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Mean Field Calculation for
Optical Grid Dimensioning

Benny Van Houdt, Chris Develder, Juan F. Pérez, Mario Pickavet, Bart Dhoedt

Abstract—For traditional optical network dimen-
sioning, a plethora of algorithms exists to design
the amount of network resources required to accom-
modate a given amount of traffic, expressed as a
(source,destination)-based traffic matrix. In optical
Grid dimensioning however, the anycast principle
applies: Grid users do not really care where exactly
their tasks (Grid jobs) end up being executed. Thus,
the destination of traffic is not known beforehand and
traditional dimensioning algorithms are not applica-
ble. In this paper we propose a mean field calculation
method to analytically derive the traffic matrix for
given job arrival intensities at the originating Grid
sites (the sources). We also indicate how it can be
integrated in a step-wise dimensioning approach to
compute not only the amount of network resources,
but also Grid resources (computational and/or stor-
age). Hence it forms part of a solution for Grid dimen-
sioning: determining how many servers to provide,
where to place them, and which network to install
for interconnecting server sites and users generating
Grid jobs.

Index Terms—Grids, Dimensioning, Mean Field Cal-
culation

I. INTRODUCTION

IN several research fields, the need arose to build
powerful computer systems to face computational

and data storage challenges (e.g. particle physics,
astrophysics, etc.). To meet the demand for a huge
common resource pool to process the tasks (jobs) at
hand, networks interconnecting cluster centers were
deployed. This led to the creation of so-called Grids.
More recently, the potential of Grid infrastructure
for more consumer/business oriented applications was
acknowledged by industry, and referred to as cloud
computing [1]. (In this paper, we will stick to the
term Grids to also include cloud computing.) To realize
the interconnecting Grid network, optical technology
is the solution of choice, able to meet both the high
data rates typical of many e-science applications and
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Fig. 1. The Grid dimensioning problem involves both network
and Grid resource dimensioning to cater for a given load of jobs
submitted by users.

the low latency requirements associated with most
business/consumer solutions. Grids based on optical
network infrastructure promise to offer cost and re-
source efficient delivery of network services with high
data rate, processing and storage demands for a geo-
graphically widely dispersed user base.

To maximize the fulfillment of that promise, some
fundamental questions should be addressed, such as
(re)designing the architecture of a flexible optical layer
(e.g. evolving to Grid-OBS [2], [3], or some hybrid
circuit/burst networks) and the development of ap-
propriate routing and scheduling algorithms for these
networks. Major differences with traditional network
design originate from the anycast routing principle:
Grid users generally do not care where exactly their
jobs end up being executed, as long as they get ex-
ecuted timely. Hence, jobs can be sent off to ‘any’
suitable location and traffic volume is dependent on
dimensions and locations of computation/storage re-
sources, as well as the job scheduling algorithm. These
Grid specific aspects give rise to multiple challenging
research questions [4], [5], e.g. jointly optimizing not
just (computational) Grid resources, but also the un-
derlying optical network interconnecting them.

In this paper, we focus on the problem of Grid di-
mensioning, as sketched in Fig. 1. The input is a given
network topology—the locations of the sites where jobs
originate (or aggregation points where they are col-
lected, e.g. points-of-presence of Grid service providers)
and a (backbone) network interconnecting them—and
the amount of Grid jobs generated at each of the
sites. We want to find where to provide how much
server capacity (esp. for computation), and the network
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dimensions required to process the submitted jobs. The
aforementioned anycast principle complicates answer-
ing these questions with traditional algorithms, since
we lack the complete so-called traffic matrix stating
the amount of bandwidth exchanged between each
(source, destination)-pair: the destination of a Grid job
can be freely chosen by some job scheduling algorithm.
For example, in Fig. 1 it is a priori not known which
fraction of the jobs originating at site E will be sent to
each of the server sites A, B and D.

In the subsequent Section II, we will describe a
proposal to solve this Grid dimensioning problem and
related work. One particular step of the dimensioning
methodology requires calculating inter-site bandwidth,
for which we propose an analytical mean field solution
discussed in detail in Section III. We discuss a case
study on a realistic European network scenario in
Section IV and conclude in Section V.

II. DIMENSIONING OPTICAL GRIDS

A classical network design problem is dimensioning:
how much capacity is needed for the network to be
able to transport a given amount of traffic? Typically,
this traffic is specified in a traffic matrix giving the
amount of traffic Di,j flowing from site i to j (e.g. in
Mbit/s). Well-known research literature on network di-
mensioning assumes this given traffic matrix D, yet in
Grids this is not known a priori (cf. anycast principle).
Moreover, for Grids, in addition to the network, also
computational and storage capacity of the servers at
the various Grid sites needs to be dimensioned. In this
work, we focus on computational Grids: we need to
determine the amount of processors (CPUs) to place
at each of the chosen Grid sites.

A. Related work
For dimensioning (optical) networks without con-

sidering the Grid resources, a broad range of algo-
rithms are available. The algorithms vary depend-
ing on the network technologies and topologies (e.g.
single or multi-layer [6], with or without grooming
[7]; for ring [8] or mesh networks), design criteria
(e.g. survivability [9], availability), single or multi-
period planning [10], single domain or hierarchical
networks [11], etc. Yet, for dimensioning grids, the
anycast routing principle gives rise to the problem
of accurately estimating the (source,destination)-based
traffic matrix these approaches all rely on.

In Grids also the computational and/or storage re-
sources need to be dimensioned: how many servers
need to be installed, and at which sites? The latter
will have an impact on where jobs will end up being
executed, i.e. the eventual traffic matrix, hence the
network dimensions. It is clear that jointly determin-
ing both server and network dimensions is a very hard
problem (even single-period network dimensioning for
a given traffic matrix may already be NP-hard [12]).

Therefore, we will propose a phased approach, dimen-
sioning first the servers and then the network (see
Section II-B).

