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Support for anycast in the IP network layer allows one source node to contact a single
member out of a group of destination nodes configured with the same IP address. Due to
the stateless nature of the IP protocol, subsequent packets from the same source node tar-
geted at the same anycast group may arrive at different group members. Consequently,
native IP anycast cannot be applied directly to support distributed session-based services.
For this reason, an anycast overlay architecture combining the transparency offered by
native anycast with support for stateful communications has been proposed. In this paper,
we investigate the operational impact of deploying this overlay architecture. Performance
evaluation of a data plane prototype implementation for an anycast overlay node shows
that high throughput and small latency can be achieved. Additionally, we show how
threshold-based update triggering, in combination with an appropriate inter-proxy update
strategy, delivers control plane accuracy with minimal network overhead.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

IP anycast enables communication between a source
host and one member of a group of target hosts, usually
the one nearest to the source [1]. As such, anycast is con-
sidered a powerful tool for realizing transparent, scalable
and reliable communications with stateless distributed
network services. The use of replicated DNS root servers
listening to a common—anycast—IP address is an example
application where anycast has proven useful [2].

At present, there are limitations that prevent wide-
spread adoption of IP anycast in general, and its adoption
for network service provisioning more specifically. First,
session-oriented services (including all applications imple-
mented on top of TCP) cannot take advantage of this
addressing mode, because subsequent packets from the
same source host (and session) may be routed towards a
different target host. Another anycast limitation is its poor
global routing scalability due to the fact that routes to any-
. All rights reserved.
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cast groups cannot be aggregated: widespread adoption of
end-to-end native IP anycast would undoubtedly lead to
huge and unmanageable routing tables. Possible solutions
for this issue have been proposed by Katabi and Wroclaw-
ski [3] and Ballani and Francis [4].

Inspired by PIAS [4], we introduced ASTAS: a proxy-
based Architecture for Scalable and Transparent Anycast
Services [5]. ASTAS proxies are regular routers augmented
with anycast-specific packet processing capabilities,
including intelligent forwarding of client requests and
registering anycast resources. Using the ASTAS architec-
ture, distributed network services can be scaled to a large
number of consumers and resources, and this in a trans-
parent way from an end-user perspective. In addition to
network state and metrics, the proxy infrastructure uses
server state information to forward service requests to
the most suitable location, which is not possible using
only IP anycast. ASTAS overlay nodes are stateful to be
able to individually assign sessions to target servers in a
flexible way.

In this paper we focus on the operational impact of
deploying the ASTAS overlay, i.e., we investigate data plane
based overlay system for scalable service discovery and execution,
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scalability for ASTAS proxies and control plane network
overhead related to system accuracy.

Based on the Click modular router [6] model, we discuss
how the data plane of regular routers can be augmented to
an ASTAS proxy in an incremental way. Therefore, ASTAS-
specific Click components are introduced and potential is-
sues for the forwarding path are raised. Performance eval-
uation results on regular PC hardware indicate that
embedding ASTAS functionality in routers does not signif-
icantly influence forwarding latency and throughput for
regular unicast packets. Even for stateful anycast commu-
nications, a packet forwarding rate close to 400,000 pack-
ets per second can be achieved.

ASTAS nodes have to be informed about the local re-
sources’ state and the remote aggregated resource state
to be able to forward new session requests to the most
suitable location. For this reason, we assess control plane
scalability for both resource-proxy and inter-proxy up-
dates. In order to reduce the update frequency with con-
trollable accuracy, we propose a threshold-based update
triggering mechanism for resources and proxies, which is
then evaluated using a mathematical model based on con-
tinuous time Markov Chains (CTMC). Next, analytical and
simulation results for xDSL and cable operator networks
show how proxy location and inter-proxy update strate-
gies impact overall state dissemination scalability.

This paper is structured as follows: Section 2 provides
an overview of the anycast overlay architecture. Next, rou-
ter extensions for overlay proxy nodes are discussed and
data plane performance is evaluated in Section 3. In Sec-
tion 4, we present an analysis of the two orthogonal prob-
lems related to ASTAS control plane scalability: resource
update triggering conditions and inter-proxy update strat-
egy. Section 5 summarizes the main results of this paper.
2. ASTAS architecture

2.1. IP anycast limitations

Because IP anycast forwards packets to the nearest
member of an anycast group, it could prove useful as a
transparent service discovery primitive. For single request-
response services such as DNS, it can even support the en-
tire service and increase service scalability by means of im-
plicit coarse-grained load balancing between the anycast
group members.

Despite these promising features, the use of IP anycast
is not widely adopted and production use is essentially
limited to DNS root server replication [2]. According to Bal-
lani and Francis [4], the main reason for this is the lack of IP
routing scalability inherent to native anycast. First, IP any-
cast routes cannot be aggregated and widespread adoption
would lead to an explosive growth of IP routing tables.
Since anycast group members—using the same IP ad-
dress—can be scattered all over the Internet, a distinct
routing entry is needed per anycast group. Secondly, any-
cast group dynamics (i.e., joining and leaving members)
necessitate frequent changes to a relatively slowly con-
verging IP routing configuration, possibly leading to net-
work instability. In general, intra-domain and inter-
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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domain routing protocols and algorithms are designed to
operate in environments with a quasi stable underlying
network configuration. As such, these protocols are not
optimized to handle frequent changes to the network
topology.

With the intention to use IP anycast for transparently
providing scalable remote service execution, two addi-
tional limitations arise:

(i) IP anycast does not support session-based
communications.

(ii) IP routing in the Internet is static (shortest path) and
does not support multiple constraint routing or traf-
fic engineering in general.

