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Comparison of Intelligent Charging Algorithms for
Electric Vehicles to Reduce Peak Load and Demand

Variability in a Distribution Grid
Kevin Mets, Reinhilde D’hulst, and Chris Develder

Abstract: A potential breakthrough of the electrification of the ve-
hicle fleet will incur a steep rise in the load on the electrical power
grid. To avoid huge grid investments, coordinated chargingof those
vehicles is a must. In this paper, we assess algorithms to sched-
ule charging of plug-in (hybrid) electric vehicles as to minimize
the additional peak load they might cause. We first introducetwo
approaches, one based on a classical optimization approachusing
quadratic programming, and a second one, market based coordi-
nation, which is a multi-agent system that uses bidding on a virtual
market to reach an equilibrium price that matches demand and
supply. We benchmark these two methods against each other, as
well as to a baseline scenario of uncontrolled charging. Oursimu-
lation results covering a residential area with 63 households show
that controlled charging reduces peak load, load variability, and
deviations from the nominal grid voltage.

Index Terms: Demand side management, plug-in (hybrid) electric
vehicles, smart charging, smart grid.

I. INTRODUCTION

Electric vehicles (EV) and plug-in hybrid electric vehicles
(PHEV) are expected to gain in popularity the following years.
Research estimates the number of hybrid electric vehicles in
Belgium to reach 30% by 2030 [1]. This evolution is mostly
driven by environmental benefits such as lowered emissions and
improved fuel efficiency. However, as the electrification ofthe
vehicle fleet is gaining momentum, it will also have an impacton
the generation, transmission and distribution levels of the power
grid.

Additional generation will be required to recharge the batter-
ies of these vehicles as this requires large amounts of electrical
energy which results in additional load on the power grid. How-
ever the energy required to charge these vehicles is estimated to
be only 5% of total consumption in Belgium [2] in 2030. The
impact on the generation and transmission levels of the power
grid are therefore considered manageable on a short to medium
term. However, the impact on the (residential) distribution net-
work can be substantial, especially for high penetration levels
of EVs: A single EV is estimated to double average household
load during charging [3] (120 V/15 A 1.4 kW level 1 charger,
and average residential load Southern California).
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Charging electric vehicles can lead to large peak loads.
Equipment installed in the power grid can be overloaded as a
result. Maintaining the power quality (e.g., voltage, unbalance,
etc.) is also important to assure the correct operation of the
power grid. Therefore, it is important to control and coordinate
the charging of electric and plug-in hybrid electric vehicles.

The main concern of vehicle owners is to have the batteries
charged by the time they need their vehicle. A certain degreeof
flexibility is available, because vehicles are often parkedfor pe-
riods of time that are longer than the time required to charge
their batteries, for example during the night. We can exploit
this flexibility and shift consumption to times of lower demand.
This presents opportunities for the development of intelligent
charging algorithms that utilize this flexibility to avoid issues in
the distribution grid. These algorithms will decide on whento
charge what vehicle, and potentially at what charging rate (if
this can be tuned), as to achieve a certain objective (e.g., peak
shaving, maximally use available green energy).

Such approaches to control and coordinate the charging of
electric vehicles, that for example reduce peak load or balance
demand and supply from renewable energy sources, are part of
a broader context called demand side management (DSM) or
demand response (DR). Instead of adapting power generation
to power demand, power demand is adapted to support the op-
timal operation of the power grid. The application of DSM or
DR is not limited to controlling the charging of electric vehi-
cles, but also targets other residential, commercial, or industrial
devices. Different approaches are considered in literature. In
this work, we focus on approaches that are based on mathe-
matical optimization and multi-agent systems. A mathematical
optimization approach based on quadratic programming is pre-
sented in [4]. The aim is to minimize energy losses, and max-
imize the grid load factor. In earlier work [5], [6], we also ex-
plored approaches based on quadratic programming, that reduce
peak load and load variability. An example of a multi-agent sys-
tem is PowerMatcher [7], which is based on virtual markets,
where agents bid on an electronic market to determine an equi-
librium price matching demand and supply. Distributed algo-
rithms based on dual decomposition are proposed in [8] and [9].
Other approaches are based on game theory to perform demand
side management [10]. Control schemes for charging electric
vehicles based on queuing theory are proposed in [11] and [12].
Clearly, there is much interest in DSM or DR algorithms, and a
wide variety of methods has been proposed, to improve the op-
eration of the distribution grid by controlling and coordinating
the charging of electric vehicles (or other electrical loads).

Yet, often the proposed coordination mechanism is only
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benchmarked against a “business-as-usual (BAU)” scenario
without coordination. In this paper, we present a quadraticpro-
gramming based coordinated charging algorithm that can serve
as optimal control benchmark. We will demonstrate its use-
fulness in comparing it with a realistically deployable price-
based coordination mechanism for DSM, in casu a market-based
multi-agent system (MAS).