Related work on dimensioning Grids is scarce. In
[13] analytical ILP (integer linear programming) and
heuristic approximations are used to cater for excess
load: it is assumed that each of the Grid sites (dimen-
sioned for the locally generated jobs) may suffer from
overload, and network dimensions (number of wave-
lengths and fibers used) are determined by finding a
global optimum over all single-site overload problems.

One way to deal with the unknown destination for
Grid jobs is to assume that the fraction of jobs (orig-
inating at a particular site) going to a given compu-
tational Grid site is known, thus fixing a priori the
arrival rates of jobs at each job execution site. This
approach is taken in [14] (assuming OBS), where an
analytical methodology known as reduced load fixed-
point approximation [15] is used to dimension both
network and computational resources.

In this paper however, we focus on a ‘clean slate’
or greenfield Grid dimensioning problem finding the
complete Grid capacity required to meet a given Grid
job arrival pattern. Also, we assume fully flexible
scheduling strategies without any knowledge of a pri-
ori given probabilities for selecting a given destina-
tion site. Yet, since scheduling algorithms as such
are not in the scope of this paper, we will assume
fairly straightforward scheduling strategies, based on
a single all-knowing scheduler, finding a free server
for every arriving job based solely on the job’s arrival
time and duration, and server processing speed and
occupation. For more advanced scheduling algorithms,
including e.g. advance reservation concepts and QoS
support, we refer to [16], [17].

B. An iterative dimensioning approach
To deal with the complex problem of calculating the

required amount of Grid and network resources, we
proposed an iterative approach to Grid dimensioning
[18], comprising successive steps eventually leading
to a traffic matrix, allowing traditional algorithms
to solve the network dimensioning problem for the
network technology of choice. This iterative approach
can be summarized as follows:
D1. Out of the N Grid sites, find the Ns best server

locations to install servers.
D2. Determine the amount of server capacity (number

of CPUs) to install at each of the Ns chosen server
locations.

D3. Calculate the amount of jobs Di,j sent from each
originating site i to each of the destination sites j
(being one of the Ns chosen locations).

D4. Calculate the network dimensions for the traffic
demand matrix D from step D3.

In this approach, steps D1–D2 were solved analyti-
cally by respectively a fairly simple ILP solution and
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heuristic calculations, as described in detail in [18].
The ILP for step D1 aims to minimize the bandwidth
used for transferring the Grid jobs to the servers,
making some simplifying assumptions. In step D2, we
use the well-known ErlangB formula to calculate the
total amount of servers required, and use heuristics
to distribute this server capacity over the locations
chosen in step D1. For step D3, in previous work we
resorted to (time consuming) simulations. For the final
step D4, traditional algorithms for (optical) network
dimensioning can be used, taking the traffic matrix
D calculated in step D3 as input. It is important to
stress that the network topology (and link capacities)
will not influence step D3, meaning no routing issues
are considered during this step. The link capacities
are only determined in step D4 by making use of the
traffic matrix D obtained in step D3 and the network
topology.

In this paper, we introduce an analytical framework
for step D3. When making some a priori assump-
tions about the distribution of jobs over the various
Grid sites, fixed point approximation (FPA) has been
successfully used for analytical dimensioning of the
underlying optical network (e.g. [14] for the OBS case).
Yet, if we want to model scheduling algorithms choos-
ing any of the Grid sites having a free server at
job arrival, the discrepancy between an FPA model’s
results and simulations is large [18]. In Section III,
we introduce another analytical approach called mean
field calculation. We will show that this method is
practical for the Grid dimensioning case at hand and
closely matches with (time consuming) simulations.
Thus, the mean field solution can be used for step
D3 and speed up the dimensioning cycle by avoiding
simulations.

As stated before, the amount of jobs sent to a partic-
ular site also depends on the scheduling algorithm. In
this paper, we consider two alternatives (random and
mostfree, see further) to choose a server when a job
arrives. In either case, if the job arrives at site i and
this has a free server CPU at that time, this local CPU
at site i will be chosen. Note that we consider that a
job will occupy a single server CPU for the entire job
duration. (We do not model job interdependencies, e.g.
for user tasks comprising multiple jobs.)

III. A MEAN FIELD SOLUTION FOR INTER-SITE
BANDWIDTH CALCULATION

The model as described in detail below, is a discrete-
time model, where time is subdivided in so-called
epochs of a fixed duration. A Grid site (recall Fig. 1)
will be characterized by the number of servers it has
(zero or more), and the amount of jobs arriving at this
site. Each of the servers is assumed to be identical,
and is able to process one job at a time. The analytical
methodology used only works efficiently if the amount
of different site characteristics is limited: sites will be

partitioned into classes, where all sites of a particular
class have the same number of servers and identical
job arrival processes. We will show that, despite this at
first sight severe limitation, the method is applicable
in realistic scenarios.

We now describe the mean field (MF) solution, start-
ing off with the assumed Grid network and job models.
Subsequently, in Section III-B we outline the analyti-
cal framework for solving the case where all Grid sites
are identical in job arrival process and server capaci-
ties. The general case, where Grid sites—as in most
practical cases—differ in amount of traffic arriving
and/or server capacities, is treated in the Appendix. In
III-C we explain how to compute the demand matrix
D from the mean field model results.

A. Grid model

We consider a grid network consisting of N sites,
partitioned into K classes, assuming all sites belong-
ing to the same class k have the same characteristics:

1) a class-k site has C(k) identical servers,
2) the inter-arrival times (IATs) of jobs originating

at a class-k site are independent and identically
distributed (i.i.d) and follow a discrete-time phase-
type (PH) distribution with parameters (~α(k), T (k))
(cf. infra),

3) processing a job at a class-k site takes a geometric
amount of time with mean 1/p(k).

This class partitioning may seem to limit the appli-
cability of the mean field solution discussed below.
However—as we will illustrate in Section IV for re-
alistic scenarios—clustering techniques can be used
to achieve such partitioning into a limited number of
classes.