Today, most Internet traffic originates from TCP-based
communications. Due to limitation (i), these services can-
not take advantage of IP anycast apart from the service dis-
covery feature. Limitation (ii) implies that anycast targets
cannot be selected based on volatile network (e.g., conges-
tion) and/or target conditions (e.g., current server load).

Taking into account both the strengths and weaknesses
of IP anycast, we proposed ASTAS, an Architecture for Scal-
able and Transparent Anycast Services [5] that is based on
PIAS [4]. For a scalable service delivery platform, the main
advantage of ASTAS over PIAS is the stateful nature of all
proxy components, which allows a fine-grained distribu-
tion of service requests over the available resources. For
an in-depth discussion of the ASTAS architecture and a de-
tailed comparison with PIAS, we refer to [5]. However, for
the sake of clarity, the remainder of this section provides
an overview of the ASTAS platform.

2.2. ASTAS overview

The ASTAS overlay infrastructure consists of a combina-
tion of two types of nodes: client proxies (CP) and server
proxies (SP). Both client proxies and server proxies are spe-
cial routers advertising their proximity to the anycast IP
range into the routing substrate. By doing this, the proxy
routers force IP packets with an anycast destination ad-
dress to pass through the overlay. When a client initiates
a new session to an anycast destination, the closest client
proxy registers the new session and selects an appropriate
server proxy to forward the request to. The server proxy
receiving the new session then selects the most suitable
server to handle the request.

Fig. 1 depicts the steps involved in setting up a session
between a client and a target anycast server through the
proxy system. Step R1 registers a server with unicast ad-
dress S for the service offered by anycast address A and
port b. In order to inform the nearest server proxy (SP) of
its presence, the server addresses the registration message
at the anycast address A and registration port c. Note that
this registration uses native anycast to reach the closest
server proxy. At this point, the SP configures an IP tunnel
(IP-in-IP encapsulation, see [7]) to the unicast address S.
Next, a client can initiate a session by sending a packet ad-
dressed to the anycast service of choice (step 1). When the
packet arrives at the closest client proxy (CP), it is tunneled
to a suitable SP (step 2), where it is tunneled again towards
based overlay system for scalable service discovery and execution,
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Fig. 1. Anycast communication through the proxy system. In the table
capitals refer to IP addresses and lowercase characters point to the TCP/
UDP port used.
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Fig. 2. Modular decomposition of an ASTAS router.
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a target server (step 3). The return path (steps 4, 5 and 6) is
realized in the same way. Stateful tunneling occurs twice in
each direction (in CP and SP) and is necessary to guarantee
session continuity. The IP tunnels cannot be avoided on the
return path because both the CP and SP have to monitor
the session state, for which packets have to traverse the
system in both directions. This also implies that target
servers need to be aware of the ASTAS infrastructure, since
an IP tunnel is maintained between each target and its SP,
in both directions. However, target servers do not discover
the SP unicast IP address and tunnel packets towards the
anycast address (step 4).

Stateful communications are not explicitly supported
by the proposed overlay mechanism since steps 1 and 4
in Fig. 1 cannot guarantee that subsequent packets from
the same session arrive in the same proxy. However, in
practice there are two reasons why the overlay infrastruc-
ture suffices to support stateful communications. First, the
number of proxies is relatively small compared to the
number of network nodes, meaning that a single link or
router failure is unlikely to cause a client (or server) to
swap to another proxy node. Secondly, the distance be-
tween a client (or server) and its closest proxy node is usu-
ally significantly smaller than the end-to-end distance
between a client and a server, thereby reducing the
chances for a failure on the path segment between client
(or server) and proxy node.
3. ASTAS data plane

3.1. Router extension design

The anycast overlay architecture discussed in Section 2
requires extra functionality in network routers that are up-
graded to anycast proxies. No upgrade is necessary for reg-
ular routers (i.e., routers not aware of the overlay) to be
able to forward the anycast packets. For non-anycast (uni-
cast) traffic, proxies behave just like regular routers.

Fig. 2 depicts a modular decomposition of a simplified
(IPv6) router forwarding plane with ASTAS extensions,
based on Click router components [6]. When the router re-
ceives a packet on one of its ingress interfaces (module
PollDevice), a first classifier determines whether the packet
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
Comput. Netw. (2009), doi:10.1016/j.comnet.2009.08.008
received is related to the IPv6 neighbor discovery protocol
(IPv4 address resolution protocol (ARP) equivalent) or a
regular IPv6 datagram (third output port from the left).
Following the path of the regular IPv6 packet, the next
module strips the first 14 bytes of the packet to discard
the Ethernet header. As its name suggests, the Chec-
kIP6Header module performs some sanity checks on the
IPv6 header (e.g., valid IP version number and packet
length) and drops the packet if the check fails. Once the
packet passes the sanity checks, it arrives at the ASTAS
components grouped in the dotted box. There, another
classifier (AstasClassifier) differentiates between regular
(non-anycast) IPv6 traffic, ASTAS data plane and ASTAS
control plane traffic. Again following the path for regular
packets, the next module (GetIP6Address) extracts the des-
tination address from the IPv6 header (offset equals 24 by-
tes) for the actual routing element, LookupIP6Route.
According to its routing table, this component forwards
the packet to the correct egress interface or the host oper-
ating system for local delivery. Before pushing the packet
to the egress interface, the IPv6 hop limit (IPv4 time to live
(TTL) equivalent) is decremented by module DecIP6HLIM,
whereafter the Ethernet header is prepended by the egress
based overlay system for scalable service discovery and execution,

http://dx.doi.org/10.1016/j.comnet.2009.08.008
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neighbor discovery module IP6NDSolicitor. The following
paragraphs discuss the ASTAS components in detail and
present concluding remarks for the ASTAS router extension
design.

