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Comparison of Intelligent Charging Algorithms for
Electric Vehicles to Reduce Peak Load and Demand
Variability in a Distribution Grid

Kevin Mets, Reinhilde D’hulst, and Chris Develder

Abstract: A potential breakthrough of the electrification of the ve- Charging electric vehicles can lead to large peak loads.
hicle fleet will incur a steep rise in the load on the electricepower  Equipment installed in the power grid can be overloaded as a
grid. To avoid huge grid investments, coordinated chargingfthose  result. Maintaining the power quality (e.g., voltage, uabae,
vehicles is a must. In this paper, we assess algorithms to sh  etc ) is also important to assure the correct operation ef th
ule charging of plug-in (hybrid) electric vehicles as to mitmize  hower grid. Therefore, it is important to control and cooate
the additional peak load they mlght_ cause. We f_|rst mtroducet\_/vo the charging of electric and plug-in hybrid electric vehil
approaches, one based on a classical optimization approaeising The main concern of vehicle owners is to have the batteries
quadratic programming, and a second one, market based coord . . . .

charged by the time they need their vehicle. A certain degfee

nation, which is a multi-agent system that uses bidding on aixtual flexibility i ilabl hicl f
market to reach an equilibrium price that matches demand and flexibility is available, because vehicles are often parfcege-

supply. We benchmark these two methods against each othersa riods of time that are longer than the time required to charge
well as to a baseline scenario of uncontrolled charging. Ousimu-  their batteries, for example during the night. We can exploi
lation results covering a residential area with 63 househdis show this flexibility and shift consumption to times of lower denaa
that controlled charging reduces peak load, load variabiliy, and This presents opportunities for the development of irgehit
deviations from the nominal grid voltage. charging algorithms that utilize this flexibility to avoigsues in
the distribution grid. These algorithms will decide on wtien
Index Terms: Demand side management, plug-in (hybrid) electric charge what vehicle, and potentially at what charging rite (
vehicles, smart charging, smart grid. this can be tuned), as to achieve a certain objective (eegk p
shaving, maximally use available green energy).
Such approaches to control and coordinate the charging of
I. INTRODUCTION electric vehicles, that for example reduce peak load omuala

Electric vehicles (EV) and plug-in hybrid electric vehisle demand and supply from renewable.energy sources, are part of
(PHEV) are expected to gain in popularity the following yeara broader context called demand side ma_lnagement (DSM)_or
Research estimates the number of hybrid electric vehiclesd€Mand response (DR). Instead of adapting power generation
Belgium to reach 30% by 2030 [1]. This evolution is mosti{° Power demand, power demand is adapted to support the op-
driven by environmental benefits such as lowered emissiotis M@l operation of the power grid. The application of DSM or
improved fuel efficiency. However, as the electrificatiortlu# DR is not limited to CO””""'”Q the_chargmg of glectrlp yeh
vehicle fleet is gaining momentum, it will also have an impact cles, but also targets other residential, commercial, dustrial

the generation, transmission and distribution levels eftawer devices. Different approaches are considered in liteeatum
grid. this work, we focus on approaches that are based on mathe-

Additional generation will be required to recharge the dratt Matical optimization and multi-agent systems. A mathecaati
ies of these vehicles as this requires large amounts ofrieteict ©Ptimization approach based on quadratic programminggis pr
energy which results in additional load on the power gridwio Sented in [4]. The aim is to minimize energy losses, and max-
ever the energy required to charge these vehicles is estinat imize the grid load factor. In earlier v_vork 51, [6], we alsg-e
be only 5% of total consumption in Belgium [2] in 2030. Thé!ored approaches based on quadratic programming, thateed
impact on the generation and transmission levels of the po¢@K l0ad and load variability. An example of a multi-agessts
grid are therefore considered manageable on a short to medi§™ 'S PowerMatcher [7], which is based on virtual markets,
term. However, the impact on the (residential) distribatiet- Vhere agents bid on an electronic market to determine an equi
work can be substantial, especially for high penetratioelte Prium price matching demand and supply. Distributed algo
of EVs: A single EV is estimated to double average househdf!™s based on dual decomposition are proposed in [8] gnd [9
load during charging [3] (120 V/15 A 1.4 kW level 1 chargeerher approaches are based on game theory to perfprm dema_md
and average residential load Southern California). side management [10]. Control schemes for charging etectri

vehicles based on queuing theory are proposedin [11] arjd [12

Manuscript received May 15, 2012. Clearly, there is much interest in DSM or DR algorithms, and a

K. Mets and C. Develder are with the Department of Informafiechnology, wide variety of methods has been proposed, to improve the op-

IBCN at Ghent University, iMinds, G. Crommenlaan 8 Block C@sB201, 9050 ; sotrilg 1t ; ; :
Ghent, Belgium, email: kevin mefs@intec.ugent.be. eration of the distribution grid by controlling and coordiimg