The model is a discrete-time model where at each
time epoch, three sequences of events occur:
S1. Service completions: each class-k occupied server

becomes idle with probability p(k).
S2. Arrivals: at each site either 0 or 1 job arrives with

a probability depending on the underlying phase
of the arrival process at that particular site (see
below; the model can easily be extended to batch
arrivals of > 1 jobs). If a job arrives at a site with
at least one local server (i.e., at the same site)
available after step S1, the job is processed by a
local server. Otherwise, the job becomes part of the
pool of excess jobs.

S3. Excess redistribution: All excess jobs after step S2
are distributed among the servers that remained
idle in step S2.

To redistribute j excess jobs over s idle servers in step
S3, we consider two redistribution schemes: mostfree
and random. Clearly, if j > s, all servers become
occupied and we drop j−s jobs. For j ≤ s, the mostfree
strategy will assign the j jobs one by one, each time
selecting the site with the highest number of free
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servers (at the time of assignment). The random strat-
egy simply selects the j servers at random among the s
available ones, without considering the occupancy level
of the site to which a server belongs.

With respect to the dropped jobs, we should add that
as the number of Grid sites increases the job drop
probability will decrease to zero. In actual fact the
mean field model describes the limiting case as the
number of sites goes to infinity and therefore its drop
probability equals zero. For a finite, large number of
sites job losses will be rare and could be even further
reduced by adding finite buffers to each of the sites. In
this case we might either decide (1) to forward a job
only to another site when all the local servers are busy
and the local buffer is full or (2) to buffer the job locally
if none of the sites has an available server. The mean
field model in this paper could be extended to capture
both cases, though in the latter case the results would
coincide as in the limiting case we have no losses.

The mean field analysis presented below computes
exact results for the limiting system behavior (i.e.
steady state) when the number of sites per class goes
to infinity. However, the number of sites per class
does not have to be identical: if the number of class-k
sites is defined as γkN (where

∑
k γk = 1), then the

limiting behavior corresponds to letting N approach
infinity. Our case study will show that for practical
site counts (some tens to a few hundreds), the limit
behavior matches quite well with simulations for a
finite number of sites.

Before we proceed, let us briefly discuss the discrete-
time PH arrival process. It can, among others, capture
any IAT distribution with a finite support (i.e. with a
finite number of possible outcomes) and many moment
matching procedures have been developed such that
real-life higher moment measurements can be easily
incorporated in the process [19]. Let Xn be the IAT
between the nth and n + 1st arrival. Formally, the PH
process is a discrete-time renewal process (the IATs
(Xn)n≥0 are i.i.d.) characterized by a stochastic 1 × h
vector ~α (i.e., a vector with non-negative entries that
sum to one) and a sub-stochastic h×h matrix T (i.e., a
matrix with non-negative entries whose row sums are
smaller than or equal to one), with h ≥ 1, such that
for s ≥ 1, P [Xn = s] = ~αT s−1~θ, where ~θ = ~eh − T~eh,
with ~eh an h × 1 vector with all its entries equal to
one. For instance, setting h = 1 results in a Bernoulli
arrival process (the discrete time variant of the Poisson
process). Also, any mixture of h geometric distributions
can be realized by a diagonal T matrix containing
the geometric parameters and a stochastic vector ~α
holding the weights of each of the distributions.

In order to obtain a suitable h, vector ~α and matrix T
in practice, one typically starts by measuring the first
few moments of the IATs and matches these using a
PH-distribution as in [19]. In Section IV we will rely on
the first three moments of the IAT distribution, which
typically results in an order 2 phase-type distribution,

i.e., h = 2. Thus, as demonstrated in Section IV-D,
phase-type IATs allow us to change the variation of
the IATs, while keeping the mean fixed. In case of a
Poisson (or Bernoulli) process the variation is uniquely
determined by its mean providing less flexibility.

The PH renewal process is very suitable for Marko-
vian modeling environments as ~αs may be regarded as
the probability that the IAT starts in phase s. Further,
given that the phase at the current time instant equals
s, the arrival process will be in phase s′ at the next
time instant with probability [T ]s,s′ without having
an arrival, whereas [~θ~α]s,s′ gives the probability that
there is an arrival and the initial phase of the next IAT
is s′ (note: [X]s,s′ is entry (s, s′) of the matrix X). In
our model each class-k site is fed by its own instance
of a PH renewal process with parameters (~α(k), T (k)).

B. A mean field solution for the single class Grid
network

We first consider a Markovian model for the single
class Grid network (K = 1); as such we can tem-
porarily drop the superscript (k). For example, if the
Grid dimensioning approach (in step D2, Section II-B)
equally distributes server capacity over the chosen
server locations, all these locations are identical in
terms of server/processing capacity, each site having C
servers. If we also assume all server locations have the
same job arrival process, this amounts to a single class
grid network, using the aforementioned terminology.

The idea of the Markovian model is to associate
h · (C + 2) states with each site. State 〈i, j〉, with
0 ≤ i ≤ C + 1 and 1 ≤ j ≤ h, indicates that i jobs
are present at the site after step S2, while the arrival
process is in phase j. Recall that after step S2 a site
can hold C + 1 jobs if all its servers were busy before
this step and a new (excess) job arrives. Given that we
have N sites, we get a total of hN · (C + 2)N states,
which clearly can become huge. However, the mean
field computation will be restricted to matrices of size
h · (C + 2) and therefore turns out to be very effective.

1) Step S1, service completions: Given that i of the
C servers are busy, i′ of them will become available
with probability si,i−i′ =

(
i
i′

)
pi

′
(1 − p)i−i′ . For further

use, we define the h(C+1)×h(C+1) triangular matrix
S as

S =


s0,0 0 . . . 0

s1,0 s1,1
. . .

...
...