3.1.1. ASTAS classifier
This component distinguishes between four different

types of packets: regular IPv6 packets, data packets to an
anycast destination address, control plane packets origi-
nating from other proxies or resources, and packets from
ASTAS IPv6 tunnels that are terminated in the router.
Fig. 1 shows in which situation each type of packet can
be expected. ASTAS-related data plane packets are for-
warded to an IPv6 tunnel decapsulation module, before
they arrive in the ASTAS core module.

3.1.2. IPv6 tunnel decapsulation
If an anycast data packet is encapsulated in another IP

packet targeted at the proxy IP address, it is decapsulated
by the IP6Decap module before it is pushed to the core
component. Packets that are not encapsulated remain
unchanged.

3.1.3. ASTAS core module
Fig. 3 depicts the flow diagram of a packet traversing

this module. Upon packet arrival, its source and destina-
tion IP addresses and TCP/UDP ports are extracted from
the IP and transport protocol headers. This four-tuple is
the key used to lookup the session in the database of estab-
lished sessions, analogous to a stateful firewall. If the pack-
et matches a previously initiated session, the destination
address for the IP encapsulation header is retrieved and
the packet is encapsulated (if applicable). For a packet ini-
tiating a new session, a target proxy/resource is selected
from the service repository and a new session is created.
Data plane
packet arrival

Extract IPv6 addresses
and port numbers

Session
found?

Lookup session

Find target in
service registry

Create session
(and reverse)

Mark session
(timestamp)

Prepend IPv6
header

Push packet to
next element

Y

N

Fig. 3. AstasCore element flow diagram.
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If the packet was decapsulated previously by the IP6Decap
module, the source address of that outer IP header is stored
in the session record to track the return path. Furthermore,
sessions that time out are removed from the system.
3.1.4. Router design remarks
The discussion in this section is entirely based on the

Click router model and, consequently, the ASTAS exten-
sions are introduced as Click components. Even though
the resulting description is platform specific, we believe
that the modular and generic approach of the Click model
is well suited to provide a general overview of the changes
necessary to make a regular router ASTAS compliant.
Moreover, conceptual Click routers can be implemented
and evaluated on regular Linux machines (both in user
space and kernel space). As illustrated in Fig. 2, Click can
also cooperate with dynamic routing protocols (e.g., OSPF,
BGP) running on the host operating system to manage the
data plane routing table. For this purpose, XORP [8] soft-
ware can be used.

IPv6 is the network layer protocol of choice for the rou-
ter extension design description and performance evalua-
tion (see Section 3.2). There are no limitations that
prevent ASTAS to be deployed in an IPv4 context, however.
As such, the trends that will be shown in the performance
evaluation part can be mapped directly to IPv4. Due to the
manipulation of smaller addresses in the IPv4 case (32 bits
instead of 128 for IPv6), the relative overhead of the ASTAS
overlay will even decrease.

The duration of the target selection step in the ASTAS
core element flow diagram (see shaded box in Fig. 3) is
of crucial importance for the overall proxy session setup
rate that can be achieved. Depending on the location of
the target repository, this step might take just a few micro-
seconds for an efficient local repository but several milli-
seconds for a remote repository. In this case, the control
plane design (i.e., proxy state dissemination strategy) will
have direct impact on data plane performance.

The ASTAS overlay relies on the use of IP tunnels to
transport packets transparently to the anycast targets via
the proxy system. This means that an IP header is prepend-
ed to each packet entering the overlay. In the IPv4 case,
this results in an overhead of 20 bytes per-packet. Due to
the larger header size, an IPv6 data plane increases the
per-packet overhead to 40 bytes. For applications using
relatively small packet sizes, this overhead is significant.
For large packets, prepending the header should not lead
to packet fragmentation (for reasons of performance). To
overcome this issue, proxies can manipulate the IPv6 path
MTU discovery process [9] and announce the IPv6 mini-
mum path MTU of 1280 bytes [10]. This implies that
underlying IPv6 links on paths between proxy pairs or
proxy-resource paths must have an MTU of at least
1280þ 40 ¼ 1320 bytes.
3.2. Performance evaluation

In this section we wish to investigate the impact of the
anycast overlay extensions on router forwarding perfor-
mance. For this purpose, the Click router configuration de-
based overlay system for scalable service discovery and execution,
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Fig. 4. Test setup and configuration.
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picted in Fig. 2 was deployed on PC hardware running
Linux.

The test configuration is depicted in Fig. 4. The test ma-
chine, a dual core AMD Opteron running at 2 GHz, is
equipped with a 32-bit 2.6 linux kernel patched for the
Click router, that operates single-threaded in kernel space.
An Intel e1000 interface card provides two gigabit Ethernet
interfaces supporting the Click polling extensions.1 As
shown on the figure, the interfaces of the test machine—
operating as an ASTAS proxy—are connected to a SmartBits
6000 [11] multi-port network performance analysis
system.

Figs. 5 and 6 show the throughput and latency achieved
with the test equipment described in the previous para-
graph. The original packet size for the tests is 96 octets,
which is the minimum packet size for Ethernet frames car-
rying TCP traffic over IPv6 in the SmartBits system.2 Encap-
sulated packets—on the anycast return path—carry an extra
IPv6 header and have a total frame size of 136 bytes. A total
of four results is shown on the figure. SmartBits back-to-
back throughput (direct connection between SmartBits
interfaces) shows the maximum achievable performance
by the performance analysis equipment. Subsequently, fea-
tures are added to the test system in an incremental way
to be able to assess a per-feature performance penalty. The
results depicted in Figs. 5 and 6 lead to the following
observations:
1 Throughput increases significantly when interfaces operate in polling
mode. At present, polling mode support is limited to a small number of
interface cards.