R. D’hulst is with VITO, Boeretang 200, 2400 Mol, Belgium, aii rein- the charging of electric vehicles (or other electrical lsjad
hilde.dhulst@vito.be. Yet, often the proposed coordination mechanism is only
Digital Object Identifier 10.1109/JCN.2012.00026

1229-2370/12/$10.0q0) 2012 KICS



METSet al: COMPARISON OF INTELLIGENT CHARGING ALGORITHMS FOR ELECHIC... 673

benchmarked against a “business-as-usual (BAU)” scenario lll. CHARGING ALGORITHMS
without coordination. In this paper, we present a quadgatie _ i i _
gramming based coordinated charging algorithm that careser 1h€ algorithms that form the topic of this paper determine
as optimal control benchmark. We will demonstrate its us&larging schedules that control the recharging of eleofic
fulness in comparing it with a realistically deployableqgsi hicles. Each sche_dule mdlqates when a certain vehicle ean b
based coordination mechanism for DSM, in casu a marketeba&82rged and at which charging rate.
multi-agent system (MAS). The following sections will describe the different apprbas

The contributions of this paper are: (i) An extensive analjaken. Afterwards, we compare the results from each approac
sis (beyond [5], [6]) of quadratic programming (QP) based a & BAU case in which we assume that the car immediately
sessment of attainable peak load reduction, (ii) includisgp- Starts charging upon arrival at the charging point, withauy
ciated effects on power quality, and (i) benchmarking @flyy ~ form of coordination, until it is fully charged. In this BALts-
distributed market-based multi-agent system againstytismal nario, the charging rate is not controlled, but is fixed by the
QP results. car/battery properties.

We also note that electric vehicles could also be used to pro-
vide ancillary services to the power grid [13], a conceptno A. Quadratic Programming
as vehicle-to-grid (V2G). An example of V2G services is stor _ ) ) _
age of renewable energy. Solar and wind energy is intemtitte In the following _secthns we discuss three aIgothms based
and often the availability thereof does not coincide with ¢e- 0N QP: The local, iterative global, and global algorithméieT
mand for energy. Electric vehicles can be charged at these gl and iterative global algorithms have been introduceghr-
ments and help balance supply and demand. The energy stdf@igwork [S]. However, we here expand on this earlier work
in the EVs’ batteries obviously can be used later for trantspo PY introducing a third algorithm, and by comparing thesealg
tion, but it could also be delivered back to the grid while e  Tithms to an algorithm based on multi-agent systems and elec
is still stationed at the charging point. Although this israrpis- tronic markets.
ing concept, we will not consider it in this work. Howevertbo  Quadratic programming is a specific type of optimization
approaches we consider, can be adapted to V2G services [6Jproblem in which a quadratic function of several variablgs-s

The remainder of this paper is structured as follows. OifCt to linear constraints on these variables is optimizaihic
problem statement is summarized in Section Il. We discuss thizing or maximizing). The three algorithms are similar & n
algorithms considered in this paper in Section Ill. The casdy ture, but differ in the amount of knowledge they posses about
used to evaluate the different algorithms is presented m Séheir surroundings, i.e., regarding the power consumptibn
tion IV and results are discussed in Section V. Finally, é@nc other households and vehicles.
sions are synthesized in Section VI.

A.1 Model Parameters

Il. PROBLEM STATEMENT We first discuss the parameters that are present in the-differ

Charging algorithms that determine optimized chargir]:cpt quadratlc_ progr_am_mm_g_models. The quels cons_lsfé of

schedules can reduce the negative effects that the adalitiad ouseho!ds, |dgnt|f|ed individually by th.e.vanalbi_eThe simu-

has on the distribution grid, and also optimize the consionpt lated period of yme (e.g., .24 houfs) IS .d.|V|dedZTrd|scre_te time

of renewable and intermittent energy sources. This pager (ﬁIOtS (e.9., 5 minutes) which are @enuﬂed by the variable )

cusses two approaches used to determine charging schefiules W& assume that the load resulting from the usage of electric

electric vehicles. The first approach adopts QP, whereasethe aPPliances in each household is uncontrollable; we callittzd

ond approach is based on MAS and electronic markets. The g&& uncontrollable load. Each househblitias a load profile for

of both approaches is to minimize the peak load and load profif!€ uncontroliable loads; (¢) that indicates the average uncon-

variability of the transformer load profile resulting frorharg-  trollable load (stemming from household appliances etering

ing electric vehicles. This is achieved by shifting the giear €ach time slot. The aggregated energy demand of each house-

loads in time and controlling the rate of charging. hold is limited toLy,. (representing the grid connection capac-
The two approaches have a fundamental difference in thi}): expressed in Watt.

design. We use the QP approach in an offline setting, wheréCharging electric vehicles will result in an additional doa

we assume all events (cars arriving, departing, evolutibn &€ households. This load however is flexible as it can beéeshif

base load of other electrical consumers) are known in advani® time and therefore it is not part of the uncontrollabled@da