. . . . . . 0
sC,0 . . . sC,C−1 sC,C

⊗ Ih, (1)

where Ih is the identity matrix of size h (reflecting
the fact that the phase of the arrival process is not
influenced by the service completions) and ⊗ denotes
the Kronecker product between matrices.
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2) Step S2, job arrivals: Given that the PH renewal
process is in state j, it will generate an arrival and go
to state j′ with probability [~θ~α]j,j′ , while with probabil-
ity [T ]j,j′ a similar transition occurs without involving
an arrival. We also define the h(C+1)×h(C+2) matrix
A as

A =


T θα 0 . . . 0

0 T θα
. . .

...
...

. . . . . . . . . 0
0 . . . 0 T θα

 . (2)

3) Step S3, excess redistribution: The state transi-
tion at time t due to the redistribution of the excess
jobs at a site is influenced by the vector ~MN (t) =
1/N · (a0(t), a1(t), . . . , aC(t), aC+1(t)), where
• ai(t) for i = 0 . . . C is the number of sites with
i busy servers after step S2 that do not have an
excess job, while

• aC+1(t) indicates the number of sites with an
excess job (i.e., the total number of excess jobs
at time t). All C servers of these sites are clearly
occupied.

Thus, the i-th entry ~MN
i (t) of the vector ~MN (t) equals

the fraction of sites holding i jobs (incl. excess job) after
step S2.

First consider the mostfree strategy. Let qi,i′( ~MN (t))
be the probability that a site receives i′ − i ≥ 0 excess
jobs, given that it held i ≤ C jobs after step S2. For
mostfree,
• the first a0(t) excess jobs will be assigned to the

sites with all their servers available,
• the next a0(t) + a1(t) excess jobs are forwarded to

the sites that had either 0 or 1 busy server (after
this step all the sites with 0 busy servers received
two excess jobs, while those with 1 busy server
received 1 excess job),

• this continues until all aC+1(t) jobs have been
distributed among the free servers or until all
servers are busy.

For ease of notation define bi(t) =
∑i
k=0 ak(t) as the

number of sites with at most i busy servers after
step S2. Provided that we have enough free servers to
support the excess jobs, we can find a c, with 0 ≤ c < C,
such that

c−1∑
k=0

bk(t) < aC+1(t) ≤
c∑

k=0

bk(t), (3)

which we denote as c( ~MN (t)) (for aC+1(t) = 0, we set
c = 0). In other words, all sites with i ≤ c( ~MN (t))
busy servers after step S2 (bc( ~MN (t))(t) in total) will
end up with at least c( ~MN (t)) jobs and some of them
with c( ~MN (t)) + 1 jobs, after step S3. The fraction of
these sites with c( ~MN (t)) jobs equals

βc( ~MN (t)) =

∑c( ~MN (t))
k=0 bk(t)− aC+1(t)

bc( ~MN (t))(t)
. (4)

Thus, i′ − i ≥ 0 jobs are received by a site with
i busy servers with probability βc( ~MN (t)) whenever
i′ = c( ~MN (t)) and with probability 1 − βc( ~MN (t)) for
i′ = c( ~MN (t)) + 1. If the number of free servers∑C−1
k=0 bk(t) is insufficient to support the aC+1(t) jobs,

we let c( ~MN (t)) equal C. In this case all the servers
become occupied. This yields,

qi,i′( ~M
N (t)) =

1− βc( ~MN (t)) i < i′ = c( ~MN (t)) + 1 ≤ C,
βc( ~MN (t)) i ≤ i′ = c( ~MN (t)) < C,

1 i = i′ > c( ~MN (t))

1 i′ = C = c( ~MN (t)),

(5)

for 0 ≤ i, i′ ≤ C, where the third case indicates that no
jobs are received when i > c( ~MN (t)). For further use,
we also define the h(C+2)×h(C+1) matrix Q( ~MN (t))
as

Q( ~MN (t)) =
q0,0( ~M

N (t)) q0,1( ~M
N (t)) ... q0,C( ~MN (t))

0 q1,1( ~M
N (t)) ... q1,C( ~MN (t))

...
. . . . . .

...
...

. . . 0 qC,C( ~MN (t))
0 ... 0 1

⊗ Ih, (6)

where the 1 in the lower right corner indicates that
sites with C + 1 jobs after step S2 will end up with C
jobs after step S3 (either due to a redistributed or a
dropped job).

Next, consider the random redistribution strategy
for the excess jobs, defining Q̄(.) analogously to most-
free’s Q(.). Assume site s has i occupied servers. In
total there are f( ~MN (t)) =

∑C
k=1 aC−k(t)k servers to

choose from and C−i of them belong to site s. Therefore
the probability that 0 ≤ i′ ≤ C − i excess jobs are
assigned to site s, equals

q̄i,i+i′( ~M
N (t)) =

(
C−i
i′

)(
f( ~MN (t))−(C−i)

aC+1(t)−i′
)

(
f( ~MN (t))
aC+1(t)

) , (7)

provided that f( ~MN (t)) ≥ aC+1(t), otherwise we have
for all i that q̄i,C( ~MN (t)) = 1.

4) Combining steps S3, S1 and S2: To obtain a
useful discrete time Markov chain description of the
system, we will observe it at each time epoch immedi-
ately after step S2 and before step S3. Given the state
〈i, j〉 of site s at time t (with i the number of jobs, and
j the PH phase, see above), we can obtain its system
state at time t + 1, which depends on ~MN (t), via the
transition matrix K( ~MN (t)) defined as

K( ~MN (t)) = Q( ~MN (t)) · S ·A, (8)

for the mostfree strategy. (For the random strategy, we
simply replace Q(.) by Q̄(.) to obtain K̄( ~MN (t)).) Since
the state evolution of different sites are correlated,
the transition matrix of the entire system is hard
to express. Luckily, the mean field computation only
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requires K( ~MN (t)) for N going to infinity and will
allow us to express ~MN (t + 1) as a simple function
of ~MN (t) using K( ~MN (t)) for N large.