2 The SmartBits system adds a payload of 14 octets to the frame for
packet identification and statistics.

Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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(1) The IPv6 router (Click configuration without ASTAS
components) and ASTAS proxy have roughly the
same performance in terms of system throughput
and per-packet latency for forwarding unicast IPv6
packets. This means that introducing the extra clas-
sifier in the data plane does not significantly impact
system performance for unicast traffic.

(2) Throughput decreases and packet forwarding
latency increases significantly for anycast traffic,
even for already established sessions. This indicates
that extra processing power will be required in rou-
ter devices to enable wire-speed anycast
communications.

(3) When all packets belong to a new session, the ses-
sion setup rate of the system is measured. Even for
a local service registry (see Fig. 3), forwarding per-
formance degrades significantly when compared to
anycast throughput measurements from already
established sessions. Nevertheless, a session setup
rate close to 400,000 sessions per second is more
than adequate for practical purposes. In case of a
remote target service registry without local cache,
the achievable session setup rate will be an order
of magnitude smaller because it depends on net-
work latency rather than the local lookup delay in
based overlay system for scalable service discovery and execution,

http://dx.doi.org/10.1016/j.comnet.2009.08.008
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the ASTAS router (as shown in Fig. 6b, this is just a
few microseconds). Note that a remote target service
registry (with or without local caching) may offer a
balanced trade-off between maximum session setup
rate and control plane scalability. This is discussed
further in Section 4.
Fig. 7. Visual representation of the Markov chain defined in Eq. (1). u0; ui ,
and us depict possible update utilization states.
4. ASTAS control plane

4.1. Control plane design issues

When a client initiates a new session, the nearest any-
cast proxy captures the request and selects a target server
if local resources are available or a remote proxy in the
other case. In a perfect world, the proxy would have an
accurate snapshot of every server’s status in order to take
well-informed decisions. Clearly, for any non-trivial
deployment, this cannot be achieved in a scalable way.
Remember that this is the main reason why server state
is aggregated in the nearest anycast proxy. Even in this
aggregated model, the dissemination of state information
raises scalability concerns:

(i) Updating too frequently increases the proxy system
and network load.

(ii) Updating infrequently causes inaccuracy.

Moreover, the inter-proxy state update strategy will im-
pact scalability and possibly limit the total number of
proxies in the system. Therefore, this section discusses
the performance of update triggering mechanisms and in-
ter-proxy update strategies. We consider the following per-
formance criteria for the control plane:

(i) Network load generated by control plane events.
(ii) Accuracy of resource status information.

Note that the data plane performance resulting from
control plane accuracy (i.e., the session assignment to a
specific resource) is not taken into consideration for evalu-
ating the control plane. That is, we study control plane
overhead and accuracy in isolation, thereby neglecting
their potential influence on data plane performance. In or-
der to decouple session scheduling—a problem in its own
right—from the control plane performance, we make the
following assumption: Resources are uniformly loaded, i.e.,
at all times the (distributed) scheduler realizes an even distri-
bution of the workload over all resources, taking into account
individual resource capacities.
4.2. Update rate for resources and proxies

In this section, we compute the update frequency of a
resource consisting of T slots to which threads can be allo-
cated. The system sends an update when it reaches one of
the sþ 1 predefined utilization states uið0 6 u0 < u1

< � � � < us 6 TÞ coming from a neighboring update state
uj ðj – iÞ. At the end of this section, we discuss threshold-
based updating, a special case of this updating mechanism
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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where an update is sent only if the system load differs from
the load of the previous update point by the fixed threshold.

First, we present the mathematical modeling of a re-
source and derive the building blocks necessary to com-
pute the global system update rate.

4.2.1. Mathematical model
We model the resource as a—well-known—M/M/T/T

queuing system, i.e., the arrival rate for new sessions fol-
lows a Poisson distribution with parameter k, session dura-
tion follows an exponential distribution with parameter l,
and a total of T slots for working threads are available in
the system. A graphical representation of such a system,
including the update states ui, is depicted in Fig. 7. The ses-
sion birth–death process for this system can then be mod-
eled by a finite-state continuous time Markov chain fXðtÞg
with infinitesimal generator Q, given by [12]:

Q ¼

�k k 0 � � � 0
l �ðkþ lÞ k 0 � � � 0
0 2l �ðkþ 2lÞ k 0 � � � 0

..

. . .
. ..

.

0 � � � Tl �Tl

2
66666664

3
77777775
:

ð1Þ

In matrix Q, a diagonal element Qii represents the parame-
ter of the exponential staying time in state i. The transition
probability from state i to iþ 1 is given by k

kþil, and the
transition probability from state i to i� 1 is il

kþil. The sta-
tionary distribution p of fXðtÞg is given by the left eigen-
vector of Q with eigenvalue 0 (Eq. (2)), satisfying the
additional constraint in Eq. (3) [13]:

pT Q ¼ 0T ; ð2Þ
XT

i¼0

pi ¼ 1: ð3Þ

If q is defined as follows:

q ¼ k
l
; ð4Þ

then the vector components pi of the stationary distribu-
tion p are given by the truncated Poisson distribution rep-
resenting the Erlang loss formula for the M/M/T/T system:

pi ¼
qi

i!
PT

k¼0
qk

k!

: ð5Þ

If the system would have triggered an update every time
the system hits one of the states ui, the results presented
by Chi et al. [14] could have been employed to compute
based overlay system for scalable service discovery and execution,

http://dx.doi.org/10.1016/j.comnet.2009.08.008


Fig. 8. Threshold-based updating illustrated.

T. Stevens et al. / Computer Networks xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
the update triggering probability, based on p. Due to the
extra condition that updates are only triggered if the
previous update was sent from within another utilization
state, this approach cannot be used, however. Building
on the results of conditional first-passage times in general
birth–death processes [15], our discussion below shows
how the update rate for such a system can be computed.