The QP solution hence will result in an optimal answer to tH¥ousehold. Each vehicle has an arrival and departure tiote sl

EV charging scheduling problem. (Note that some online afgspectivelyy; andgy. BCy, indicates the maximal capacity of

proaches can be straightforwardly be derived, which weedd | the battery, expressed in W&, indicates the energy contained

to sub-optimal results, but these are not further discuisstiils  in the battery pack upon arrival and is also expressed in V. T

paper.) The second approach, MAS, will reflect the more regharging rate is controllable but limited BYj. max-

istic online situation, where we do not know beforehand what The equations use a conversion factorto calculate the en-

car will arrive when, but rather (re)compute the chargirtgese  ergy consumed (expressed in Wh) during a certain time slot

ule dynamically upon each arrival. The goal of this work is tbased on the load (expressed in W) during that time slot,(e.qg.

measure the differences between the two approaches. 0 = 0.25 assuming 15 minute time slots).
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A.2 Local Algorithm (QP1) the transformer to which the households are connected. -Equa

The local (i.e., single household) scheduling method uses!ion 6 i_S used to galculatg this global load profile. Thebglo
formation about local power consumption to determine agha Oa(_j du_rmg each time siatis the sum of all household loads
ing schedule, i.e., we assume that the household energy cB#ing time slot.

sumption is known between arrival and departure time. A home

energy management system could provide this informatign, e GB(t) =
based on historical data. The impact of other households&nd 1

hicles on the global load profile is not considered in thisecas i ) ) )

Therefore, the schedules resulting from this approachmizei ' N€ following quadratic programming model is solved sepa-
local peak load and load profile variability. The quadratic-p rately for each vehicle that wishes to recharge its bagefibe

gramming model described below is solved for each vehigie s@!90rithm calculates a target load profile using the globatl|
arately upon arrival at the charging point at home. profile instead of the local load profile as done by the local al

NE

By (t). (6)

A target load profilel},(¢) is calculated for € {ay, - -, 3.}, 9orithms.
the duration of the charging session, before determinia@th B B ,
timal charging schedule. The goal is for the household lgad p Ti(t) = (BCy = Ci)d + Zt/:“k GB(t) ) (7
file, which includes the uncontrollable load and charged]oa Bi —ai

to approach this target profile as closely as possible. Thie 0F e constraints applied to the quadratic programming mael

mal target load profile, considering the goals of minimizig jjentical to the constraints of the local algorithm and fere-
peak load and load profile variability, is formed by a constagy e defined in constraints (2), (3), and (4).

load. The target load profile represents the constant pdvaér t  The gpjective function that is minimized to determine the
should be supplied, to provision the energy requirementS®f :harging schedule is defined by (8). It is based on the same pri
household and electric vehicle. Of course, this is not aeltie, ¢jple as the local algorithm, but utilizes the global loadfie
because not all devices have flexibility. The calculationthef ;. stead of the local load profile. As a result, we obtain a glob

target load at each household is defined in (1) and is basedO%mum’ instead of a local optimum as is the case of the local
the battery capacity3C}, the current battery statgy,, the un- algorithm.

controllable loadBy(t), and the charging session duration.

. , Br 2
To(t) = (BCy, — Ck)ﬁH_ %5—% By (t ). 0 tgk <Tk(t) — (GB(t) + Xk(t))> : (8)

The following constraints apply to the optimization prable After determining the charging schedule, the global loaxfifer
The decision variableX(t) of the optimization problem form ;¢ updated with the load originating from the charging sctied
the charging schedule anq indicatg the charing rate dl_JdDg e(9), hence the iterative nature of the algorithm. As a refutitire
time S.IOt' We_de_fm_e decision variables for one veh|cle_. Thesrations will account for other households and electeiivles
charging rate IS limited by, max, and can be any as def'necj[hat have been scheduled. This is the main difference betwee
by (2). Consraint (3_) assures that the load of the hous_eduﬁd_ the local and global iterative algorithms: Other housebaldd
not exceed a certain iMifinax, €.9., set by the supplier, dis-gactric vehicles that have been scheduled are accounted fo

tribution system operator (DSO), or technical constrafatg., when a charging schedule is determined by the iterativeaglob
household circuitry). Finally, (4) assures that the bgtiefully algorithm. ging y ey

charged after applying the charging schedule. Note thatsee u

a very simple battery model. However, this should not signifi GB(t) = GB(t) + Xi(t),Vt € [ag, Br]. (9)
cantly influence the results [14]. e iterat obal aldorithm . g < cofingt.
The iterative global algorithm is performed on a first-co
0 < Xk(t) < X max (2) serve basis for each vehicle that arrives. However, therande
By (t) + Xk (t) < Limax (3)  which vehicles arrive will have an impact on the chargingesth
Br ule. To evaluate the impact of this order, and also to evalina
Cy + Z (X;C (t) 6) = BC. (4) benefits of accounting for future arrivals, we developediwth
t=a, approach, which is presented in subsection IlI-A.4.