5) Fast computation of ~MN (t) for large N : The main
objective of the grid network model is to be able to
calculate inter-site rates (cf. traffic matrix). Given the
rate rkj of excess jobs of a particular class-k site pro-
cessed by any of the γjN class-j sites, the traffic rate
from a single class-k site to a single class-j site equals
rkj/(γjN). For the single class model, r11 is given by
the last component of the occupancy measure ~MN (t)
for t large enough: ~MN

C+1(t) represents the proportion
of the sites that hold an excess job just prior to the
redistribution step.

To find ~MN (t), we apply a generic framework of
interacting objects introduced in [20]. Under some
fairly mild conditions, as the number of objects be-
comes large, the occupancy measure of the system
converges to a deterministic dynamical system,—the
mean field—that has the same dimension as a single
object. In our Grid model, we associate a single object
with each site, such that the matrix K( ~MN (t)) (or
K̄(.), the discussion below applies to both) describes
the evolution of a single object as a function of the
occupancy measure ~MN (t).

The convergence result [20, Theorem 4.1] is proven
to hold if there exists a K( ~M(t)) matrix, such
that for each entry [K( ~MN (t))]s,s′ , the set of func-
tions {[K( ~MN (t))]s,s′ , N ≥ 1} converges uniformly to
[K( ~M(t))]s,s′ on the set of all possible occupancy vec-
tors ~M(t). For the mostfree model this convergence is
immediate as the K( ~MN (t)) matrices are independent
of N (to see this, simply divide all the ak(t) and
bk(t) appearing in Q( ~MN (t)) by N ). For the random
strategy, we define q̄i,i+i′( ~M(t)) as

q̄i,i+i′( ~M(t)) =(
C − i
i′

)( ~MC+1(t)

f( ~M(t))

)i′ (
1−

~MC+1(t)

f( ~M(t))

)C−i−i′
, (9)

with f( ~M(t)) =
∑C
j=1

~MC−j(t)j, if ~MC+1(t) ≤ f( ~M(t)),
otherwise q̄i,C( ~M(t)) = 1 for all i. Finally, define
Q̄( ~M(t)) analogously to (6). It is not hard to show that
the set of functions {[K̄( ~MN (t))]s,s′ , N ≥ 1}, for any s, s′

converges uniformly to [K̄( ~M(t))]s,s′ = [Q̄( ~M(t))SA]s,s′

on the set of all occupancy vectors ~M(t).
Next, [20] requires K( ~M(t)) to be continuous in

~M(t), which is clearly the case for both mostfree and
random. Thus, due to [20, Theorem 4.1], the following
convergence result for the mean field applies. Define
the 1× h(C + 2) vector ~µ(0) as (~α, 0, . . . , 0), where ~α is
the initial vector of the PH renewal process (i.e. system
empty at 0) and let

~µ(t+ 1) = ~µ(t)K (~µ(t) (IC+2 ⊗ ~eh)) . (10)

Then, for any t, almost surely,

lim
N→∞

~MN (t) = ~µ(t) (IC+2 ⊗ ~eh) . (11)

Thus, to compute the mean field at time t, it suffices to
perform t matrix multiplications with matrices of size
h(C + 2) only.

As h = 2 often suffices to match up to three moments
of the IAT distribution, h(C + 2) will be fairly small,
resulting in a fast computation of ~µ(t). Since our inter-
est lies mainly in steady state behavior (i.e. t large), we
will iteratively compute ~µ(t) until ||~µ(t)−~µ(t−1)|| < ε,
for small ε. The computation time can be reduced by
selecting a different initial vector ~µ(0), that is closer to
~µ(t) for t large; e.g., investigating excess traffic rates
for various system loads, we could use the steady state
of the previous load as an initial vector for the next
case.

C. Calculating the demand matrix D
In the previous section, the mean field approach for

the single class case was explained, allowing to calcu-
late the site occupancy measure ~MN (t). Similarly, in
the Appendix we detail how to calculate the occupancy
measure ~MN,(k)(t) for the case of multiple site classes.
There, ~M

N,(k)
i (t) represents the proportion of class-k

sites holding i jobs after step S2 (0 ≤ i ≤ C(k)+1). Thus,
the proportion of class-k sites with excess jobs equals
M

(k)

C(k)+1
(t), for t large. As all class-k sites are identical,

~M
N,(k)
i (t) is also the percentage of time in which a

class-k site has an excess job. Therefore it equals the
excess rate of a class-k site. With λ(k) the mean job
arrival rate at a class-k site, the rate of excess jobs
processed by a class-k site, denoted as λ(k)exc, is found as
the rate at which a class-k site completes jobs minus
the rate of completed jobs that originated in this site;
hence,

λ(k)exc = ~µ(k)(t)Q(k)( ~M (k)(t))


0
p(k)

2p(k)

...
C(k)p(k)

⊗ ~eh(k)

− (λ(k) − ~M
(k)

C(k)+1
(t)),

(12)

for t large.
As the probability that an excess job receives service

in a class-j site is independent of its type under the
mostfree and random strategy, the rate rk,j of excess
jobs of a class-k site served by any class-j site can be
computed as

rk,j = ~M
(k)

C(k)+1
(t)

λ
(j)
exc∑K

s=1 λ
(s)
exc

= λ(j)exc

~M
(k)

C(k)+1
(t)∑K

s=1M
(s)

C(s)+1
(t)
,

for t large. From these inter-class rates, the demand
matrix D can be easily calculated: the rate from a site
s of class k to a site d of class j is Ds,d = rk,j/(γjN)
(with γjN the number of class-j sites).
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IV. NUMERICAL RESULTS

In this section we first consider two simple Grids in
order to analyze the effect of the scheduling algorithm
on the performance of the Grid, in terms of the spill
rates. Next, we test the mean field model by consider-
ing a realistic European network scenario.