First, we present random variables introduced by Jou-
ini et al. in [15] that are associated with conditional first-
passage times, and of great interest for the remainder of
this discussion. Let hk

m be the first-passage time of the
process fXðtÞg from state m to state m� 1 given that
the process does not visit state k ð1 6 m < kÞ during this
transition, i.e.,

hk
m ¼ Infft > 0 : XðtÞ ¼ m� 1jXð0Þ
¼ m and no visit to kg: ð6Þ

Likewise, let sk
m be the first-passage time from state m� 1

to state m given that the process does not visit
k ð0 6 k < m� 1Þ. Note that the states k and m for sk

m

and hk
m are unrelated. sk

m is defined by:

sk
m ¼ Infft > 0 : XðtÞ ¼ mjXð0Þ
¼ m� 1 and no visit to kg: ð7Þ

Applying the expressions for the first order moment (i.e.,
the expected value) of hk

m and sk
m derived in [15] for general

birth–death processes to the birth–death process fXðtÞg
defined above, yields Eqs. (8) and (9):

�hk
k�1 ¼

1
kþ ðk� 1Þl and �hk

m ¼
Pk�1

n¼mvk
n

kgk
mvk

m�1

;

for ð1 6 m < k� 1Þ; ð8Þ

with

gk
k�1 ¼

ðk�1Þl
kþðk�1Þl and gk

m ¼
ml

mlþkð1�gk
mþ1Þ

;

vk
0 ¼ 1 and vk

m ¼ km Qm
n¼1

gk
n

dk
n
;

dk
m ¼ mlþ kð1� gk

mþ1Þ:

8>>>><
>>>>:
Similarly,

�sk
m ¼

Pm�1
n¼kþ1/

k
n

bk
m�1/

k
m�1

for ðm P kþ 2Þ ð9Þ

with

/k
kþ1 ¼ 1 and /k

m ¼
ðkþ1Þ!

m!l
Qm�1

n¼kþ1

bk
n

mk
nþ1
;

bk
kþ1 ¼ kþ ðkþ 1Þl and bk

m ¼ kþmlð1� mk
mÞ;

mk
kþ2 ¼ k

kþðkþ1Þl and mk
m ¼ k

kþðm�1Þlð1�mk
m�1
Þ :

8>>>><
>>>>:
Now, based on the random variables hk

m we can introduce
the random variables Lk

m!l, representing the first-passage
time from the transition starting in state m to state l, given
no visit to state k ð0 6 l < m < kÞ. We define

Lk
m!l ¼

Xm

n¼lþ1

hk
n: ð10Þ
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Similarly, let Rk
m!r be the random variables representing

the first-passage time from state m to state r, given no visit
to k ð0 6 k < m < rÞ. We have

Rk
m!r ¼

Xr

n¼mþ1

sk
n: ð11Þ

Determining the distribution function of the random vari-
ables Lk

m!l (respectively Rk
m!r) involves a convolution of the

random variables hk
n (respectively sk

n), but the expected val-
ues of the random variables Lk

m!l and Rk
m!r can be ex-

pressed as follows:

Lk
m!l ¼

Xm

n¼lþ1

�hk
n; ð12Þ

and likewise,

Rk
m!r ¼

Xr

n¼mþ1

�sk
n: ð13Þ

In the following section we apply these results to compute
the update rate for threshold-based updating. Note that
these random variables can also be used for computing
the update rate for every possible combination of prede-
fined utilization states ui introduced at the start of this
section.

4.2.2. Threshold-based updates
As a special case of the updating mechanism defined

above, we consider threshold-based updating. The update
mechanism is simple: whenever the load on the system ex-
pressed as active threads

T varies by threshold ð0 <
threshold 6 1Þ, an update is sent. For a system consisting
of a discrete number of thread slots T, the update states
are spread evenly over the state space ½0; T�. The distance
r between two subsequent update states is given by:

r ¼ dthreshold� Te; ð14Þ

and the number of update states s not including state 0
equals

s ¼ T
r

� �
ð15Þ

When the system starts, it has 0 allocated thread slots. The
first update is generated when the system reaches state r.
From that state, the next update will be sent either when
the system reverts to its initial state 0 or when it pro-
based overlay system for scalable service discovery and execution,
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gresses to state 2r, and so on. Fig. 8 depicts the update
states on the horizontal axis, related to their—assumed—
limiting probabilities (from the stationary distribution)
on the vertical axis. The last update state is sr 6 T. Once
the system visits update state ir, the next update will be
triggered when state ði� 1Þr or ðiþ 1Þr is visited. As
shown in the figure, the average time needed to reach
ði� 1Þr given no visit to ðiþ 1Þr, is given by Lðiþ1Þr

ir!ði�1Þr.
The average time to reach ðiþ 1Þr given no visit to
ði� 1Þr is defined in a similar way. The probability pL

i of
moving to the left update state ði� 1Þr from ir is given
by (see Fig. 8 for a visual interpretation):

pL
i ¼

Xði�1Þr

l¼0

pl:

Likewise, the probability pR
i of moving to the right update

state ðiþ 1Þr is

pR
i ¼

XT

r¼ðiþ1Þr
pr :

Consequently, in state ir, the average update rate is

1
pL

i þ pR
i

pL
i

Lðiþ1Þr
ir!ði�1Þr

þ pR
i

Rði�1Þr
ir!ðiþ1Þr

 !
:

As shown in Fig. 8, the probability of actually residing in
state ir is given by the stationary distribution. Knowing
that the system is continuously evolving from one update
state to the next or previous update state (by construc-
tion), the average update rate for the entire system Ut

can be computed by a normalized sum of the individual
update state rates as follows:

Ut ¼
Xs�1

i¼1

pir

ðpL
i þ pR

i Þ
Ps

j¼0pjr

pL
i

Lðiþ1Þr
ir!ði�1Þr

þ pR
i

Rði�1Þr
ir!ðiþ1Þr

 !