The objective function is defined in (5). A charging schedul :
X(t) is obtained by minimizing the squared euclidean distanc’gé4 Global Algorithm (QP3)
between the target load profile and the household load profile The third approach based on quadratic programming as-
B ) sumes knoyvledge about household energy cons_umption, and
Z <Tk(t) B (Bk(t) I Xk(t))> ' 5) even more |mport§ntlly, each future charging sessions tilat w
= occur over a certain time frame. _
. ) A scheduling period, e.g., corresponding to a calendar day,
A.3 lterative Global Algorithm (QP2) is defined for which the charging schedules of all vehicles ar
The iterative global algorithm also uses power consumptioletermined beforehand. For each vehicle, the algorithm has
information, but it is not limited to local information. Tte#go- to know in advance the arrival time, departure time, state-
rithm is initialized by determining the load profile obsesMgy of-charge, etc. Based on this information, charging sclesdu
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for each vehicle are determined simultaneously by solvirgg t
guadratic programming model. Note that in contrast to tkallo
and iterative global quadratic programming model, the glob
model only has to be solved once to determine the chargi
schedule for each vehicle. The advantage of this approdichtis
all information is known, and therefore the flexibility is ria
mally used.

The global algorithm is initialized in the same way as the ite @
ative global algorithm by Calculating the global load p-ms_ Power line === Communication network  [I] Home energy box i } Global energy controller
ing (6). A set of decision variableX(¢) and constraints is de-
fined for each vehiclé. These variables will define the charging 9 1. ICT infrastructure required for: (a) The uncontrolied BAU case,

. L L (b) local control, and (c) global/iterative control.

schedule for each vehicle after minimizing the objectiviecfu
tion (10). Again, the constraints are identical to thoserasfi
by the local algorithm in (2), (3), and (4). quires information regarding arrival and departure tineegrgy

Equation (10) illustrates that the objective function isiag requirements, battery and/or electric vehicle propertiggre-
based on the same principle as the local and iterative gidbalfore, a network spanning at least the complete residera a
gorithm. In contrast to the local and iterative global metfthe will be required, connecting the households with the cénta-
quadratic programming model now contains decision vaggbltroller. Note that privacy concerns could be raised agamest
for each vehicle. As a result the charging schedules for each global and iterative approaches, regarding the amountfof-in
hicle k£ will be determined after minimizing the objective funcmation shared (since user presence and behavior could be in-

<&

s
<& @ <
(s
(b)

DL

<&

(©)

tion. ferred from it, e.g., through load disaggregation). We wot
T K 2 delve into such discussions in this paper, but rather fooube
Z T(t) — | GB(t) + ZXk(t) (10) potential technical advantages stemming from sharingithat
t=0 k=1 formation, in terms of load shaping and power grid effects.
A.5 Discussion on the Different QP Models B. Market Based Coordination

Subsections IlI-A.2, 1lI-A.3, and IlI-A.4 discuss apprées  We will benchmark aforementioned (rather theoretical) QP-
based on quadratic programming. The objective of each amsed approaches, with a more pragmatic coordination mech-
proach is to minimize the peak load, and reduce the variakihism for EV charging coordination: A single-shot multiiun
ity between demand over time. Although the objective of eagluction market mechanism. This market based coordination
approach is the same (i.e., reduce the peak load), the iaformmechanism also aims to prevent unwanted power peaks. The dis
tion used to determine optimal charging schedules is differ tribution grid is organized as a commaodity market where &gen
for each approach. Therefore, we can evaluate what infasmatact on behalf of the transformer and the households. An agent
is needed, and has to be shared between participants, o obdasoftware or hardware computer system that is able to [15]:
suitable results. Also, the required information and comimu ¢ Make autonomous decisions.
cation technology (ICT) infrastructure depends on the i$igec o Interact with other agents.
approach, as illustrated in Fig. 1. e React, reactively and pro-actively, to changes in its emsr

For example, the local algorithm depends on the arrival and ment.
departure time, the energy requirements, battery chargdoa ~ The commaodity that is bought and sold in the market is elec-
electric vehicle properties, and the predicted househodilgy trical energy. In a single-shot multi-unit auction, buyansl sell-
consumption. We consider it realistic that the user pravigle ers submit their bids and offers for a commodity, after whach
expected departure time (while the arrival can be deteated glearing price is established to balance supply and denignd |
tomatically from the insertion of the plug), and batterylide [16], [17]. A bidding function indicates what volume a buyer
properties be acquired automatically (e.g., through comimuor seller is willing to trade for which price. A bidding func-
cation with the EV). Household energy consumption informaion is constrained by the maximum volume a buyer or seller
tion can be provided by an energy management system (eeg. ithwilling or able to trade. Each buyer is allocated to consum
home energy box in Fig. 1), based on e.g., historical dataré-h the amount of electrical energy that he is willing to buy floe t
fore, all information required for the local algorithm iscldly clearing price. The sellers are allocated to produce theuamo
available, and assuming the household is equipped with an efigoods they are willing to sell for the clearing price. Alag-
ergy management system, the optimal charging schedulescareks on the market do not know each others strategies nor bids.
determined locally, and no connection to a wide-area nétvgor It should be noted that this market-based coordinationaamr
required. assumes the price is only used as a control signal to stienulat