A. The effect of the scheduling algorithm
We first consider a Grid consisting of many sites

partitioned in two classes. All the sites have 20 servers
and the same arrival process, a Bernoulli process with
mean IAT equal to 30 seconds. Class-2 sites represent
only 1% of the total number of sites and their load,
given by ρ(2) = λ(2)

µ(2)·C(2) , is equal to 0.95, i.e. they
are heavily loaded. The remaining 99% of the sites
are of class 1 and a load between 0.1 and 0.95 will
be considered. When their load is equal to 0.95, all
the sites in the Grid are identical. Fig. 2 shows the
total spill rate at class-2 sites, and the rate at which
these spilled jobs are sent and processed at class-1 and
class-2 sites. We observe that when the load of the
class-1 sites is low, the mostfree algorithm allocates
almost every excess job from a class-2 site to a class-
1 site. This is the case for loads up to 0.7 in this
scenario. On the other hand, the random policy assigns
a significant fraction of excess jobs to the heavily-
loaded class-2 sites. Although this has little influence
in the total spill rate of the class-2 sites for low and
mid loads, for loads above 0.75 the mostfree policy
offers a reduction in the spill rate. In fact, the total
spill rate under this policy can be up to 20% smaller
than under the random scheduling. As expected, when
both class-1 and class-2 sites have the same load, i.e.
ρ(1) = 0.95, the spill rate from class-2 sites toward both
sites of both classes are equal, while the mostfree policy
still causes a significantly smaller spill rate than the
random allocation.

Next, we consider a single-class Grid and compute
the spill rate for different values of C, the number of
servers per site. The results are included in Fig. 3,
where the difference between these two policies be-
comes apparent at high loads. We also find that the
maximum reduction in spill probability caused by us-
ing the mostfree policy is around 15% for C = 5, near
to 20% for C = 20 and above 22% for C = 100. There-
fore we see an increment in the maximum relative
difference in spill rate as the number of servers per
site increases. However, from Fig. 3, we also observe
that the load range for which the mostfree policy
outperforms the random allocation decreases with the
number of servers.

B. European Grid use case
The preconditions to allow our mean field methodol-

ogy are: (i) the job inter-arrival time (IAT) distribution
should be modeled as a discrete-time phase-type (PH)
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Fig. 2. Mean field results for a two-class Grid, with variable load
for class-1 sites.
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Fig. 3. Mean field results for a single-class Grid, with variable load
and number of servers per site.

distribution, (ii) the grid sites should be partitioned
in a limited number of classes, and (iii) the number
of Grid sites should be large enough. Conditions (ii)–
(iii) are required because the mean field assumes an
infinite number of sites per class. Hence, mean field
results are expected to be closer to those of the finite
system when sites are partitioned into a few classes
each with a significant number of sites. As discussed
in III-A, condition (i) is not really limiting, since many
real-world traces can be matched with a limited num-
ber of phases (keeping the analytical model compact)
using moment-matching procedures.

With respect to (iii), realistic use cases for Grid
dimensioning would comprise from some tens to a
couple of hundreds of sites. These numbers are still
acceptable for the methodology to be practical as will
be clear from the subsequent case studies for N = 100
sites and five classes. With respect to the computation
times, we found that the arrival process variability
affects the number of iterations required for conver-
gence of ~µ(t), while the overall load seems to have
little effect. For this case study and with ε = 10−10,
the computation times varied from one to ten minutes.
These times can be further reduced, especially for
the cases requiring more iterations, by initializing
the system in the following manner: let π(k)

j be the
stationary probability of having j busy servers in an
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M/M/C(k)/C(k) queue, and let τ (k) be the stationary
distribution of the PH arrival process at station k,
i.e., τ (k) = τ (k)

(
T (k) + θ(k)α(k)

)
and τ (k)~eh(k) = 1.

Then, by setting µ(k)(0) = (π
(k)
0 , π

(k)
1 , . . . , π

(k)

C(k)) ⊗ τ (k)

we obtained a reduction of up to 80% in the number
of iterations while the computation times decreased to
less than four minutes. Note that simulation running
times in our case study differ by an order of magnitude,
amounting to several hours (e.g. for the case study
of Fig. 4, simulating 107 time units took close to two
hours).

The major limitation at first sight seems to be
constraint (ii). However, looking at real world traces,
many sites show similar behavior, which allows clus-
tering the various sites into a limited number of
classes. This can be achieved by the K-means cluster-
ing method [21], where each site is described by a set of
N variables called descriptors: (C1) Select K points in
the N -dimensional space as centroids ck (k = 1, . . . ,K);
(C2) Form clusters Ck by assigning each site s to
the closest centroid ck; (C3) Recalculate ck as the N -
dimensional mean over Ck; (C4) If any ck changed
in C3, go back to C2. We aim at characterizing each
of the clusters with a PH distribution matching the
first three moments of the IAT distribution. Hence, we
chose as site descriptors: the first non-central moment,
the squared coefficient of variation (SCV) and the third
normalized moment (n3) of the IAT distribution. Let
mi be the ith non-central moment, then define SCV =
m2

m2
1
− 1 and n3 = m3

m2m1
. The reason to prefer SCV and

n3 rather than m2 and m3 is that they are not affected
by the units in which the variables are measured. As
the IAT distribution is based on real traces, we rely on
the sample moments given by m̄i = 1

S

∑S
j=1 x

i
j , where

each xj corresponds to one of the IAT samples, with S
samples in total.

For our case studies, we used traces from a real-
world EGEE/LCG Grid, deployed in Europe in the
frame of the Large Hadron Collider (LHC) experiments
at CERN in Geneva and the Enabling Grids for E-
sciencE (EGEE) project [22]. We collected Grid-wide
job arrival logs, recording the job arrival rate at 58
sites over a one month period. After screening, we left
out 8 sites because of lack of data to allow reliable
statistical analysis. We used the clustering approach
above, and partitioned the sites into K = 5 classes. To
characterize each site class, we used the average mo-
ments over the cluster’s sites. For each class we used
the method in [19] to match the first 3 moments of the
job IATs with a PH model with h = 2 phases (except
for class 2, whose very small SCV causes matching
for h = 2 to be restricted to the first 2 moments
[19]). Table I summarizes the class descriptors. It is
important to note that these characteristics greatly
vary, ranging from low to high arrival rates and from
small to large variability. To challenge the mean field
method, we considered a case study with N = 100 Grid

TABLE I
CHARACTERISTICS OF THE 5 SITE CLUSTERS

Class Mean IAT (s) SCV n3 % Sites C

1 29.75 136.45 2207.08 10% 150
2 77.24 83.40 488.69 46% 100
3 3696.46 0.46 5.73 6% 5
4 458.08 10.35 60.83 28% 10
5 1870.45 2.95 10.05 10% 10

sites, respecting the proportion of each server class as
observed in the EGEE/LCG trace.