þ p0Ps
j¼0pjr

R�1
0!r þ

psrPs
j¼0pjr

L�1
sr!ðs�1Þr: ð16Þ

In Eq. (16), the second and last term represent the uncon-
ditional update rate from state 0 to r and from state sr to
ðs� 1Þr, respectively. Expressions to compute the uncon-
ditional mean first-passage times can be found in [13,15].
The leading factor pirPs

j¼0
pjr

for each term relates the proba-

bility pir of actually starting in state ir to the probabilities
pjr of residing in one of the other update states jr.

Fig. 9 depicts the computed and simulated (i.e., mea-
sured) update rate for an increasing update threshold in
a system with T ¼ 20; k ¼ 2; l ¼ 2

15. As expected, increas-
ing the update threshold decreases the update rate. Since
the average system accuracy is roughly equal to threshold

2 , this
reduction of the update rate can only be achieved at the ex-
pense of decreasing system accuracy. The irregularity
(both measured and computed) in the graph at
threshold ¼ 0:35 can be explained as follows. For
threshold ¼ 0:3, the update states are {0,6,12,18}. For
threshold ¼ 0:4, the update states are {0,8,16}. Since the
update states for threshold ¼ 0:35 are {0,7,14}, and the
average system load q ¼ 15, reaching an update event is
more likely for both thresholds surrounding 0.35.
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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The slight discrepancy between the simulated and com-
puted update rate originates from the use of an infinite-
state Markov chain for the computation of the conditional
first-passage times in [15]. Instead of the finite-state birth–
death process defined by the generator matrix Q, Jouini
et al. consider a general birth–death process with kS > 0
for state S P T. Fig. 10 illustrates this discrepancy for
T ¼ 20; k ¼ 2; l ¼ 2

15. This minimal error is acceptable for
stable systems, i.e., systems that are not overloaded.

Computing the update rate for proxies using a thresh-
old-based updating mechanism is not straightforward, be-
cause their rate of change depends on the attached
resources and their update threshold. Nevertheless, Eq.
(16) can be used to evaluate the update rate for an increas-
ing number of thread slots in the system. Fig. 11 depicts
these results. Note that l ¼ 2

15 is fixed, while the arrival
based overlay system for scalable service discovery and execution,
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rate k is adjusted to the number of thread slots to maintain
a system load of 75% as the number of thread slots in-
creases, i.e., k ¼ 0:75lT. Since proxies aggregate the state
of all connected resources, they can be modeled as super-
resources with a number of thread slots equal to the sum
of thread slots of all individual resources. The results
clearly indicate that the aggregation phase by the proxies
increases scalability, by decreasing the update rate without
loss of accuracy.
Fig. 12. Chord example.
4.3. Inter-proxy update strategy

If the aggregated state of the resources for a specific
service behind a proxy changes significantly (see previous
section), the proxy decides to update the other proxies. In
general, this can be achieved by disseminating the update
information to all proxies or to a subset of proxies
(possibly a single proxy) or dedicated repositories. In
the first case, all proxies have an accurate view on the
state of all participating proxies, while in the latter case
proxies have to query the (quasi-)centralized repository
in order to get updated. In this paper, we consider four
updating strategies: broadcasting, flooding, a single cen-
tralized repository, and a distributed hash table (DHT)
repository.

Using a broadcasting strategy is the fastest way to dif-
fuse an update to all other proxies. Update packets are sent
individually to all recipient proxies and are forwarded over
the shortest path. Unfortunately, the sending proxy needs
to be aware of all other (recipient) proxies, which is
unpractical or even impossible for large deployments.

Flooding is also a diffusion strategy. Contrary to the
broadcasting approach, only neighbor proxies are ad-
dressed directly. Upon arrival of an update, a neighbor in
turn forwards the update to its neighbors. Duplicate up-
dates are discarded. Note that the neighbor-relationship
is defined at the application level and is not necessarily re-
lated to physical proximity.

Updating a central repository implies that a single node
is responsible for maintaining the proxies’ state. Upon re-
quest or on a timely basis, the central repository informs
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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the requester or all remote proxies about the other proxies’
state. By distributing the repository over multiple nodes
(or even all proxies), a single point of failure and perfor-
mance bottleneck can be avoided, albeit at the expense
of configuration manageability and operational simplicity.
A natural solution to overcome these shortcomings is pro-
vided by distributed hash tables [16,17].

The general purpose of a DHT is to map a key to a spe-
cific node. In the context of this paper, an anycast IP ad-
dress—possibly augmented with the TCP destination
port—uniquely identifies an anycast service and can be
used as a lookup key. As such, each node participating in
the DHT becomes responsible for maintaining the state of
a subset of anycast services for all proxies. For the remain-
der of this paper, a simplified version of the Chord DHT
[17] is used. To concretize and clarify the use of a DHT
for the distributed anycast service state management, we
first recapitulate basic Chord working principles.

As shown in Fig. 12, Chord maps all nodes and lookup
keys on a circular key space. For the simplified version
used here, each node and service identifier are mapped
to a 32-bit hash value. By design, each Chord node is
responsible for the keys with a hash value between that
of its predecessor on the ring and itself. Assuming that
each node knows its successor, a lookup can be forwarded
over the ring until the responsible node for that key is
reached. To speedup this linear lookup process, Chord
provides a finger table in each node to be able to bypass
most nodes on the ring. Considering the 32-bit version
used in this paper, a node with hash value n has 32 finger
table entries: finger½k� ¼ ðnþ 2k�1Þ mod 232; 1 6 k 6 32.
Then, for each entry finger½k�, the node closest to but
smaller than ðnþ 2k�1Þ mod 232 is stored to allow direct
jumps to this node. For an in-depth discussion of Chord,
including a discussion on its operation under churn, we
refer to [17].