The contributions of this paper are: (i) An extensive analy-
sis (beyond [5], [6]) of quadratic programming (QP) based as-
sessment of attainable peak load reduction, (ii) includingasso-
ciated effects on power quality, and (iii) benchmarking of afully
distributed market-based multi-agent system against the optimal
QP results.

We also note that electric vehicles could also be used to pro-
vide ancillary services to the power grid [13], a concept known
as vehicle-to-grid (V2G). An example of V2G services is stor-
age of renewable energy. Solar and wind energy is intermittent
and often the availability thereof does not coincide with the de-
mand for energy. Electric vehicles can be charged at these mo-
ments and help balance supply and demand. The energy stored
in the EVs’ batteries obviously can be used later for transporta-
tion, but it could also be delivered back to the grid while theEV
is still stationed at the charging point. Although this is a promis-
ing concept, we will not consider it in this work. However, both
approaches we consider, can be adapted to V2G services [6].

The remainder of this paper is structured as follows. Our
problem statement is summarized in Section II. We discuss the
algorithms considered in this paper in Section III. The casestudy
used to evaluate the different algorithms is presented in Sec-
tion IV and results are discussed in Section V. Finally, conclu-
sions are synthesized in Section VI.

II. PROBLEM STATEMENT

Charging algorithms that determine optimized charging
schedules can reduce the negative effects that the additional load
has on the distribution grid, and also optimize the consumption
of renewable and intermittent energy sources. This paper dis-
cusses two approaches used to determine charging schedulesof
electric vehicles. The first approach adopts QP, whereas thesec-
ond approach is based on MAS and electronic markets. The goal
of both approaches is to minimize the peak load and load profile
variability of the transformer load profile resulting from charg-
ing electric vehicles. This is achieved by shifting the charger
loads in time and controlling the rate of charging.

The two approaches have a fundamental difference in their
design. We use the QP approach in an offline setting, where
we assume all events (cars arriving, departing, evolution of
base load of other electrical consumers) are known in advance:
The QP solution hence will result in an optimal answer to the
EV charging scheduling problem. (Note that some online ap-
proaches can be straightforwardly be derived, which would lead
to sub-optimal results, but these are not further discussedin this
paper.) The second approach, MAS, will reflect the more real-
istic online situation, where we do not know beforehand what
car will arrive when, but rather (re)compute the charging sched-
ule dynamically upon each arrival. The goal of this work is to
measure the differences between the two approaches.

III. CHARGING ALGORITHMS

The algorithms that form the topic of this paper determine
charging schedules that control the recharging of electricve-
hicles. Each schedule indicates when a certain vehicle can be
charged and at which charging rate.

The following sections will describe the different approaches
taken. Afterwards, we compare the results from each approach
to a BAU case in which we assume that the car immediately
starts charging upon arrival at the charging point, withoutany
form of coordination, until it is fully charged. In this BAU sce-
nario, the charging rate is not controlled, but is fixed by the
car/battery properties.

A. Quadratic Programming

In the following sections we discuss three algorithms based
on QP: The local, iterative global, and global algorithms. The
local and iterative global algorithms have been introducedin ear-
lier work [5]. However, we here expand on this earlier work
by introducing a third algorithm, and by comparing these algo-
rithms to an algorithm based on multi-agent systems and elec-
tronic markets.

Quadratic programming is a specific type of optimization
problem in which a quadratic function of several variables sub-
ject to linear constraints on these variables is optimized (mini-
mizing or maximizing). The three algorithms are similar in na-
ture, but differ in the amount of knowledge they posses about
their surroundings, i.e., regarding the power consumptionof
other households and vehicles.

A.1 Model Parameters

We first discuss the parameters that are present in the differ-
ent quadratic programming models. The models consists ofK

households, identified individually by the variablek. The simu-
lated period of time (e.g., 24 hours) is divided inT discrete time
slots (e.g., 5 minutes) which are identified by the variablet.

We assume that the load resulting from the usage of electric
appliances in each household is uncontrollable; we call this load
the uncontrollable load. Each householdk has a load profile for
the uncontrollable loadsBk(t) that indicates the average uncon-
trollable load (stemming from household appliances etc.) during
each time slott. The aggregated energy demand of each house-
hold is limited toLmax (representing the grid connection capac-
ity), expressed in Watt.

Charging electric vehicles will result in an additional load in
the households. This load however is flexible as it can be shifted
in time and therefore it is not part of the uncontrollable load of a
household. Each vehicle has an arrival and departure time slot,
respectivelyαk andβk. BCk indicates the maximal capacity of
the battery, expressed in Wh.Ck indicates the energy contained
in the battery pack upon arrival and is also expressed in Wh. The
charging rate is controllable but limited byXk,max.