C. Varying the Grid resource load
First, consider varying the Grid system load ρ, i.e.

setting each class-k site’s load to ρ(k) = ρ, with ρ(k) =
λ(k)

µ(k)·C(k) (where for a class-k site λ(k) is the average job
arrival rate, µ(k) the average job processing rate at a
class-k site, and C(k) the number of servers). Given
typical load values in network design, we studied
ρ ∈ [0.5, 0.9]. We assumed N = 100 sites in total,
comprising the K = 5 classes as outlined in Table I.
The number of servers at each site is chosen to obtain
the target ρ, setting the average service time 1/p(k)

for each site of class k as 1/p(k) = ρC(k) E[IAT(k)], with
E[IAT(k)] = 1/λ(k) the average job inter-arrival time
(IAT) for class k.

To evaluate the mean field methodology, we com-
pared the results with the outcome of simulations. For
this we implemented a discrete-event simulator and
calculated the inter-site rates Ds,d for each source site
s and destination site d. To comprehensively present
the results, the graphs will show for each class k the
proportion of jobs sent to remote sites, i.e. the spill
probability

Pspill,k =

 ∑
s∈classk

∑
d6=s

Ds,d

 /

( ∑
s∈classk

∑
d

Ds,d

)
.

We compared analytical results with simulations for
both random and mostfree scheduling strategies. The
graphs of Fig. 4 show that in both cases the analytical
and simulation results match very well. For the whole
load range, the analytically calculated spill rates fall
well within the 95% confidence interval (not shown on
the graphs for the sake of clarity) on simulations’ spill
rates (even though discrepancy increases for ρ = 0.9).
Looking at the numerical values, we note that the
discrepancy between analytical and simulation results
is largest for classes 1 and 2 (but still less than the
standard error on the simulation results; the standard
error for a particular spill probability for class-k is
given by stderr(k) = σ(k)/(γkN) with σ(k) the variance
on the spill probabilities for the γkN class-k sites.)
This can be explained by the large SCV on the job
IAT in these site classes (see Table I). Note that—
as expected—the mostfree strategy achieves lower spill
probabilities than random, esp. for high loads (ρ > 0.7).
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Fig. 4. Simulation results match well with analytical mean field,
for variable Grid resource load. Note that the curves for classes 3–5
overlap to great extent.

D. Varying variance on job IAT

Having established the close match between analyti-
cal mean field and simulation results over a broad load
range, we investigated the impact of the variability of
the job inter-arrival times. Hence, we fix load ρ = 0.8,
but changed the SCV. For increasing variability on the
job IATs, we expect higher Pspill,k.

Figure 5 shows that even for larger SCV, the simu-
lation results match the analytical results very well.
As noted before, in terms of spill probability, most-
free outperforms random scheduling, but the amount
seems dependent on job IAT variability. As expected,
the overall spill probability (over all jobs, regardless of
site class) increases with growing SCV.

V. CONCLUSION

Grid dimensioning involves answering the question
how many servers to provide, where to place them, and
which network to install for interconnection of server
sites and users. Compared to traditional (optical) net-
work dimensioning, Grids differ in two aspects. First,
not only network but also server capacity needs to be
dimensioned. Second, the (source,destination)-based
traffic matrix—necessary for traditional dimensioning
algorithms—is unknown, and depends on the Grid job
scheduling algorithm.
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Fig. 5. Comparison of mostfree and random scheduling for different
SCV of the inter-arrival distribution. Note that only classes 1–3 are
shown, since results for classes 4 and 5 overlap with those of class
3.

This paper outlined a step-wise Grid dimensioning
approach, resorting to traditional algorithms for net-
work dimensioning. To calculate the required traffic
matrix, we proposed an analytical mean field solution
technique, avoiding time consuming simulation. The
preconditions to allow our mean field methodology are:
(i) job arrival should be modeled as a discrete-time
phase-type (PH) distribution, (ii) grid sites should be
partitioned in a limited number of classes (character-
ized by server capacity and job arrival parameters),
(iii) the number of grid sites N should not be too small.
Condition (i) is not really limiting, since PH models can
match real world traces up to several higher moments
already with a small number of phases (h = 2 for our
case studies). Condition (ii) can be met by clustering
real world sites into a limited number of classes (K = 5
based on a real world log comprising 50 sites). Studies
showed that with respect to (iii), for a realistic number
of sites in the range of some tens to a couple of
hundreds, the analysis very well matches simulation
results.

Feasibility of the mean field solution was illustrated
by a case study for N = 100 sites. It showed a close
correspondence between analysis and simulation for
a broad range of loads (0.5 up to 0.9) and a varying
degree of variance on the job inter-arrival times.

APPENDIX
MEAN FIELD SOLUTION FOR MULTI-CLASS GRIDS

When not all sites have the same amount of servers,
the model is a multiple class grid network. The single
class grid network case can relatively easily be ex-
tended to the multi-class setting, because the Markov
chain associated with each object in [20] is allowed to
be reducible as explained below. The framework [20]
applies to any system consisting of N objects, with
N large, that are each characterized by a transition
matrix K( ~MN (t)). This remains true if the the state
space of this transition matrix can be partitioned into
K classes such that K( ~MN (t)) can be written as a block
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diagonal matrix:

K( ~MN (t)) =
K(1)( ~MN (t)) 0 ... 0

0 K(2)( ~MN (t))
. . .

...
...