The iterative global and global approaches on the other,hadédvices to postpone or advance their consumption and no real
require information from households and vehicles to beeeithtime pricing system is connected to our coordination system
communicated amongst all local systems (i.e., the homeggneThe main advantage of a market based approach to coordinatio
boxes), or sent to a central controller (e.g., the globalgne is that it requires no centralized planning algorithm, ialss
controller in Fig. 1). Energy consumption information fra well to a large numbers of devices as well as a large diversity
households must be aggregated, and the central contreferaf devices. Furthermore, since the only interaction betvwtbe
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Fig. 3. Interaction between agents during one bidding round. -
market players is by means of bidding functions, a marketthas
approach has less privacy issues than a centralized catiatin
approach. Max—price
The market-based coordination organized in the distraouti Price
grid functions as follows (see Fig. 2). Each household iseep (b)
sented by ar.] agent that bids for electricity on the m?rkee T 5; 4. Bidding functions: (a) EV bidding function and (b) transformer
transformer is represented by an agent as well, which acts aqding function.

the sole supplier of electricity. Within a household, eaetiice

is also represented by an agent. These device agents sénd the

bids to the household agent who aggregates these bids befdge 4(a). The shape of the linear bidding functions depemds

sending the aggregated bid to the market. The householdsag#e pricep, as shown in Fig. 4(a). The bidding strategy of the

bid for an amount of electrical energy that they want to use f&V agent is to bid a pricg that increases linearly as the charg-

the next time slot and the transformer agent bids for the anoing deadline approaches. This charging deadline is the dime

of energy it wants to deliver. In every bidding round, the ker which the electric vehicle has to start charging in orderéo b

agent sends a signal to the transformer agent and the hddsefidly charged in time. An important assumption is that, ider

agents, after which each agent will submit its bid. When dip estimate its bid price, an EV agent is able to obtain an-accu

bids are received, the market agent aggregates the biddoact rate estimation of the state-of-charge of the battery. Haete

and determines the market price. This market price is conimughape of the aggregated bid of a household agent thus depends

cated to the agents and based on their bids, the agents kmow ho whether an EV is present or not, the bid price of that EV,

much energy to consume or produce. The interaction betwdba EV consumption and the consumption of the uncontralabl

all agents during one bidding round is depicted in Fig. 3. Wead.

assume the agents know how much their consumption will be inThe transformer submits a linear bid function, shown in

the next time slot when submitting a bid function. Fig. 4(b). We assume that higher costs are associated with a
Every household contains at least one agent representnghtgher power transmitted by the transformer.

uncontrollable load (UL). Because the UL agent needs to k& su

that the uncontrollable loads will actually get their regdien-

ergy, the UL agent will always bid the maximum price for its IV. CASE STUDY

load, as to reflect its inflexibility. The controllable desigve The algorithms are evaluated using three scenarios, emeh si

consider in this paper will be the EV, which hence will havelating a distribution network with a certain penetrati@ycee

its separate EV agent. In this work, we assume that the EVs afeelectric and plug-in hybrid electric vehicles. The diffat

able to modulate their demand, i.e., the EV chargers cana@macenarios and their corresponding number of electric aungtjpl

a power between zero and the maximal power. Consequenttlybrid electric vehicles together with the type of battemgiger

the bidding functions they submit are linear functionsygh@n are defined in Table 1. We simulate a time frame of 24 hours,
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Table 1. Amount of PHEV and EV and their type of battery charger in

Phase 1
iy Ee=====: Epgzz § the three different scenarios.
‘@_ — Scenario]| PHEV | PHEV [ EV | EV
—— I —— I
p Y 3.6kwW | 7.4kw | 3.6 kW | 7.4 kW

> A Light 4 3 2 1

—————— > Medium 10 10 5 4

Heavy 17 16 7 7

Fig. 5. Topology of the three phase distribution grid used in the simula-

tion. It consists of 63 households, distributed over 3 feeders, and a . .
distribution transformer with a rating of 250 kVA. seeds. To compare the results from the different charging ap

proaches, we obtained the peak load and standard devidtion o
each load profile and calculated the average over 100 iretanc

divided in time slots of 5 minutes. for these metrics. The results presented below were olutaisie
. ing our simulation environment that incorporates modelsoh
A. Power Grid the ICT infrastructure and the power network [18]. Fig. sH