The equations use a conversion factor,δ, to calculate the en-
ergy consumed (expressed in Wh) during a certain time slot
based on the load (expressed in W) during that time slot (e.g.,
δ = 0.25 assuming 15 minute time slots).
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A.2 Local Algorithm (QP1)

The local (i.e., single household) scheduling method uses in-
formation about local power consumption to determine a charg-
ing schedule, i.e., we assume that the household energy con-
sumption is known between arrival and departure time. A home
energy management system could provide this information, e.g.,
based on historical data. The impact of other households andve-
hicles on the global load profile is not considered in this case.
Therefore, the schedules resulting from this approach minimize
local peak load and load profile variability. The quadratic pro-
gramming model described below is solved for each vehicle sep-
arately upon arrival at the charging point at home.

A target load profileTk(t) is calculated fort ∈ {αk, · · ·, βk},
the duration of the charging session, before determining the op-
timal charging schedule. The goal is for the household load pro-
file, which includes the uncontrollable load and charger load,
to approach this target profile as closely as possible. The opti-
mal target load profile, considering the goals of minimizingthe
peak load and load profile variability, is formed by a constant
load. The target load profile represents the constant power that
should be supplied, to provision the energy requirements ofthe
household and electric vehicle. Of course, this is not achievable,
because not all devices have flexibility. The calculation ofthe
target load at each household is defined in (1) and is based on
the battery capacityBCk, the current battery stateCk, the un-
controllable loadBk(t), and the charging session duration.

Tk(t) =
(BCk − Ck)δ +

∑βk

t′=αk
Bk(t

′)

βi − αi

. (1)

The following constraints apply to the optimization problem.
The decision variablesXk(t) of the optimization problem form
the charging schedule and indicate the charing rate during each
time slot. We define decision variables for one vehicle. The
charging rate is limited byXk,max, and can be any as defined
by (2). Constraint (3) assures that the load of the householddoes
not exceed a certain limitLmax, e.g., set by the supplier, dis-
tribution system operator (DSO), or technical constraints(e.g.,
household circuitry). Finally, (4) assures that the battery is fully
charged after applying the charging schedule. Note that we use
a very simple battery model. However, this should not signifi-
cantly influence the results [14].

0 ≤ Xk(t) ≤ Xk,max (2)

Bk(t) +Xk(t) ≤ Lmax (3)

Ck +

βk
∑

t=αk

(

Xk (t) δ
)

= BCk. (4)

The objective function is defined in (5). A charging schedule
Xk(t) is obtained by minimizing the squared euclidean distance
between the target load profile and the household load profile.

βk
∑

t=αk

(

Tk(t)−
(

Bk(t) +Xk(t)
)

)2

. (5)

A.3 Iterative Global Algorithm (QP2)

The iterative global algorithm also uses power consumption
information, but it is not limited to local information. Thealgo-
rithm is initialized by determining the load profile observed by

the transformer to which the households are connected. Equa-
tion (6) is used to calculate this global load profile. The global
load during each time slott is the sum of all household loads
during time slott.

GB(t) =

K
∑

k=1

Bk(t). (6)

The following quadratic programming model is solved sepa-
rately for each vehicle that wishes to recharge its batteries. The
algorithm calculates a target load profile using the global load
profile instead of the local load profile as done by the local al-
gorithms.

Tk(t) =
(BCk − Ck)δ +

∑βk

t′=αk
GB(t′)

βi − αi

. (7)

The constraints applied to the quadratic programming modelare
identical to the constraints of the local algorithm and are there-
fore defined in constraints (2), (3), and (4).

The objective function that is minimized to determine the
charging schedule is defined by (8). It is based on the same prin-
ciple as the local algorithm, but utilizes the global load profile
instead of the local load profile. As a result, we obtain a global
optimum, instead of a local optimum as is the case of the local
algorithm.

βk
∑

t=αk

(

Tk(t)−
(

GB(t) +Xk(t)
)

)2

. (8)

After determining the charging schedule, the global load profile
is updated with the load originating from the charging schedule
(9), hence the iterative nature of the algorithm. As a result, future
iterations will account for other households and electric vehicles
that have been scheduled. This is the main difference between
the local and global iterative algorithms: Other households and
electric vehicles that have been scheduled are accounted for
when a charging schedule is determined by the iterative global
algorithm.

GB(t) = GB(t) +Xk(t), ∀t ∈ [αk, βk]. (9)

The iterative global algorithm is performed on a first-come-first-
serve basis for each vehicle that arrives. However, the order in
which vehicles arrive will have an impact on the charging sched-
ule. To evaluate the impact of this order, and also to evaluate the
benefits of accounting for future arrivals, we developed a third
approach, which is presented in subsection III-A.4.

