
Intelligent Distributed Multimedia Collection:
Content Aggregation and Integration

Jelle Nelis, Dieter Verslype, Chris Develder
Ghent University – IBBT

Dept. of Information Technology – IBCN
Ghent, Belgium

Email: Jelle.Nelis@INTEC.UGent.be

Abstract—People’s multimedia content is spread around their
home network and content services on the Internet, such as
YouTube, Flickr, Facebook. In this paper we present a system
that aggregates all the multimedia content of the end user and
integrates it into a unified collection for the user’s convenience.
The system provides location transparency of multimedia content,
content filtering on player compatibility and metadata completion
to aid in improved usability. This effectively enables the user
to rediscover his multimedia collection without any technical
knowledge.

A proof-of-concept implementation known as Intelligent Dis-
tributed Multimedia Collection (IDMC) has been made that
is able to detect and browse UPnP MediaServer devices as
well as collect information from YouTube. This implementation
also contains a media player and is able to control UPnP
MediaRenderer devices remotely. Furthermore, performance has
been measured to assess different ways of iterating through a
multimedia collection.

I. INTRODUCTION

Today, multimedia is everywhere. Network Attached Stor-
age devices become commonplace, Internet services enabling
users to store their multimedia content for sharing or remote
viewing purposes are popping up. There is a tendency to
distribute a personal multimedia collection, be it due to a lack
of organisational skills, limited storage capacity or function-
ality demand. This means that end users are unable to fully
benefit from their own multimedia collection: several usability
problems exist. A multimedia collection is difficult to organize
and easily resorts in chaos, such that users are unable to locate
their desired content because they are unaware of the device
they stored it on. In addition, they are unaware of codecs or
resolutions; they just want it to work on all devices in their
home.

The Digital Living Network Alliance (DLNA) [1], [2] tried
to solve common use cases like consuming multimedia in
the home by defining device classes. Devices can deliver
(Digital Media Server), consume (Digital Media Renderer and
Digital Media Player) or control (Digital Media Controller)
multimedia. Part of this effort is certifying devices against
these device classes. The underlying technology used by
DLNA is UPnP [3] of which they use the AV specification [4]
to solve the use cases regarding multimedia consumption.

However, the scope of devices considered here cannot be
limited to this one technology, several other technologies exist

that can deliver content within the home network and from the
Internet.

In [5], a system comparable to the one presented in this
paper is discussed. However, only UPnP MediaServer devices
are considered as possible data providers and the integration of
similar content items used in [5] is limited to integration based
on local metadata. This paper adds technology independence
(beyond UPnP) and more clever metadata integration, such as
using Internet services to enhance the gathered metadata.

In [6], an architecture is presented that solves location
transparency of multimedia content by implementing a virtual
MediaServer that redirects all requests to the MediaServer de-
vices that actually contain the content item. Not only does our
current work present a system that performs more integration
functionality in terms of content aggregation, such as metadata
completion, it also supports the concept brought forward in [6]
as a pluggable view of the system (see Section III).

The goal of this paper is to present an architecture for
an intelligent system to manage a distributed multimedia
collection that gives users a complete, personalized view of
the huge pile of available multimedia content. The system
is able to easily add new multimedia sources. Examples are
online multimedia sources like YouTube, Flickr, Facebook, etc.
and locally stored multimedia found using different protocols.
The system performs duplicate detection, merges metadata of
resources deemed duplicate and completes content metadata
using external sources (e.g. Discogs for audio content).

Most importantly, it offers the multimedia collection in such
a way that the user can consume their multimedia without any
technical knowledge. One example is that when a multimedia
item is not supported by a particular device due to a codec
incompatibility, the system takes care of this: incompatible
content items will not be shown or an appropriate transcoding
action will be taken. The paper is structured as follows,
Section II discusses the architecture solving the problems put
forward in this section. In Section III, a proof-of-concept im-
plementation is presented on which a performance assessment
of different ways of aggregating multimedia collections was
performed. Results of these tests are reported in Section IV.

II. ARCHITECTURE

The problems discussed in Section I have been addressed
in a student project called Intelligent Distributed Multimedia



Fig. 1. High level IDMC architecture

Fig. 2. DataManager component

Collection, in this paper referred to as IDMC.
A component diagram of the most important part of the

IDMC architecture can be seen in Fig. 1. The major driver
behind the architecture is runtime addition of data providers
such as providers of local content available through UPnP and
remote content such as YouTube. Therefore we work with
pluggable data providers that can detect new and updated con-
tent and signal it to the DataManager component. These data
providers will be managed by the PluginManager component.
The DataManager component is responsible for all actions
performed on newly discovered multimedia metadata.

