

FACULTY OF **ENGINEERING AND ARCHITECTURE**

Designing resilient optical grids/clouds

<u>Chris Develder</u>*, Jens Buysse*, Marc De Leenheer*, Bart Dhoedt*, Brigitte Jaumard†

*: Ghent University – IBBT, INTEC – IBCN, Ghent, Belgium

†: CSE Dept., Concordia University, Montreal, Canada

Agenda

- 1. Introduction
- 2. Problem statement, Model & ILP solutions
- 3. Case study
- 4. Conclusions

Why optical grids/clouds? (1)

• eScience:

- By 2015 it is estimated that particle physicists will require exabytes (10¹⁸) of storage and <u>petaflops</u> (10¹⁵) per second of computation
- CERN's LHC Computing Grid (LGC), when fully operational will generate <u>15 petabytes</u> annually (that's ~2Gbit/s)

Balloon (30 km or 18.6 mi)

Why optical grids/clouds? (2)

Consumer service:

Eg. video editing: 2Mpx/frame for HDTV, suppose effect requires 10 flops/px/frame, then evaluating 10 options for 10s clip is 50 Gflops (today's high performance PC: <5 Gflops/s)

Online gaming: e.g. Final Fantasy XI: 1.500.000 gamers

<u>Virtual reality:</u> rendering of 3*10⁸ polygons/s → 10⁴ GFlops

Multimedia editing

Optical grids/clouds

C. Develder, et al., "Optical networks for grid and cloud computing applications", Proc. IEEE, Vol. 100, No. 5, May 2012, pp. 1149-1167.

Anycast

- Users do (in general) NOT care on what location their applications are being served
 - E.g., virtual machines in laaS can be instantiated anywhere
 - E.g., bag-of-tasks grid jobs can be run at any server

Exploiting relocation

- Dimension optical grid/cloud so that it is resilient against failures
- Exploit anycast principle: allow rerouting jobs to other destinations

J. Buysse, M. De Leenheer, B. Dhoedt and C. Develder, "Providing resiliency for optical grids by exploiting relocation: A dimensioning study based on ILP", Comput. Commun., Vol. 34, No. 12, Aug. 2011.

A. Shaikh, J. Buysse, B. Jaumard and C. Develder, "Anycast routing for survivable optical grids: scalable solution methods and the impact of relocation", IEEE/OSA J. Opt. Commun. Netw., Vol. 3, No. 9, Sep. 2011.

Agenda

- 1. Introduction
- 2. Problem statement, Model & ILP solutions
- 3. Case study
- 4. Conclusions

Problem statement

Given

- Topology (sources, <u>candidate</u> data center locations, OXCs)
- Demand (for given sources)
- Survivability requirements (e.g. link and/or node failures)

Find

Shared protection

- K locations (chosen from candidate data center locations)
- Destination sites and routes
- Network and server capacity

Such that

 Network and server resources are minimized

Solution approach

Step 1: Find the K best data center locations

Step 2: Find the primary/secondary destinations + paths towards them

Failure-Independent (FID)
rerouting
=> Column generation

Failure-Dependent (FD)
rerouting
=> Single ILP

Step 1: Finding the K "best" locations

- Binary variables:
 - $t_v = 1$ iff site v is server location
 - $f_{vv'}$ = 1 iff request from source v is directed to v'

Constants:

- $h_{vv'}$ = cost for sending 1 unit request from source v to server site v'
- Δ_v = number of unit requests from source v

$$\min \sum_{v} \sum_{v'} \Delta_{v} \cdot h_{vv'} \cdot f_{vv'}$$

subject to

$$\begin{cases} \sum_{v} t_{v} = K \\ \sum_{v'} f_{vv'} = 1 \quad \forall v \\ f_{vv'} \le t_{v} \quad \forall v, v' \end{cases}$$

C. Develder, B. Mukherjee, B. Dhoedt and P. Demeester, "On dimensioning optical Grids and the impact of scheduling", Photonic Netw. Commun., Vol. 17, No. 3, Jun. 2009

- w_l = "capacity" of link l
- Capacity = wavelengths for NET links, server for DST links!