. . . . . . 0
0 ... 0 K(K)( ~MN (t))

 . (13)

Because no transitions are possible between states be-
longing to different classes, the state of an object which
belongs to class k at time t = 0 will always remain in
that class. Hence, we let K(k)( ~MN (t)) characterize the
transitions of a class-k site and define ~µ(0), the system
state at t = 0, such that γkN of the N sites start in a
class-k state.

Let ~MN,(k)(t) = (a
(k)
0 (t), . . . , a

(k)
C (t), a

(k)
C+1(t))/γkN be

the occupancy measure of the class-k sites: ~M
N,(k)
i (t)

represents the proportion of class-k sites holding i jobs
after step S2 (0 ≤ i ≤ C(k) + 1). The overall occupancy
~MN (t) equals

~MN (t) =
(
γ1 ~M

N,(1)(t), . . . , γK ~MN,(K)(t)
)
.

A. Computing Q(k)( ~MN (t))

To compute the mean field, we first need an expres-
sion for K(k)( ~MN (t)), the transition matrix of the class-
k sites, given that the overall occupancy measure is
~MN (t). As arrivals and service completions are not af-

fected by the presence of multiple classes we still have
K(k)( ~MN (t)) = Q(k)( ~MN (t))S(k)A(k). The Q(k)( ~MN (t))
matrices have the same form as in (6), except that the
expressions for qi,i′( ~M

N (t)) and q̄i,i′( ~M
N (t)) require

some modifications as all the sites influence a class-
k site and not just the other class-k sites.

1) Random scheduling: For the random strategy
case one finds

q̄
(k)
i,i+i′(

~MN (t)) =

(
C(k)−i
i′

)(f( ~MN (t))−(C(k)−i)∑K
k=1 a

(k)

C(k)+1
(t)−i′

)
( f( ~MN (t))∑K

k=1 a
(k)

C(k)+1
(t)

) ,

with f( ~MN (t)) =
∑K
k=1

∑C(k)

s=1 sa
(k)

C(k)−s(t).
2) Mostfree scheduling: Similar to Step S3 in Sec-

tion III-B, we start by defining b
(k)
i (t) as the number

of class-k sites with at most i busy servers after step
S2 at time t; then b

(k)

C(k)−i(t) denotes the number of
class-k sites with at least i free servers. Let aT (t) =∑K
k=1 a

(k)

C(k)+1
(t) denote the total number of excess jobs

after step S2. Finally, without loss of generality, label
the K classes such that C(1) ≥ C(2) ≥ . . . ≥ C(K).

Provided that there are enough free servers at
time t to support the excess jobs, we have aT (t) ≤∑C(1)

i=1

∑K
k=1 b

(k)

C(k)−i(t), where b(k)i = 0 for i < 0. Hence,
for aT (t) > 0, there exists a 0 < d ≤ C(1) such that

C(1)∑
i=d+1

K∑
k=1

b
(k)

C(k)−i(t) < aT (t) ≤
C(1)∑
i=d

K∑
k=1

b
(k)

C(k)−i(t),

which we denote as d( ~MN (t)) (for aT = 0, we set
c = C(1)). For K = 1, c( ~MN (t)) as defined in (3) equals
C(1) − d( ~MN (t)). The value of d( ~MN (t)) corresponds
to the highest number of free servers found in any
site after step S3. Thus, any class-k site has at least
C(k)−d( ~MN (t)) busy servers after step S3. Hence, sites
that had more than d( ~MN (t)) free servers after step
S2, received one or more excess jobs such that exactly
d( ~MN (t)) or d( ~MN (t))− 1 free servers remain. Similar
to (4), the fraction of sites with d( ~MN (t)) jobs is

γd( ~MN (t)) =

∑C(1)

i=d( ~MN (t))

∑K
k=1 b

(k)

C(k)−i(t)− a
T (t)∑K

k=1 b
(k)

C(k)−d( ~MN (t))
(t)

.

Notice, for K = 1, we have γd( ~MN (t)) = βc( ~MN (t)).

If the number of free servers
∑C(1)

i=1

∑K
k=1 b

(k)

C(k)−i(t) is
insufficient to support the aT (t) jobs, we let d( ~MN (t))
equal d. In this case all the servers become occupied.
This yields, for the class-k sites, for k = 1, . . . ,K

q
(k)
i,i′ (

~MN (t)) =
1− γd( ~MN (t)) i < i′ = C(k) − d( ~MN (t)) + 1 ≤ C(k),

γd( ~MN (t)) i ≤ i′ = C(k) − d( ~MN (t)) < C(k),

1 i = i′ > C(k) − d( ~MN (t))

1 i′ = C(k) = C(k) − d( ~MN (t)),

(14)

for 0 ≤ i, i′ ≤ C(k), where the third case indicates that
no jobs are received when i > C(k) − d( ~MN (t)).

B. Computing the mean field
For the mostfree case K(k)( ~M(t)) = K(k)( ~MN (t)), for

all N , whereas for the random setting, the uniform
limit K̄(k)( ~M(t)) is obtained in exactly the same man-
ner as in the single class model (i.e., the hypergeomet-
ric probabilities converge to binomial probabilities).
Due to [20, Theorem 4.1], we may compute the mean
field as follows:

~µ(k)(t+ 1) =

~µ(k)(t)K(k)
(
γ1µ

(1)(t)
(
IC(1)+2 ⊗ ~eh(1)

)
, . . . ,

γKµ
(K)(t)

(
IC(K)+2 ⊗ ~eh(K)

))
, (15)

for all k, with µ(k)(0) = (α(k), 0, . . . , 0) (where
(α(k), T (k)) characterizes the PH renewal process of a
class-k site). The class-k occupancy measure equals

lim
N→∞

~MN,(k)(t) = µ(k)(t)(IC(k)+2 ⊗ ~eh(k)).
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