The external interfaces at the top of Fig. 1 can be used by
whichever user interface will be built on top of it. In this paper
we will however, not focus on the user interfaces, but rather on
the DataManager component. In Fig. 2, the further decompo-
sition of the DataManager component is shown. Essentially, it
is a pipeline that filters the metadata added to the system. The
pipeline is designed in such a way that filters can be added or
removed easily so future improvements can be added without
a hassle.

Currently, the algorithm performs the following steps: for
performance reasons, a first quick check is performed to
filter duplicates based on easily comparable parameters like
content location. This makes sense since we identified in [5]
that current UPnP MediaServer implementations offer their
multimedia metadata in a number of different ways, which

Fig. 3. Simplified sequence diagram

means that even within the same collection, the same content
will be listed more than once and as such, there will be
duplicates that are easy to filter.

The Normalization component makes sure the metadata gets
cleaned so it is ready for further processing. After normaliza-
tion, a second stage duplicate detection is performed. This
component is also responsible for cross referencing metadata,
i.e. suppose a resource on the network can be identified to be
part of the same content item, then the metadata of the current
content item can enrich the metadata of the previously added
content item. As the last step in the algorithm, external sources
are used to get more information about the content item being
processed.

The Persistence component is responsible for storing the
listing of the unified library and thus contains the metadata
of the aggregated multimedia collection. Every filter in the
pipeline can search for and change metadata in the Persis-
tence component while processing. Furthermore, it exposes a
search interface for user interfaces to provide a view on the
multimedia collection.

Fig. 3 shows the simplified interactions between IDMC
components to offer the required functionality. Everything
starts with the PluginManager component loading data
provider plugins. These plugins come in two flavors, Dat-
aProvider1 in Fig. 3 is able to detect and control playback
devices while DataProvider2 can detect content on some
medium (e.g. UPnP MediaServer, Flickr, etc.). The Data-
Manager components keeps a list of playback devices and
upon receival of content from DataProvider2 will perform the
integration steps mentioned above.

After these steps, the MediaSessionManager component is
able to use this information to guide the user in consuming
his/her multimedia content. Content items that are not com-
patible with the media player the user wants to play content
on, will automatically be filtered. This can be done by using
the functionality of the DataManager component.

After the user has selected which item he/she wants to play,
the MediaSessionManager component will setup a connection



between the storage device and the playback device. This is
done using the best possible resource (in terms of resolution,
codec, streaming protocol, etc.) as found by the DataMan-
ager component. Differences in device control protocols are
abstracted by the data provider plugins, which are ultimately
responsible for the actual control.

III. PROOF-OF-CONCEPT

A demonstration has been implemented of the architecture
discussed in Section II. As discussed previously, the architec-
ture foresees pluggable data providers. To demonstrate this,
two plugins were developed, a UPnP plugin and a YouTube
plugin. The UPnP plugin detects UPnP MediaServer devices
and browses the collection it exposes, the YouTube plugin
imports the favorites of a given user account.

The demonstration environment consisted of a home net-
work with several networked devices. It included a Sony
PlayStation 3 (Media Player), a Sony Bravia TV (Media Ren-
derer), a Windows-PC and a Linux-PC (both MediaServer).
There is a subtle difference between a Media Renderer and
a Media Player: a Media Player is able to play content
through its own user interface while a Media Renderer has the
same functionality as a Media Player, but can also be remote
controlled via the network.

Two user interfaces have been developed, each of which
provided a different view on the aggregated multimedia col-
lection and the system. A native graphical user interface was
developed to be able to browse the collection on your local
computer. This user interface was able to remote control
the playback functions of the Sony Bravia TV through its
MediaRenderer interface. It also included plugin management
functionality to be able to enable support for, in this case,
YouTube at runtime. This demonstrates the flexibility of the
architecture in supporting different content retrieval technolo-
gies.

Since having an aggregated multimedia collection locally
does not help interoperability with legacy devices, another user
interface was developed. A UPnP MediaServer was written
to give Media Players, in this case the Sony PlayStation
3, the possibility to use the functionality provided by the
demonstrated system. This way the Media Player was able
to browse through the unified collection without changing the
software client side.

IV. PERFORMANCE MEASUREMENT

Retrieval of multimedia metadata can be done in several
ways. A data provider conceptually presents its data as a file
system which can be represented as a graph. Fig. 4 presents an
example of such a representation. Leaf nodes represent files
while non-leaf nodes represent containers. Containers typically
contain similar content items. An often used structure is having
a distinction on the first level between the different types of
multimedia, such as audio, video and pictures. Within each of
those containers several different sublevels can be found, e.g.
artist followed by album for audio items.

Fig. 4. Multimedia content tree, C = container, F = file

Fig. 5. Per-leaf aggregation

Fig. 6. Per-container aggregation

Fig. 7. Per-level aggregation

In our performance assessment, measurements compared
aggregation on a per-leaf basis or by enabling batching of
aggregation requests. In Fig. 5 it is shown how per-leaf
aggregation is performed: every leaf node gets pushed through
the pipeline right after discovering it.

