Plugin framework

Apart from the functional requirements discussed in sec-
tion II, the framework should deliver an easy-to-use and
dynamic platform to develop value added services exploiting
heterogeneous “smart” devices.



Fig. 1. Plugin architecture

Runtime modifiability is the most important quality attribute
the framework needs to take into account.

The framework can be extended at runtime by using plugins.
Figure 1 shows the DYAMAND architecture at the highest
level. At start time, a plugin is provided with a PluginContext
instance that enables the plugin to communicate with the
framework. The major advantage of only allowing the plugins
to communicate through one communication path is that it is
easier to enforce security policies, e.g. only trusted plugins
can perform SDP specific actions (see section IV-C).

B. DYAMAND data types

To solve interoperability issues 1, 3 and 5, DYAMAND
defines the necessary data types to abstract the differences in
modeling of a device and service, in terms of device/service
types, control and eventing syntax.

A physical device is modeled as follows: a DYAMAND
device is created for every physical device, uniquely iden-
tified based on the location information (e.g. IP address).
A DYAMAND device will contain embedded devices that
represent the SDP-specific devices and services present on the
corresponding physical device. A service contains Command
instances to abstract the control part of a service and State-
Variable instances to model the state of a service, some of
which can be evented, which abstracts eventing.

Up to now, the only problem that has been solved, is
unifying the model that is used by different SDPs. However,
the truly interesting part is providing the same semantics to
similar services in different SDPs. To that end, the framework
makes it possible to define generic service types that can be
used by application developers to control whatever existing
service. A service type is a generic blueprint that defines which
commands a service of that type is able to implement and
which state variables model the state. A PrinterServiceType
might offer commands to schedule a print job and have a state
variable PrintState indicating the current state of the printer

(Idle, Printing, WarmingUp). This helps solve interoperability
issues 2, 4 and 6.

C. Plugin types
Plugins can modify framework behavior by using the Inter-

ceptor pattern. Plugins are able to process devices, services,
commands and state changes as they arrive in the system.

SDP plugins are responsible to implement (parts of) a Ser-
vice Discovery Protocol. Discovery, control and eventing are
completely separated, which means one plugin can implement
discovery for a certain SDP while support for control and
eventing can be supported by another plugin (possibly for
only a subset of SDP-discoverable devices). Examples are the
UPnP SDP plugin which responsible for discovery, control
and eventing of UPnP devices. On the other hand, an SLP
plugin will only offer discovery since control and eventing is
not part of the SLP core protocol. Control and eventing for
SLP services will be provided by a separate plugin.

To enable semantic interoperability, translation of generic
services to SDP specific services is needed in terms of disco-
very, control and eventing. Translation in itself is quite simple.
An interceptor receives a context object (device, service or
state change) that it can manipulate. Suppose the Dyamand-
Printer service type is defined in the framework, whenever
the UPnP SDP plugin discovers a device of type urn:schemas-
upnp-org:device:Printer:1, the UPnP-Printer translation plugin
will translate this device to an instance of the DyamandPrinter
service type. In the same way, an SLP plugin discovers a
service:printer:lpr://printerurl after which the LPR printer
will be translated to a new instance of the DyamandPrinter
service type by the LPR translation plugin.

Application plugins are nothing more than plugins that
implement a particular use case. This can be a very simple
plugin that performs a simple action whenever a certain event
occurs, e.g. switching of all lights when the TV starts playing.
The power of this concept lies in the fact that simple appli-
cation plugins can together implement a complex use case.
An application plugin can execute generic commands without
the need to know which SDP offers the specific service.
CommandInterceptor instances are given the possibility to
translate the generic command to an SDP specific command
that will get executed by the responsible SDP plugin. The
same concept is used whenever an SDP-specific state change
arrives in the framework.

D. Performance tests
To get a view on the overhead introduced by the interoper-

ability framework, compared to native SDP calls, the discovery
part of the framework has been tested in terms of overhead in
syntactical as well as semantic interoperability. Results show
that this functionality can be offered without a noticeable
performance penalty.

V. EXAMPLES

The framework discussed in this paper has been used in a
number of diverse projects, two of which will be discussed in
this section.



Fig. 2. Energy usage monitoring

A. Energy Usage Monitoring
At our research department, we deployed an energy usage

monitoring tool that uses DYAMAND as underlying frame-
work. Smart electricity plugs controlled through Zigbee are
monitoring the energy usage for every person, DYAMAND
continuously polls these plugs to offer a fine-grained visualiza-
tion of the energy used per person, per office, per floor and for
the entire department. This information helps raise awareness
of personal energy usage. Figure 2 shows the interface of this
application.

B. Aggregation of Multimedia Content
As a follow-up project to [19] a multimedia aggregation

application has been developed. The application detects all
media content, scattered across multiple devices (NAS, lap-
tops, etc. ), offering the user an integrated view of all available
media. Furthermore, all media playing devices (audio and/or
video) are discovered, and playout of media items can be
triggered on any device that is capable of rendering it. Media
is automatically enriched with information obtained through
web services (IMDB for movies, FreeDB for audio, etc.).

VI. CONCLUSIONS

In this paper we presented an interoperability framework
for Service Discovery Protocols. Interoperability issues were
identified and we argued how the DYAMAND framework
can solve them. DYAMAND realizes easy-to-use access to
a myriad of different devices, in terms of supported Service
Discovery Protocols, as well as different service types. In
addition, the information gathered by all SDPs is available
for use in application plugins that are interested in all services
(e.g. a helpdesk application for troubleshooting).