The simulated three phase distribution network is illustla rates the average transformer load profiles obtained fon ea
in Fig. 5, and consists of 63 households distributed overethrScenario and algorithm. Clearly, uncontrolled chargiregleto
feeders, that are connected to a distribution transformigr w2 Substantial increase in peak load. However, controllesgzh
a rating of 250 kVA. Each household is connected to the difld @Pproaches are able to reduce this peak load. A more de-
tribution grid using a single-phase connection, which is- ratailed discussion is provided in the following sections.
domly assigned to either of the three phases using a unifoym .
distribution. The load profiles that model the power drawn bﬁg\/' Total Energy Consumption
each household are based on measurements performed by VITBlectric vehicles form an additional load on the power grid
on a number of households in Flanders during different wint&hen being recharged. This additional load obviously leads
days, representing a worst case scenario, as the grid lbaghis more energy consumption than the case without EVs. This is
est during winter in Belgium. Each house is randomly assigngbserved in the light and medium scenarios where total gnerg
one of these real-life measured load profiles which is rarigonfonsumption rises with 22% and 63%. In the heavy scenario
shifted in time using a uniform distribution to avoid unietit €nergy consumption is doubled. Clearly, no coordinationhme

synchronization of loads amongst houses. anism can reduce that total load increase, but rather s$tsft t
EV load in time as to minimize peak load increases. This is dis
B. Electric Vehicles cussed next.

We assume a PHEV to have a battery capacity of 15 kWh aBd impact of Uncontrolled Charging on the Peak Load
an EV a battery capacity of 25 kWh. We use a linear aPPTOXIMA 0 start the discussion of the results by looking at the ihpac

tion of the non-linear battery behavior. In this model, wgleet :

S : of uncontrolled charging on the peak load. Uncontrolledgha
battery inefficiency and assume all power is transferred-losm has a significant impact on the peak load because the-char
less through the charger into the battery. However, thisisho. 9 9 P P 9

not significantly influence the results [14]. The househalds :??e;glsn%d;;vggr i[hsetier:]f:rt]r?eevgg:??ozgiﬁ fﬁ?én?glg\ﬁz?g
provided with a single-phase connection and either a standa T - ; pez . : ot
onsumption in a residential area if we consider the liglet sc

charger of 3.6 kW, using 230V 16A, or a fast charger of 7.4kW

. e ario. Uncontrolled charging in the medium and heavy sdenar
using 230V 32A. These specifications are based on the I%ﬁ average leads to a peak load that is 2.4 and 3.3 times the ex-

621.96 standard which describes conductive charging Ofrﬂjecisting peak load. The peak load does not exceed the transform
vehicles. o : ; : .

rating in the light and medium scenarios, however it excéleels
transformer rating in 88% of the simulated cases (i.e., Soo@t

of 100 random seed choices).
Itis assumed that most of the times, vehicles will be reabgrg

at home or at work. In this paper we focus on charging at honfe. Peak Load Reduction by Controlled Charging

The plug-in times of electric vehicles are varied around@7: ag we have seen in the previous section, uncontrolled charg-
using a normal distribution with a standard deviation of 46-m ing leads to a higher peak load, because the charging cemcid
utes. The _chz_irging deadline times are similarly assumee to\bith the existing evening peak load. The charging algorithm
normally distributed around 06:00 am. presented in this paper aim to reduce the peak load as much as
possible, preferably to the same level as in the case withdst

Tables 2 and 3 summarize the impact on the peak load by the
different energy control strategies. The energy contnaltst

For each scenario (light, medium, and heavy) we selected 1fi@s are able to reduce the peak load of uncontrolled charg-
seeds to initialize the random parameters (i.e., arrivdidapar- ing, by shifting the vehicle loads in time and controllingeth
ture times) and evaluated each algorithm for each of the@e ¥ate of charging. In the light scenario, the local method {RP

C. User Behavior

V. RESULTS
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Fig. 6. Average load profiles measured at the distribution transformer. Each load profile is the average of 100 individual load profiles that were
obtained for that specific scenario (light, medium or heavy) and charging algorithm (QP1, QP2, QP3, or MAS) using different random seeds: (a)
uncontrolled charging for different numbers of P(H)EVSs, (b) light scenario with 10 P(H)EVSs, (c) medium scenario with 29 P(H)EVs, and (d) heavy
scenario with 47 P(H)EVs.

achieves a peak load reduction of 29.62% compared to the Bfti¢ peak loads in that household. However, that local peak do

scenario (i.e., uncontrolled charging), while the iter@a({QP2), not necessarily coincide with the overall peak load. Theketar

global (QP3) and MAS based methods all achieve a peak based method is also unable to fully remove the additiorel pe

duction of approximately 32%. In the medium scenario, the Itpad that s the result of charging electric vehicles: 9%@4 the

cal and multi-agent market based method achieve similar ezlditional peak load is removed in the light scenario, 9% &4

sults: 53.84% and 53.19%. The iterative and global methotti® medium scenario and 77.15% in the heavy scenario.