A first batching scheme is shown in Fig. 6, leaf nodes get
cached until a new container is seen. The next possibility is
to cache all content items that reside on the same level in the
content item tree, this batching scheme can be seen in Fig. 7.
Lastly, it is possible to cache every content item that is present
on a device on the network, this just means all leaf nodes will
be added to the data manager at once.

Tests were performed using a dummy implementation of



Fig. 8. Persistence performance

a UPnP MediaServer to serve multimedia content metadata.
Three different multimedia collections were used:

• small
– 10 audio items

• medium
– 100 audio items
– 10 images
– 1 video

• large
– 1000 audio items
– 200 images
– 20 videos

For each collection, the four different techniques discussed
before were tested. The time to browse the collection (without
network delay), as well as the time to parse the returned
DIDL-Lite structures [7] were measured. However, these times
were negligible when compared to the time needed to persist
the aggregated items. In Fig. 8 the time measurements for
persisting the different multimedia collections are shown.
Several conclusions can be drawn from this graph, first of all,
from the perspective of the DataManager component, it is clear
that as much items as possible should be added at the same
time. With regard to the size of the multimedia collection, the
method to add a single item at a time, proves not to be scalable
since its execution time explodes for the large collection. It is
clear that adding content items in bulk outperforms individual
additions.

A disadvantage of batching aggregation requests is the need
for more temporary memory. Furthermore, adding content
items earlier might improve user perceived performance since
preliminary results will be visible more quickly.

V. CONCLUSIONS

In this paper we presented a system that gives an aggregated
view of all the content a user owns including content stored
in the cloud. This is achieved by allowing pluggable data
providers to add content to the system. A UPnP MediaServer
plugin was developed to show local content discovery and a
YouTube plugin was developed to show the user’s multimedia
content on the Internet can be added to his unified collection.

When multimedia content gets added to the system, it will
pass a pipeline in order to get integrated in the unified collec-
tion. This pipeline removes duplicates, merges the metadata
of the content item being added with existing metadata and
performs metadata completion by using external information
sources.

Performance measurements were performed on the system
as a whole using different strategies to add content items. This
shows that some kind of batching technique needs to be used
since adding content items one at a time becomes needlessly
slow when reaching large collections (over 1000 items).

VI. FUTURE WORK

The system discussed in this paper acted as a proof-of-
concept to show it is possible to provide a non-trivial service
to end users using devices in the user’s home network and
services on the Internet. It succeeded to do so. However,
it still has some shortcomings. It is tailored to one specific
use case, namely the aggregation and integration of a user’s
multimedia content. Currently, we are working to make the
system more generic so as to be able to interact with a variety
of different device types independent of the technology spoken
by the device/service. Obviously, the use case presented in
this paper should still be possible using the more generic
approach, but additional benefits arrive when it is possible to
use new device/service types. True integration of the complete
home network is possible, state changes of devices can act as
triggers for user specified actions and applications can take
into account the current context.

ACKNOWLEDGMENT

The authors would like to thank the students Jeroen De
Meyst, Jeroen De Ridder, Sam Govaert, Thijs Mergaert, Niels
Nuyttens, Daan Raman, Thomas Roelens, Xavier Smet and
Pieter Van Lysebetten for their effort in designing, implement-
ing and testing the system discussed in this paper.

REFERENCES

[1] IEC, IEC 62481-1 ed1.0: Digital living network alliance (DLNA) home
networked device interoperability guidelines - Part 1: Architecture and
protocols, 2007.

[2] ——, IEC 62481-2 ed1.0: Digital living network alliance (DLNA) home
networked device interoperability guidelines - Part 2: DLNA media
formats, 2007.

[3] A. Presser et al., “UPnP Device Architecture,” 15 Oct. 2008. [Online].
Available: http://www.upnp.org/resources/documents.asp

[4] J. Ritchie, T. Kühnel, J. Kang, and W. van der Beek,
“UPnP AV Architecture:1,” 30 Sep. 2008. [Online]. Available:
http://www.upnp.org/specs/av/default.asp

[5] K. Mets, J. Nelis, D. Verslype, P. Leroux, W. Haerick, F. De Turck, and
C. Develder, “Design of a context aware multimedia management system
for home environments,” in Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD
’09. Computation World:, 2009, pp. 49 –54.

[6] J. Park and S. Kim, “A transparent contents sharing service with virtual
media server,” in Convergence Information Technology, 2007. Interna-
tional Conference on, 2007, pp. 764 –767.

[7] “XML Schema for ContentDirectory:3 Structure and Metadata
(DIDL Lite),” UPnP Forum, September 2008, latest version:
http://www.upnp.org/schemas/av/didl-lite-v2.xsd.