A.4 Global Algorithm (QP3)

The third approach based on quadratic programming as-
sumes knowledge about household energy consumption, and
even more importantly, each future charging sessions that will
occur over a certain time frame.

A scheduling period, e.g., corresponding to a calendar day,
is defined for which the charging schedules of all vehicles are
determined beforehand. For each vehicle, the algorithm has
to know in advance the arrival time, departure time, state-
of-charge, etc. Based on this information, charging schedules
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for each vehicle are determined simultaneously by solving the
quadratic programming model. Note that in contrast to the local
and iterative global quadratic programming model, the global
model only has to be solved once to determine the charging
schedule for each vehicle. The advantage of this approach isthat
all information is known, and therefore the flexibility is maxi-
mally used.

The global algorithm is initialized in the same way as the iter-
ative global algorithm by calculating the global load profile us-
ing (6). A set of decision variablesXk(t) and constraints is de-
fined for each vehiclek. These variables will define the charging
schedule for each vehicle after minimizing the objective func-
tion (10). Again, the constraints are identical to those defined
by the local algorithm in (2), (3), and (4).

Equation (10) illustrates that the objective function is again
based on the same principle as the local and iterative globalal-
gorithm. In contrast to the local and iterative global method, the
quadratic programming model now contains decision variables
for each vehicle. As a result the charging schedules for eachve-
hicle k will be determined after minimizing the objective func-
tion.

T
∑

t=0

{

T (t)−

(

GB(t) +

K
∑

k=1

Xk(t)

)}2

. (10)

A.5 Discussion on the Different QP Models

Subsections III-A.2, III-A.3, and III-A.4 discuss approaches
based on quadratic programming. The objective of each ap-
proach is to minimize the peak load, and reduce the variabil-
ity between demand over time. Although the objective of each
approach is the same (i.e., reduce the peak load), the informa-
tion used to determine optimal charging schedules is different
for each approach. Therefore, we can evaluate what information
is needed, and has to be shared between participants, to obtain
suitable results. Also, the required information and communi-
cation technology (ICT) infrastructure depends on the specific
approach, as illustrated in Fig. 1.

For example, the local algorithm depends on the arrival and
departure time, the energy requirements, battery charger and/or
electric vehicle properties, and the predicted household energy
consumption. We consider it realistic that the user provides an
expected departure time (while the arrival can be detected au-
tomatically from the insertion of the plug), and battery/vehicle
properties be acquired automatically (e.g., through communi-
cation with the EV). Household energy consumption informa-
tion can be provided by an energy management system (e.g., the
home energy box in Fig. 1), based on e.g., historical data. There-
fore, all information required for the local algorithm is locally
available, and assuming the household is equipped with an en-
ergy management system, the optimal charging schedule can be
determined locally, and no connection to a wide-area network is
required.

The iterative global and global approaches on the other hand,
require information from households and vehicles to be either
communicated amongst all local systems (i.e., the home energy
boxes), or sent to a central controller (e.g., the global energy
controller in Fig. 1). Energy consumption information fromall
households must be aggregated, and the central controller re-

Fig. 1. ICT infrastructure required for: (a) The uncontrolled BAU case,
(b) local control, and (c) global/iterative control.

quires information regarding arrival and departure times,energy
requirements, battery and/or electric vehicle properties. There-
fore, a network spanning at least the complete residential area
will be required, connecting the households with the central con-
troller. Note that privacy concerns could be raised againstthe
global and iterative approaches, regarding the amount of infor-
mation shared (since user presence and behavior could be in-
ferred from it, e.g., through load disaggregation). We willnot
delve into such discussions in this paper, but rather focus on the
potential technical advantages stemming from sharing thatin-
formation, in terms of load shaping and power grid effects.

B. Market Based Coordination

We will benchmark aforementioned (rather theoretical) QP-
based approaches, with a more pragmatic coordination mech-
anism for EV charging coordination: A single-shot multi-unit
auction market mechanism. This market based coordination
mechanism also aims to prevent unwanted power peaks. The dis-
tribution grid is organized as a commodity market where agents
act on behalf of the transformer and the households. An agentis
a software or hardware computer system that is able to [15]:
• Make autonomous decisions.
• Interact with other agents.
• React, reactively and pro-actively, to changes in its environ-

ment.
The commodity that is bought and sold in the market is elec-

trical energy. In a single-shot multi-unit auction, buyersand sell-
ers submit their bids and offers for a commodity, after whicha
clearing price is established to balance supply and demand [7],
[16], [17]. A bidding function indicates what volume a buyer
or seller is willing to trade for which price. A bidding func-
tion is constrained by the maximum volume a buyer or seller
is willing or able to trade. Each buyer is allocated to consume
the amount of electrical energy that he is willing to buy for the
clearing price. The sellers are allocated to produce the amount
of goods they are willing to sell for the clearing price. All play-
ers on the market do not know each others strategies nor bids.
It should be noted that this market-based coordination approach
assumes the price is only used as a control signal to stimulate
devices to postpone or advance their consumption and no real-
time pricing system is connected to our coordination system.
The main advantage of a market based approach to coordination
is that it requires no centralized planning algorithm, it scales
well to a large numbers of devices as well as a large diversity
of devices. Furthermore, since the only interaction between the
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Fig. 2. Agent organization.