- Failure: modeled as SRLG = set of links that simultaneously fail
- Single link failure:

- Single server failure: 1:N protection [= add 1 for case single one out of N fails]
 - No relocation:
 - Let x = number of servers under working conditions
 - Then we need $\left[\left(1 + 1/N \right) \cdot x \right]$

$$w_l \ge \rho_l \cdot x$$
$$\rho_l = 1 + 1/N$$

• Relocation: consider (1+N) parallel links, at most 1 fails

- Failure dependent (FD) rerouting => Single ILP
- Variables:
 - p_{vls} : number of unit demands with source v that cross link l under failure s
 - w_l : capacity on link l

Objective:

(wavelengths)

Data center capacity

Constraints:

- p_{vls} : flow constraints + don't use failing links when protecting against s
- w_l : count capacity 1 for network link 1+1/N for server link, in case of no relocation (NR)

Network capacity

$$w_{\ell} \ge \rho_{\ell} \sum_{v \in V_{SRC}} p_{v\ell s} \qquad \forall s \in S$$

- Failure-independent (FID) rerouting => Column generation:
 - Assume: given "configurations" = combination of working and backup paths
 - Restricted Master Problem (RMP) finds best combination of configurations
 - Pricing Problem (PP) finds new configuration that can reduce cost

Agenda

- 1. Introduction
- 2. Problem statement, Model & ILP solutions
- 3. Case study
- 4. Conclusions

Case study set-up

- Topology
 - European network
 - 28 nodes and 41 bidir links
- Demand
 - Randomly generated requests (10-350)
 - 10 instances for each number of requests

Four scenario's:

No relocation Exploiting relocation

Single link failures: 1L, NoReloc \(\) 1L, Reloc

Single failures of either link or server: 1LSN, NoReloc + 1LS, Reloc

The impact of relocation

- Single Link failures (1L):
 - Reduction of backup wavelengths
 - Slight increase in server capacity
- Single link/server failure (1LS)
 - Reduction of backup wavelengths
 - Fewer servers than 1:N server protection

The impact of relocation

- Single Link failures (1L):
 - Reduction of backup wavelengths
 - Slight increase in server capacity
- Single link/server failure (1LS)
 - Reduction of backup wavelengths
 - Fewer servers than 1:N server protection

Failure dependent rerouting? (FD vs FID)

Failure-Independent (FID) rerouting

Failure-Dependent (FD) rerouting

Failure dependent rerouting? (FD vs FID)

- FD is best, obviously
- Yet, difference is limited (few %)
 - at least for small K (= number of server sites)

Failure dependent rerouting? (FD vs FID)

- FD is best, obviously
- Yet, difference is limited (few %)
 - at least for small K (= number of server sites)

FD advantage increases for larger number of server sites!

Influence of K?

- K 7
 - Wavelength reduction more pronounced
 - Lower extra cost to provide single server failure protection

Agenda

- 1. Introduction
- 2. Problem statement, Model & ILP solutions
- 3. Case study
- 4. Conclusions

Conclusions

- Dimensioning algorithm for resilient optical grids
 - Exploit relocation for resiliency
 - Small ILP for finding K best locations
 - ILP (Column generation) for server & network dimensions
 - Generic model based on SRLG concept
- Case study on EU network topology [10-350 unit demands]
 - Relocation offers cost adantage of up to 10% to protect against single network link failures
 - Total cost to protect against 1LS with relocation
 Cost to protect against 1L only, without relocation
 - Relocation advantage more substantial for larger number of server sites
 - Failure-dependent rerouting advantage if we use relocation (couple of %)

Future/ongoing work

- Impact of topology
- Refinement of K-location choosing ILP
- Incorporating choice of K sites into CG-ILP approach

• ...

B. Jaumard, A. Shaikh and C. Develder, "Selecting the best locations for data centers in resilient optical grid/cloud dimensioning", in Proc. 14th Int. Conf. Transparent Optical Netw., Coventry, UK, 2-5 Jul. 2012

Thank you ... any questions?

Acknowledgments

GEYSERS: Generalised Architecture for Dynamic Infrastructure Services

www.geysers.eu

Research Foundation – Flanders (FWO)

Post-doctoral fellowships (M. De Leenheer, C. Develder) www.fwo.be

IWT: Agency for Innovation by Science and TechnologyPhD scholarship (J. Buysse)

www.iwt.be

Ghent University

Stevin Supercomputer Infrastructure www.ugent.be