In the following sections we discuss the performance of
each update strategy in terms of their generated network
load. First, analytical calculations are shown for rings and
trees, next simulation results for more complex—but real-
istic—operator networks are presented.
based overlay system for scalable service discovery and execution,
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Fig. 14. Binary tree with depth d ¼ 4 and 2d�1 ¼ 8 leaf nodes. Dotted
arrows show the circular flooding path.
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4.4. Update strategy performance in rings and binary trees

Due to their regular structure, ring and tree networks
facilitate direct comparison between the different update
strategies.

In a ring with n ¼ 2d nodes and p ¼ 2i ð1 6 i 6 dÞ prox-
ies spread evenly over all ring nodes, the average distance
between the proxies is given by

Dring ¼
n � p

4 � ðp� 1Þ : ð17Þ

Using broadcast, all p proxies update p� 1 other proxies
directly. The corresponding average link load, expressed
as update messages

link , is

Bring ¼
p � ðp� 1Þ � Dring

n
¼ p2

4
: ð18Þ

For the flooding scenario, we assume that each updating
proxy sends an update to its left and right neighbor on
the ring. Since duplicate updates are discarded, both up-
dates will visit half of the ring nodes, which results in
the following average link load:

Fring ¼
2 � p � n

2

n
¼ p: ð19Þ

In the case of a single proxy operating as the central repos-
itory for the status information related to an anycast ser-
vice, there are p� 1 proxies updating this central node.
This translates to the following average link load:

Cering ¼
ðp� 1Þ � Dring

n
¼ 1

4
� p: ð20Þ

When a Chord DHT is used to increase manageability and
achieve load balancing as the number of services increases,
the average link load increases because there is no rela-
tionship between the physical proxy location and its place
on the Chord ring. This is depicted in Fig. 13, where dotted
arrows show the Chord ring of Fig. 12 mapped to the phys-
ical ring topology. Additionally, a Chord update requires
about 1

2 � log2ðpÞ steps on the Chord ring to reach its desti-
nation [17]. The average link load is then given by

Chring ¼
ðp� 1Þ � 1

2 � log2ðpÞ � Dring

n
¼ 1

8
� p � log2ðpÞ: ð21Þ

For the binary tree network with n ¼ 2d�1 leaf nodes and
p ¼ 2i ð1 6 i 6 d� 1Þ proxies spread evenly over the leaf
Fig. 13. Chord ring (dotted line) drawn on top of the physical ring
topology.
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nodes, average link load can be computed in a similar
way. The average distance between proxies is given by

Dtree ¼
Xd�1

i¼1

2 � bp � 2�ic � ðd� iÞ
p� 1

; ð22Þ

which yields the following average link load for broadcast:

Btree ¼
p � ðp� 1Þ � Dtree

2d � 2
: ð23Þ

For the flooding scenario, neighbors are selected as shown
in Fig. 14. The average link load is given by

Ftree ¼
p �
Plog2p

i¼1 2i � ðd� iÞ
2d � 2

: ð24Þ

For the central repository, the average link load is

Cetree ¼
ðp� 1Þ � Dtree

2d � 2
; ð25Þ

and similarly, the Chord average link load is given by

Chtree ¼
ðp� 1Þ � 1

2 � log2ðpÞ � Dtree

2d � 2
: ð26Þ

In Figs. 15 and 16 the average link load is related to the
number of proxies in the ring or tree, respectively. From
Fig. 15. Link load in a 128-node ring.

based overlay system for scalable service discovery and execution,
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Fig. 16. Link load in a tree with depth 7 and 128 leaf nodes (potential
proxies).
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a network perspective, the centralized repository is the
most efficient solution for both the ring and tree network.
This is not a surprise, since the many-to-one relationship
implies linear scaling in the number of proxies for the aver-
age network load. As such, it can be seen as an lower bound
for the Chord updating cost, where all updates for the same
anycast service eventually arrive in the single node respon-
sible for the service key. As calculated by Eqs. (18) and (23)
the network load generated by the broadcast strategy
scales quadratically in the number of proxies. Due to its
poor scaling in terms of network load and manageability,
broadcasting is not further considered for the operator net-
work simulations in the next section.

For the ring network (see Fig. 15), flooding is more effi-
cient than Chord updating for a large number of proxies,
especially when we assume that Chord also diffuses the
aggregated status information at the same rate to the other
proxies (Chord + diffusion). This is remarkable, because in
Chord only a single node is updated (many-to-one) and
for flooding all nodes are updated (many-to-many) and
no further diffusion is necessary to get the status informa-
tion in the proxies where the tunnels are set up. There are
two reasons why flooding is more efficient here: (i) the
average distance between two arbitrary nodes is relatively
large (scales linearly in the number of nodes, see Eq. (17)),
and (ii) the distance between two flooding neighbors is
constant (and minimal). In a tree, these conditions are
not fulfilled and Chord performs better than flooding, even
if diffusion to all other proxies over the Chord ring at the
same rate is taken into account (see Fig. 16). In the next
section, simulation results for cable and xDSL operator net-
works—that often consist of a combination of rings and
(aggregation) trees—are discussed.
Fig. 17. Simulation topology for xDSL networks.
4.5. Simulations for operator networks

For next-generation access and aggregation networks,
operators and telecommunications equipment vendors
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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investigate the possibility to shift IP and/or service aware-
ness from the edge of the access network closer to the end-
user [18]. In such an access network, operators could
implement value-added services to generate more revenue
or to differentiate from their competitors. When the ASTAS
overlay is deployed in an IP-aware operator network, it
could be used in a peer-to-peer mode where subscribers
offer services to other subscribers lacking the CPU-power
or other resources to accomplish certain tasks. With a
growing number of resource-constrained portable devices,
such a scenario is not unthinkable.