n

Fig. 3. Interaction between agents during one bidding round.

market players is by means of bidding functions, a market based
approach has less privacy issues than a centralized coordination
approach.

The market-based coordination organized in the distribution
grid functions as follows (see Fig. 2). Each household is repre-
sented by an agent that bids for electricity on the market. The
transformer is represented by an agent as well, which acts as
the sole supplier of electricity. Within a household, each device
is also represented by an agent. These device agents send their
bids to the household agent who aggregates these bids before
sending the aggregated bid to the market. The household agents
bid for an amount of electrical energy that they want to use for
the next time slot and the transformer agent bids for the amount
of energy it wants to deliver. In every bidding round, the market
agent sends a signal to the transformer agent and the household
agents, after which each agent will submit its bid. When all
bids are received, the market agent aggregates the bid functions
and determines the market price. This market price is communi-
cated to the agents and based on their bids, the agents know how
much energy to consume or produce. The interaction between
all agents during one bidding round is depicted in Fig. 3. We
assume the agents know how much their consumption will be in
the next time slot when submitting a bid function.

Every household contains at least one agent representing the
uncontrollable load (UL). Because the UL agent needs to be sure
that the uncontrollable loads will actually get their required en-
ergy, the UL agent will always bid the maximum price for its
load, as to reflect its inflexibility. The controllable device we
consider in this paper will be the EV, which hence will have
its separate EV agent. In this work, we assume that the EVs are
able to modulate their demand, i.e., the EV chargers can demand
a power between zero and the maximal power. Consequently,
the bidding functions they submit are linear functions, shown in

p

p

p

p

V
o
lu
m
e

Price

(a)

(b)

Fig. 4. Bidding functions: (a) EV bidding function and (b) transformer
bidding function.

Fig. 4(a). The shape of the linear bidding functions dependson
the pricep, as shown in Fig. 4(a). The bidding strategy of the
EV agent is to bid a pricep that increases linearly as the charg-
ing deadline approaches. This charging deadline is the timeat
which the electric vehicle has to start charging in order to be
fully charged in time. An important assumption is that, in order
to estimate its bid price, an EV agent is able to obtain an accu-
rate estimation of the state-of-charge of the battery. The exact
shape of the aggregated bid of a household agent thus depends
on whether an EV is present or not, the bid price of that EV,
the EV consumption and the consumption of the uncontrollable
load.

The transformer submits a linear bid function, shown in
Fig. 4(b). We assume that higher costs are associated with a
higher power transmitted by the transformer.

IV. CASE STUDY

The algorithms are evaluated using three scenarios, each sim-
ulating a distribution network with a certain penetration degree
of electric and plug-in hybrid electric vehicles. The different
scenarios and their corresponding number of electric and plug-in
hybrid electric vehicles together with the type of battery charger
are defined in Table 1. We simulate a time frame of 24 hours,
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Fig. 5. Topology of the three phase distribution grid used in the simula-
tion. It consists of 63 households, distributed over 3 feeders, and a
distribution transformer with a rating of 250 kVA.

divided in time slots of 5 minutes.

A. Power Grid

The simulated three phase distribution network is illustrated
in Fig. 5, and consists of 63 households distributed over three
feeders, that are connected to a distribution transformer with
a rating of 250 kVA. Each household is connected to the dis-
tribution grid using a single-phase connection, which is ran-
domly assigned to either of the three phases using a uniform
distribution. The load profiles that model the power drawn by
each household are based on measurements performed by VITO
on a number of households in Flanders during different winter
days, representing a worst case scenario, as the grid load ishigh-
est during winter in Belgium. Each house is randomly assigned
one of these real-life measured load profiles which is randomly
shifted in time using a uniform distribution to avoid unrealistic
synchronization of loads amongst houses.

B. Electric Vehicles

We assume a PHEV to have a battery capacity of 15 kWh and
an EV a battery capacity of 25 kWh. We use a linear approxima-
tion of the non-linear battery behavior. In this model, we neglect
battery inefficiency and assume all power is transferred loss-
less through the charger into the battery. However, this should
not significantly influence the results [14]. The householdsare
provided with a single-phase connection and either a standard
charger of 3.6 kW, using 230V 16A, or a fast charger of 7.4kW,
using 230V 32A. These specifications are based on the IEC
62196 standard which describes conductive charging of electric
vehicles.