both achieve a peak reduction of 58.73%. When we consider the

heavy scenario, the multi-agent market based method a&hévD. Load Profile Variability

reduction of 54.04%, the local method 63.76%, and the iterat ] o ) ) )

and global method both achieve a reduction of 70.00% com-The load proﬁle v_anabﬂny is another interesting fa_lcterla

pared to the BAU scenario. These results give an indicationiBfluences dispatching of generators. We measure it by calcu

what the impact is on the peak load, but we are more interest@tind the standard deviation between the values of theoad

in knowing how much of the additional peak load that was trf&e- We list the standard dewgtlon of the trgnsformer logdro

result of uncontrolled charging can be shifted. time in Tak_)le IV, and summarize its rgductlon compared to the
The iterative and global methods are able to fully reduce tR&U case in Table V. Each algorithm is able to reduce the stan-

peak load to the original level before electric vehiclesever dard deviation of the values of the load profile compared o th

troduced to the distribution grid. The local method howexer BAU scenario. However, there is a big .dlfference between the

moves only 92% of the additional peak load that is added Bjethods based on quadratic programming and the market based

uncontrolled charging. The reason for this being that ticallo Multi-agent system. The results regarding the peak loathter

algorithm only considers peak loads in each householdidiviterative and global algorithm where identical, howevarthis

ually. The vehicle load is shifted in time to not coincide twit  difference when considering the variance of the load il
The global algorithm is able to determine the most optimal so
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Table 2. Overview of the peak loads observed (kW). The peak load is Table 5. Reduction of the standard deviation. QP1 = local, QP2 =
determined for each scenario and algorithm. The minimum, average, iterative global, QP3 = global, and MAS = multi agent.
and maximum peak load are given for 100 simulations. —
Standard deviatioh,
Scenario| Algorithm | Minimum | Mean | Maximum Scenario] QP1 | QP2 | QP3 | MAS
Light QP1 76.34 85.23 98.36 Light 35.24%| 41.63% | 41.94% || 25.29%
QP2 71.96 82.15 95.23 Medium || 55.01%| 60.50% | 61.88% | 34.91%
QP3 71.96 82.15 95.23 Heavy | 60.22%| 63.82%| 65.84%/|| 38.80%
MAS 71.98 82.28 95.23
Medium QP1 83.71 91.89 102.84 E. Power Quality
QP2 71.96 82.15 95.23 h k load and load orofi bl iy Of
oP3 7196 82 15 9523 e peak load and load profile varia |_|ty are mainly of con-
cern to assess production and grid capacity. Yet, as nofedhe
MAS 86.71 93.19 99.09 the introduction of EVs risks to cause additional problemthie
Heavy QP1 90.20 99.23 110.21 distribution grid that historically was not dimensionedcter
QP2 71.96 82.15 95.23 for EVs. Using our integrated ICT- and power network simu-
oP3 7196 82 15 9523 lator [18], we also assessed the impact of coordination mech

nisms QP1 and QP2 on the power quality in terms of variations
MAS 11691 | 125.78| 137.88 in voltage magnitude. As just discussed, we achieve sutietan
improvements in terms of peak power and demand variability
reduction, using realistic assumptions on the requirearimé-
Table 3. Peak load reductions. QP1 = Local, QP2 = Iterative Global,  tion. According to the EN50160 standard, voltage deviatiom
QP3 = Global, and MAS = Mulii Agent. to 10% are acceptable in distribution grids.

Peak load-, First, we evaluated how often voltage deviations exceeding
_ 10% occur during a 24 hour time period, divided in 288 time
Scenario] QP1 ‘ QP2 ‘ QP3 H MAS slots of 5 minutes. Table 6 gives an overview of the average
Light 20.62%| 32.16%| 32.16% || 32.00% number of time slots during which such deviations occur. We
Medium I 53.84%| 58.73%| 58.73% |l 53.19% obtained these averages by counting the number of time slots
in which deviations exceeding 10% occurred somewhere in the
Heavy | 63.76%| 70.00%) 70.00%] 54.04% residential area for each experiment (using a differendoam

seed), and calculated the average. Large P(H)EV penetidio
grees lead to deviations occurring more often. For the heesy

Table 4. Standard deviation. . .
nario, which corresponds to the worst case, uncontroll@dgsh