In this section, two typical access and aggregation net-
work topologies are selected as use cases: a mesh of trees
topology, primarily used in xDSL deployment, and a ring of
rings topology, used in cable Internet access deployment,
both consisting of 280 nodes. In both topologies, all nodes
are assumed to be IP routers of a service-aware access and
aggregation network and thus candidate for an anycast
proxy upgrade.

The mesh of trees topology is depicted in Fig. 17. The
250 access nodes ðL2Þ are located at the leaf nodes of five
trees of depth two, aggregated per 10 at depth two and
per five at depth one. The five trees are interconnected
by a full mesh between the root nodes. The ring of rings
topology is depicted in Fig. 18. It consists of five unidirec-
tional six-node secondary rings. One node connects the
secondary ring to a unidirectional primary ring. The other
five secondary ring nodes each connect to ten access nodes
in a logical star topology. For the simulations, we assume
that 100 Mb/s is available for anycast traffic on each link
and two resources are attached to each access node. The
simulation parameters are summarized in Table 1.

Simulations in this section are implemented using the
NS-2 simulator [19] augmented with NS-MIRACLE [20]
multi-interface extensions. Two new application modules
implement anycast resource and proxy functionality. Fur-
thermore, the assumption introduced in Section 4.1 is also
valid for the NS-2 simulations: the active threads in each
resource are modeled independently (for each resource)
as a birth–death process with exponential inter-arrival
times (parameter k) and exponential duration (parameter
l).
based overlay system for scalable service discovery and execution,
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Fig. 18. Simulation topology for cable networks.

Table 1
Simulation setup.

Parameter Value

Link delay 0.1 ms
Link bandwidth 100 Mb/s
Network interface buffer size 100 packets
Control plane packet size 64B

New sessions per resource per second Expðk ¼ 2Þ
Session duration (s) Exp l ¼ 2

15

� �
Thread slots per resource 20
Resources 2 � 250 = 500
Update threshold 0.15  0
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The simulation results for both the xDSL and cable like
use case for a single anycast service are depicted in Figs. 19
and 20, respectively. Results are depicted for proxies
placed at the three levels defined in Figs. 17 and 18, i.e.,
L0; L1, and L2. Then, for each proxy deployment scenario,
the global average link load and the average link load at
each level are measured. The results lead to the following
conclusions:

(1) Proxy placement (at L0; L1, or L2) has greater
impact on the control plane overhead than the
update strategy for both xDSL and cable aggrega-
tion topologies. Placing proxies at L0 implies that—
frequent—individual resource updates travel over
L1 and L2 links, while placing proxies at L2 causes
many inter-proxy updates due to the small number
of resources (2) attached to each proxy (see Section
4.2.2, Fig. 11).

(2) In the xDSL aggregation network, the average
distance between nodes is relatively small, mean-
ing that Chord outperforms flooding for proxies
deployed at all layers. Nevertheless, the difference
in performance between Chord and the central
repository update strategy for proxy deployment
at L1 and L2 gives a clear indication of the over-
head generated by traversing the Chord ring.

(3) In the cable aggregation network, the—unidirec-
tional—rings increase the average distance between
nodes. When proxies are placed at L2 nodes, this
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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translates in significant Chord overhead on the L0

links. In this case, Chord is even outperformed by
flooding when considering L0 links only. When con-
sidering the fact that Chord still needs to diffuse the
gathered information in a second phase, flooding is
based overlay system for scalable service discovery and execution,
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likely to be the optimal strategy for proxies placed at
L1. These results match the results of Section 4.4 for
rings.

(4) The results depicted in the figures suggest that
updating a central repository is the most efficient
strategy. For an increasing number of services and
Please cite this article in press as: T. Stevens et al., Analysis of an anycast
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a single repository, this approach scales poorly,
however. Additionally, assigning a central repository
by hand for each new service to overcome scalability
issues quickly becomes unmanageable. Distributed
hash tables—like Chord—solve these issues elegantly
at the expense of introducing little extra network
load, provided that the average distance between
two network nodes is relatively small. Fortunately,
even for large realistic networks like the Internet—
often modeled by scale-free graphs—this condition
holds true [21].
5. Conclusion

First of all, this paper studied the data plane scalability
of the anycast overlay concept ASTAS. Experimental valida-
tion of an ASTAS implementation for the Click extensible
router platform showed that an extra classifier to identify
anycast packets did not significantly decrease the unicast
packet forwarding rate of the router. Furthermore, a packet
forwarding rate close to 65% of the maximum unicast for-
warding rate could be maintained for anycast traffic with-
out extra hardware acceleration.

The second part of this paper presented an analysis of
two orthogonal problems related to the ASTAS overlay con-
trol plane scalability. The first analysis related the resource
and proxy update rate to the desired system accuracy. The
proposed mathematical model clearly indicated the gain in
scalability resulting from threshold-based updating and re-
source state aggregation in the overlay proxies. The second
analysis investigated several options for the inter-proxy
update strategy. In general, we have shown that a reposi-
tory based on distributed hash tables realized control
plane scalability in terms of the number of proxies and ser-
vices, although other update strategies such as neighbor
flooding may generate less overhead for specific network
conditions or may be more appropriate to fulfill alternate
operator optimization criteria (e.g., minimize load on spe-
cific links). Finally, simulation results have shown that
proxy placement is of greater importance for control plane
scalability than the actual update strategy for ASTAS
deployment in xDSL and cable operator networks.
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