C. User Behavior

It is assumed that most of the times, vehicles will be recharged
at home or at work. In this paper we focus on charging at home.
The plug-in times of electric vehicles are varied around 17:00
using a normal distribution with a standard deviation of 45 min-
utes. The charging deadline times are similarly assumed to be
normally distributed around 06:00 am.

V. RESULTS

For each scenario (light, medium, and heavy) we selected 100
seeds to initialize the random parameters (i.e., arrival and depar-
ture times) and evaluated each algorithm for each of these 100

Table 1. Amount of PHEV and EV and their type of battery charger in

the three different scenarios.

Scenario PHEV PHEV EV EV

3.6 kW 7.4 kW 3.6 kW 7.4 kW

Light 4 3 2 1

Medium 10 10 5 4

Heavy 17 16 7 7

seeds. To compare the results from the different charging ap-
proaches, we obtained the peak load and standard deviation of
each load profile and calculated the average over 100 instances
for these metrics. The results presented below were obtained us-
ing our simulation environment that incorporates models ofboth
the ICT infrastructure and the power network [18]. Fig. 6 illus-
trates the average transformer load profiles obtained for each
scenario and algorithm. Clearly, uncontrolled charging leads to
a substantial increase in peak load. However, controlled charg-
ing approaches are able to reduce this peak load. A more de-
tailed discussion is provided in the following sections.

A. Total Energy Consumption

Electric vehicles form an additional load on the power grid
when being recharged. This additional load obviously leadsto
more energy consumption than the case without EVs. This is
observed in the light and medium scenarios where total energy
consumption rises with 22% and 63%. In the heavy scenario
energy consumption is doubled. Clearly, no coordination mech-
anism can reduce that total load increase, but rather shift the
EV load in time as to minimize peak load increases. This is dis-
cussed next.

B. Impact of Uncontrolled Charging on the Peak Load

We start the discussion of the results by looking at the impact
of uncontrolled charging on the peak load. Uncontrolled charg-
ing has a significant impact on the peak load because the charg-
ing coincides with the existing evening peak load. On average
it leads to almost 1.5 times the peak load of current electricity
consumption in a residential area if we consider the light sce-
nario. Uncontrolled charging in the medium and heavy scenario
on average leads to a peak load that is 2.4 and 3.3 times the ex-
isting peak load. The peak load does not exceed the transformer
rating in the light and medium scenarios, however it exceedsthe
transformer rating in 88% of the simulated cases (i.e., for 88 out
of 100 random seed choices).

C. Peak Load Reduction by Controlled Charging

As we have seen in the previous section, uncontrolled charg-
ing leads to a higher peak load, because the charging coincides
with the existing evening peak load. The charging algorithms
presented in this paper aim to reduce the peak load as much as
possible, preferably to the same level as in the case withoutEVs.

Tables 2 and 3 summarize the impact on the peak load by the
different energy control strategies. The energy control strate-
gies are able to reduce the peak load of uncontrolled charg-
ing, by shifting the vehicle loads in time and controlling the
rate of charging. In the light scenario, the local method (QP1)
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Fig. 6. Average load profiles measured at the distribution transformer. Each load profile is the average of 100 individual load profiles that were
obtained for that specific scenario (light, medium or heavy) and charging algorithm (QP1, QP2, QP3, or MAS) using different random seeds: (a)
uncontrolled charging for different numbers of P(H)EVs, (b) light scenario with 10 P(H)EVs, (c) medium scenario with 29 P(H)EVs, and (d) heavy
scenario with 47 P(H)EVs.

achieves a peak load reduction of 29.62% compared to the BAU
scenario (i.e., uncontrolled charging), while the iterative (QP2),
global (QP3) and MAS based methods all achieve a peak re-
duction of approximately 32%. In the medium scenario, the lo-
cal and multi-agent market based method achieve similar re-
sults: 53.84% and 53.19%. The iterative and global methods
both achieve a peak reduction of 58.73%. When we consider the
heavy scenario, the multi-agent market based method achieves a
reduction of 54.04%, the local method 63.76%, and the iterative
and global method both achieve a reduction of 70.00% com-
pared to the BAU scenario. These results give an indication of
what the impact is on the peak load, but we are more interested
in knowing how much of the additional peak load that was the
result of uncontrolled charging can be shifted.