Scenario‘ Algorithm ‘ Minimum ‘ Mean ‘ Maximum ‘ ing on average leads to voltage deviations exceeding 10% for
Light QP1 15.66 16.17 16.85 45.51 time slllots, (;]r ap_proximately 1:]5.% of the ti.m(]::‘ slots. qu
oP2 1218 1457 1524 ever, controlled charging reduces this number._ If we carsid
the heavy scenario again, QP1 leads to 3.92 time slots, or ap-
QP3 1411 | 14.49 15.18 proximately 1% of the time slots, and QP2 leads to 9.30 time
MAS 17.95 | 18.65| 19.48 slots, or approximately 3% of the time slots.
Medium | QP1 18.79 | 19.80| 20.80 ~ Next, we evaluated how large the d_eviat_ions from the nom-
QP2 1656 | 17.38 18.19 inal \(oltage are. Results are sumr_narlzed in Table 7. We only
53 1555 1678 1776 considered experiments during which at least one voltage de
Q : : i ation exceeding 10% occurred. For each of those experiments
MAS 2719 | 2864 29.89 we determined the maximum voltage deviation that occurred.
Heavy | QP1 2335 | 24.80] 26.20 Thg maximum and average values are given for each set of ex-
QP2 2134 | 2256 24.02 periments in Table 7. _La_lrge penetration degrees of F_’(H)Ek! le
53 1946 | 21.30 2262 to larger voltage deviations. For the heavy scenario, tles-av
Q . . i age maximum deviation observed for uncontrolled charging i
MAS 36.66 | 38.71| 40.57 37% of the nominal voltage, and the maximum deviation ob-

served over all experiments is 65%. These deviations arédmuc
larger than the 10% required by the EN50160 standard. How-
ever, controlled charging reduces the magnitude of theadevi
lution as it has the most information available, whereaséf viions. The average maximum deviation for QP1 is 12% in the
only consider peak load, the iterative and global methochalveavy scenario, and the maximum deviation observed over all
the same results. Note that the market based MAS system dexgeriments is 20%. For QP2 we obtain respectively 14% and
not seem to be able to reach the flat load profile as achievedd®po.
the QP methods. Based on the results summarized in Tables 6 and 7, we can
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Table 6. Average number of 15 minute time slots (out of the 288 time

slots over the course of the considered one day period) during which
voltage deviations exceeding 10% are observed.

QP on the one hand, and market-based MAS on the other. The
aim of both in the considered case studies is to reduce tHe pea
load and the load variability in a distribution grid. We cahs
ered three quadratic programming approaches, assuming dif
ferent knowledge of components within the grid. We provide

Scenario|| BAU | QP1| QP2|

Light 22.17| 3.90 | 3.31 simulation results, using a combined ICT and power simula-
Medium || 38.01| 4.52 | 5.32 tor [18] for a residential area consisting of 63 househoht$ a
Heavy || 45.51| 3.92 | 9.30 different penetration degrees of electric vehicles. Peakic-

tions ranging from 29% up to 70% are achievable, compared to
a business-as-usual scenario in which vehicles are chuaigfed
out control and coordination. Variability in demand is dessed

Table 7. Average and maximum magnitude of voltage deviations.

BAU QP1 QP2 ranging from 25% up to 65%. The QP method mainly serves as
Scenario|| AVG | MAX | AVG | MAX || AVG | MAX | benchmark, since real-life deployment may be hamperecsby it
uight__[ 20% [ 209 [ 130 100 [ 1% [ 18% | R ieten e e aproach, whie requ
Medium || 29% | 60% | 13% | 22% | 13% | 20% ing modest knowledge of the expected future load and imgosin
Heavy || 37% | 65% | 12% | 20% || 14% | 22% | little communication, achieves in the range of 32.00% t®8%

(vs. 32.16% to 70.00% for QP-global) peak reduction. We con-

clude that future work is required to further tune and opini
conclude that the QP1 approach in general results in the mggj., MAS systems to closer achieve the optimum found by QP.
optimal results. The QP1 or local approach aims to reduce fag also evaluated the impact of our coordinated charging ap-
local or household peak load. Therefore, the load at eack imodproaches in terms of power quality, under the form of voltage
the grid will be as low as possible, resulting in smaller @gt  magnitude variations. While the objectives as formulatealir
deviations. The QP2 or iterative approach on the other hapgproaches do not explicitly include the voltage as a parame
aims at reducing the transformer peak load. Individual Beuser to be optimized, we do note that the coordinated charging

hold peak loads do not necessarily coincide with the peak logtrategies reduce the observed voltage deviations (meshsisr
at the transformer level. Therefore, it is possible thatdetwld  differences from the nominal voltage greater than 10%).

peak load is increased, which increases the voltage dewiati
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change very limited information compared to the QP-methods
The multi-agent system has the added advantage of being a

truly dynamic and flexible approach: Via tweaking of the bid-
ding curves, the optimization can be steered towards ottrer
jectives. The QP approach is more strict, and more cumbersom
to adapt to different objectives. Nevertheless, the QP atkith [2]
extremely useful to assess what the best possible resaltds,
hence serves as an optimal benchmark. In our case, it thusjsg
veals that there is still substantial room for improving thar-
ket based MAS approach (e.g., peak reduction of 54.04% {A.
70.00% for QP, variability reduction of 38.80% vs 65.84% for
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