This paper has indicated that the presented DYAMAND
framework can solve interoperability issues encountered when
developing applications that want to leverage a heterogeneous
set of “smart” devices. Future work will mainly imply demon-
strating DYAMAND in trans-sector applications, combining
services from traditionally different domains (e.g. energy and
media), as well as showcasing cross-SDP interoperability (i.e.
clients and services of different SDPs should be able to
communicate).

REFERENCES

[1] A. Presser et al., “UPnP device architecture 1.1,”
15 Oct. 2008. [Online]. Available: http://upnp.org/specs/arch/
UPnP-arch-DeviceArchitecture-v1.1.pdf

[2] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service
location protocol, version 2,” RFC 2608 (Proposed Standard), Internet
Engineering Task Force, Jun. 1999, updated by RFC 3224. [Online].
Available: http://www.ietf.org/rfc/rfc2608.txt

[3] F. den Hartog, T. Suters, J. Parsons, and J. Faller, “Production of a
roadmap for an integrated set of standards for smarthouse and systems
related to it and an open event: Final report,” CENELEC, Project Report
Smart House Roadmap SA/CLC/ENTR/000/2008-20, 9 Feb. 2011.

[4] S. Cheshire and M. Krochmal, “DNS-based service disco-
very,” 9 Dec 2011. [Online]. Available: http://files.dns-sd.org/
draft-cheshire-dnsext-dns-sd.txt

[5] F. Zhu, M. Mutka, and L. Ni, “Service discovery in pervasive computing
environments,” IEEE Pervasive Comput., vol. 4, no. 4, pp. 81–90, Oct.–
Dec. 2005.

[6] R. S. Marin-Perianu, P. H. Hartel, and J. Scholten, “A classification of
service discovery protocols,” http://eprints.eemcs.utwente.nl/735/, Cen-
tre for Telematics and Information Technology University of Twente,
Enschede, Technical Report TR-CTIT-05-25, June 2005.

[7] C. Bettstetter and C. Renner, A comparison of service discovery
protocols and implementation of the service location protocol.
Enschede, Netherlands: Citeseer, 13–15 Sept. 2000, pp. 13–15.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.115.4652&rep=rep1&type=pdf

[8] Apr. 2012. [Online]. Available: http://upnp.org/sdcps-and-certification/
standards/sdcps/

[9] E. Guttman, C. Perkins, and J. Kempf, “Service templates and service:
Schemes,” RFC 2609 (Proposed Standard), Internet Engineering Task
Force, Jun. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2609.txt

[10] Apr. 2012. [Online]. Available: http://www.iana.org/assignments/
svrloc-templates.html

[11] Apr. 2012. [Online]. Available: http://dns-sd.org/ServiceTypes.html
[12] Apr. 2012. [Online]. Available: http://www.usb.org/developers/devclass\

docs\#approved
[13] J. Allard, V. Chinta, S. Gundala, and I. Richard, G.G., “Jini meets

UPnP: an architecture for Jini/UPnP interoperability,” in Proc. Symp.
Applications and the Internet (SAINT 2003), Orlando, FL, USA, 27–31
Jan. 2003, pp. 268–275.

[14] S. H. Kim, J. S. Kang, K. K. Lee, H. S. Park, S. H. Baeg,
and J. H. Park, “A upnp-zigbee software bridge,” in Proceedings of
the 2007 international conference on Computational science and its
applications - Volume Part I, ser. ICCSA’07. Berlin, Heidelberg:
Springer-Verlag, 26–29 Aug. 2007, pp. 346–359. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1802834.1802867

[15] P. Grace, G. S. Blair, and S. Samuel, “A reflective framework for
discovery and interaction in heterogeneous mobile environments,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 1, pp. 2–14, Jan.
2005. [Online]. Available: http://doi.acm.org/10.1145/1055959.1055962

[16] P.-G. Raverdy, V. Issarny, R. Chibout, and A. de La Chapelle, “A
multi-protocol approach to service discovery and access in pervasive
environments,” in Mobile and Ubiquitous Systems - Workshops, 2006.
3rd Annual International Conference on, San José, California, 17–21
Jul. 2006, pp. 1 –9.

[17] Y.-D. Bromberg and V. Issarny, “INDISS: Interoperable discovery
system for networked services,” in Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on Middleware,
ser. Middleware ’05. New York, NY, USA: Springer-Verlag New
York, Inc., 28 Nov.–2 Dec. 2005, pp. 164–183. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1515890.1515899

[18] D. Verslype, J. Nelis, T. Verschueren, W. Haerick, F. De Turck, and
C. Develder, “Framework for ubiquitous discovery and access to home
services,” in Proc. 1st Int. Conf. on Advanced Service Computing
(Service Computation 2009), part of ComputationWorld 2009, Athens,
Greece, 15–20 Nov. 2009, pp. 398–403.

[19] J. Nelis, D. Verslype, and C. Develder, “Intelligent distributed multime-
dia collection: Content aggregation and integration,” in Proc. 36th IEEE
Conf. Local Computer Networks (LCN 2011), Bonn, Germany, 4–7 Oct.
2011, pp. 203–207.