The iterative and global methods are able to fully reduce the
peak load to the original level before electric vehicles were in-
troduced to the distribution grid. The local method however, re-
moves only 92% of the additional peak load that is added by
uncontrolled charging. The reason for this being that the local
algorithm only considers peak loads in each household individ-
ually. The vehicle load is shifted in time to not coincide with

the peak loads in that household. However, that local peak does
not necessarily coincide with the overall peak load. The market
based method is also unable to fully remove the additional peak
load that is the result of charging electric vehicles: 99.64% of the
additional peak load is removed in the light scenario, 90.64% in
the medium scenario and 77.15% in the heavy scenario.

D. Load Profile Variability

The load profile variability is another interesting factor as it
influences dispatching of generators. We measure it by calcu-
lating the standard deviation between the values of the loadpro-
file. We list the standard deviation of the transformer load over
time in Table IV, and summarize its reduction compared to the
BAU case in Table V. Each algorithm is able to reduce the stan-
dard deviation of the values of the load profile compared to the
BAU scenario. However, there is a big difference between the
methods based on quadratic programming and the market based
multi-agent system. The results regarding the peak load forthe
iterative and global algorithm where identical, however there is
a difference when considering the variance of the load profiles.
The global algorithm is able to determine the most optimal so-
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Table 2. Overview of the peak loads observed (kW). The peak load is

determined for each scenario and algorithm. The minimum, average,

and maximum peak load are given for 100 simulations.

Scenario Algorithm Minimum Mean Maximum

Light QP1 76.34 85.23 98.36

QP2 71.96 82.15 95.23

QP3 71.96 82.15 95.23

MAS 71.98 82.28 95.23

Medium QP1 83.71 91.89 102.84

QP2 71.96 82.15 95.23

QP3 71.96 82.15 95.23

MAS 86.71 93.19 99.09

Heavy QP1 90.20 99.23 110.21

QP2 71.96 82.15 95.23

QP3 71.96 82.15 95.23

MAS 116.91 125.78 137.88

Table 3. Peak load reductions. QP1 = Local, QP2 = Iterative Global,

QP3 = Global, and MAS = Multi Agent.

Peak loadց

Scenario QP1 QP2 QP3 MAS

Light 29.62% 32.16% 32.16% 32.00%

Medium 53.84% 58.73% 58.73% 53.19%

Heavy 63.76% 70.00% 70.00% 54.04%

Table 4. Standard deviation.

Scenario Algorithm Minimum Mean Maximum

Light QP1 15.66 16.17 16.85

QP2 14.18 14.57 15.24

QP3 14.11 14.49 15.18

MAS 17.95 18.65 19.48

Medium QP1 18.79 19.80 20.80

QP2 16.56 17.38 18.19

QP3 15.55 16.78 17.76

MAS 27.19 28.64 29.89

Heavy QP1 23.35 24.80 26.20

QP2 21.34 22.56 24.02

QP3 19.46 21.30 22.62

MAS 36.66 38.71 40.57

lution as it has the most information available, whereas if we
only consider peak load, the iterative and global method have
the same results. Note that the market based MAS system does
not seem to be able to reach the flat load profile as achieved by
the QP methods.

Table 5. Reduction of the standard deviation. QP1 = local, QP2 =

iterative global, QP3 = global, and MAS = multi agent.

Standard deviationց

Scenario QP1 QP2 QP3 MAS

Light 35.24% 41.63% 41.94% 25.29%

Medium 55.01% 60.50% 61.88% 34.91%

Heavy 60.22% 63.82% 65.84% 38.80%

E. Power Quality

The peak load and load profile variability are mainly of con-
cern to assess production and grid capacity. Yet, as noted before,
the introduction of EVs risks to cause additional problems in the
distribution grid that historically was not dimensioned tocater
for EVs. Using our integrated ICT- and power network simu-
lator [18], we also assessed the impact of coordination mecha-
nisms QP1 and QP2 on the power quality in terms of variations
in voltage magnitude. As just discussed, we achieve substantial
improvements in terms of peak power and demand variability
reduction, using realistic assumptions on the required informa-
tion. According to the EN50160 standard, voltage deviations up
to 10% are acceptable in distribution grids.

First, we evaluated how often voltage deviations exceeding
10% occur during a 24 hour time period, divided in 288 time
slots of 5 minutes. Table 6 gives an overview of the average
number of time slots during which such deviations occur. We
obtained these averages by counting the number of time slots
in which deviations exceeding 10% occurred somewhere in the
residential area for each experiment (using a different random
seed), and calculated the average. Large P(H)EV penetration de-
grees lead to deviations occurring more often. For the heavysce-
nario, which corresponds to the worst case, uncontrolled charg-
ing on average leads to voltage deviations exceeding 10% for
45.51 time slots, or approximately 16% of the time slots. How-
ever, controlled charging reduces this number: If we consider
the heavy scenario again, QP1 leads to 3.92 time slots, or ap-
proximately 1% of the time slots, and QP2 leads to 9.30 time
slots, or approximately 3% of the time slots.

Next, we evaluated how large the deviations from the nom-
inal voltage are. Results are summarized in Table 7. We only
considered experiments during which at least one voltage devi-
ation exceeding 10% occurred. For each of those experiments,
we determined the maximum voltage deviation that occurred.
The maximum and average values are given for each set of ex-
periments in Table 7. Large penetration degrees of P(H)EV lead
to larger voltage deviations. For the heavy scenario, the aver-
age maximum deviation observed for uncontrolled charging is
37% of the nominal voltage, and the maximum deviation ob-
served over all experiments is 65%. These deviations are much
larger than the 10% required by the EN50160 standard. How-
ever, controlled charging reduces the magnitude of the devia-
tions. The average maximum deviation for QP1 is 12% in the
heavy scenario, and the maximum deviation observed over all
experiments is 20%. For QP2 we obtain respectively 14% and
22%.

Based on the results summarized in Tables 6 and 7, we can
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Table 6. Average number of 15 minute time slots (out of the 288 time

slots over the course of the considered one day period) during which

voltage deviations exceeding 10% are observed.

Scenario BAU QP1 QP2

Light 22.17 3.90 3.31

Medium 38.01 4.52 5.32

Heavy 45.51 3.92 9.30

Table 7. Average and maximum magnitude of voltage deviations.

BAU QP1 QP2

Scenario AVG MAX AVG MAX AVG MAX

Light 20% 29% 13% 19% 13% 18%

Medium 29% 60% 13% 22% 13% 20%

Heavy 37% 65% 12% 20% 14% 22%

conclude that the QP1 approach in general results in the most
optimal results. The QP1 or local approach aims to reduce the
local or household peak load. Therefore, the load at each node in
the grid will be as low as possible, resulting in smaller voltage
deviations. The QP2 or iterative approach on the other hand,
aims at reducing the transformer peak load. Individual house-
hold peak loads do not necessarily coincide with the peak load
at the transformer level. Therefore, it is possible that household
peak load is increased, which increases the voltage deviation.

F. Discussion

The results from the approaches based on quadratic program-
ming are superior in terms of peak load and load profile variance
reduction compared to those of the multi-agent system. How-
ever, the results from the market based MAS system require
less stringent knowledge of the load profiles, and also only ex-
change very limited information compared to the QP-methods.
The multi-agent system has the added advantage of being a
truly dynamic and flexible approach: Via tweaking of the bid-
ding curves, the optimization can be steered towards other ob-
jectives. The QP approach is more strict, and more cumbersome
to adapt to different objectives. Nevertheless, the QP method is
extremely useful to assess what the best possible result is,and
hence serves as an optimal benchmark. In our case, it thus re-
veals that there is still substantial room for improving themar-
ket based MAS approach (e.g., peak reduction of 54.04% vs.
70.00% for QP, variability reduction of 38.80% vs 65.84% for
QP). This does not mean that the approaches based on quadratic
programming are useless, as they determine the most optimal
solutions and therefore can be used to benchmark other algo-
rithms.

VI. CONCLUSION

Uncontrolled charging of electric vehicles for substantial pen-
etration would result in increases in peak load (we noted forthe
worst case scenario more than doubling the peak load observed
in the distribution grid without electric vehicles). We presented
two classes of EV charging coordination: Based on classical

QP on the one hand, and market-based MAS on the other. The
aim of both in the considered case studies is to reduce the peak
load and the load variability in a distribution grid. We consid-
ered three quadratic programming approaches, assuming dif-
ferent knowledge of components within the grid. We provide
simulation results, using a combined ICT and power simula-
tor [18] for a residential area consisting of 63 households and
different penetration degrees of electric vehicles. Peak reduc-
tions ranging from 29% up to 70% are achievable, compared to
a business-as-usual scenario in which vehicles are chargedwith-
out control and coordination. Variability in demand is decreased
ranging from 25% up to 65%. The QP method mainly serves as
benchmark, since real-life deployment may be hampered by its
requirement to communicate expected load profiles (e.g., based
on historical measurements). The MAS approach, while requir-
ing modest knowledge of the expected future load and imposing
little communication, achieves in the range of 32.00% to 54.04%
(vs. 32.16% to 70.00% for QP-global) peak reduction. We con-
clude that future work is required to further tune and optimize,
e.g., MAS systems to closer achieve the optimum found by QP.
We also evaluated the impact of our coordinated charging ap-
proaches in terms of power quality, under the form of voltage
magnitude variations. While the objectives as formulated in our
approaches do not explicitly include the voltage as a parame-
ter to be optimized, we do note that the coordinated charging
strategies reduce the observed voltage deviations (measured as
differences from the nominal voltage greater than 10%).
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