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Abstract—Nowadays, the Quality of Service (QoS) in Optical

developed protecting against single link failures: a pryna

Grids has become a key issue. An important QoS factor is the path is protected by a link-disjoint backup path which isduse

resiliency, namely the ability to survive from certain network
failures. Although several traditional network protection schemes
were devised in the past, they are not optimized for Optical @ds.

In an earlier work, we proposed relocation strategies prouiling
backup paths to alternate destinations, exploiting the angast
routing principle of grids. To show the advantage of relocaion
(compared to traditional network protection) in terms of reduced
network capacity, we formulated the network dimensioning
problem as an Integer Linear Program (ILP). Yet, its solution
exhibited very poor scalability and appeared not practical for
reasonably large scaled case studies.

Therefore, we propose a novel formulation for the relocatio
protection scheme, using column generation (CG). This appach
decomposes the original ILP into two parts, specifically a Re
stricted Master Problem (RMP) and a Pricing Problem (PP)
which are iteratively and alternatively solved until the optimality
condition is satisfied. Such a CG decomposition has a signiéint
impact on the complexity of the model, leading to a significan
improvement over previous ILPs in term of scalability and
running times. We demonstrate that the CG method is highly
scalable and generates nearly optimal solutions using caseudies
with up to 300 connections, showing it to be highly competitie
with a previously proposed heuristic. We also perform some
comparisons of the anycast scheme with the classical sharpdth
protection on larger network instances.

I. INTRODUCTION

in case of link failure (this link diversity guarantees ttiaé
primary and backup path will never fail simultaneously for
any single link failure). This corresponds to the framework
of Classical Shared Path Protection (CSP). These protectio
strategies can however be optimized for the optical grid
scenario, by exploiting the anycast routing principle tgbiof

grid scenarios. There, a user submitting a job only carestabo
timely and correct processing of his job, but is indifferent
about the location of the execution of it. So, instead of
reserving a backup path to the resource indicated by the Grid
scheduler under failure-free conditions, it could be letibe
relocate the job to another resource if this implies network
resource savings. For example, a backup path to the primary
server could cross a server location. This correspondseo th
so-called Shared Path Protection with Relocation (SPR).

In [4], we have considered the impact of using the relocation
mechanism for the case of shared path protection, i.e. we
allow the wavelengths used for backup paths to be shared
among multiple backup paths as long as the corresponding
primary paths are link disjoint. In small-scale case stsidie
was shown that the bandwidth savings (i.e., reduced number
of provisioned wavelengths) achieved by relocation comgar
to traditional shared path protection amounts to 20%. The

Grids are a form of distributed computing where severatason for the small scale studies in that work is that the

computational and data resources are coupled togetherdimensioning problem solved is not scalable to larger scale
order to execute highly demanding tasks. These emerggenarios: the classical Integer Linear Programming (ILP)
applications require predictable services and on-denumta- solutions are known to scale poorly as soon as the instances
delivery. Consequently, a network supporting a Grid nekwoare getting larger.
should be able to bear large data transfers in a fast andleslia To address this scalability problem, we propose to use
way. Given their high data rates and low latency, optical column generation (CG) approach [5] for modeling and
networks based on wavelength division multiplexing (WDMgolving the problem. Indeed, CG models have already been
technology are ideally suited to support the Grid networksuccessfully used for solving several design and managemen
thus giving rise to so-called optical grids [1]. problems in optical and wireless networks, ergcycle based

A major concern in deploying optical grids is resiliencyproblems [6] [7] and resource allocation in WiMax networks
ensuring service continuity under failure conditions is dB].
utmost importance. To deal with potential network failyres The paper is organized as follows. In Section Il, we present
various network resilience strategies for WDM networksehathe classical ILP formulation [4] which proved to perform
been devised (for an extensive overview, see [2] [3]). Ftadly when applied on larger network instances. We continue
instance, end-to-end (or path) protection schemes have baeSection Il with the new column generation model where we



explain how to create and solve the CG model. We concludeThe first set of constraints define the demand constraints
in Section IV with the description of a heuristic to solveand the flow conservation constraints for the primary paths:
the resilient optical grid dimensioning problem [9]. Thestla
Section V, is devoted to a case study and comparisons of
performance of the two ILP models and the heuristic where Z wh — Z wi = 4+1 ifv=uy
we conclude that both the CG model and the heuristic scheme ¢cw+(v) tew=(v) 0
are very efficient, scalable and generate comparable sp&uti
for large traffic instances.

-1 ifv=uw,

otherwise
veV ke K, (vs,vq) € SD. 2

The next set of constraints expresses the demand constraint

Il. THE CLASSICAL ILP FORMULATION and flow conservation constraints for the backup paths:

-1 ifv=u,

We first investigate two ILP models for dimensioning re- X i P
silient optical grids assuming a relocation strategy. Thaéfit Z Py = Z pe=7Nby foeVs
model is such that each connection represents a pointit-po ~ ‘€~" () tew=(v) 0 otherwise

connection between a source and a destination. Furthermore vEV k€ Ky, (vs,v4) € SD. 3)

we assume that all optical cross-connects (OXC) are able

to perform wavelength conversion. The network and traffic Then, we must ensure that pairs of working and backup
instances are described by the following parameters: paths do not overlap:

G = (V,L), a graph representing an optical grid wf +pf <1 (el kek. (4)
1% Node set, indexed by € V

W C V, a set of nodes with resources (i.e. grid server We next calculate the capacities on liak

sites). CAP}, > > CAPyy (U eL:0#0 (5)
L Link set, indexed by € L hek
K Request set, indexed bye K _ CAPL, > wh +ph — 1 keK: 0 eL:(40 (6)
K,; Request set for the requests framto vy, indexed
by k € K If we consider Classical Shared Path Protection (CSP), we
Dyy = |K.q4|, i.e., number of unit demands betweemave to set thé* variables to 1 ifv is the primary server of
sourcev, and destinationy connectionk:
SD  Set of pairs(vs,vq) such thatD_sd > 0. 1 v is the primary server of
cap, for all ¢ € L, transport capacity of link € L. We b= ) (7)
will assume all links have the same transport capacity 0 otherwise.
(in terms of wavelengths), sayap, = cap for all

rel. On the other hand, if we consider Shared Path Protection with
Relocation (SPR), constraints (7) have to be replaced with
The ILP Model that is presented below is fairly similatonstraints (8) in order to allow each backup server to be
to [4], except for the notations, which we simplified andiifferent from each primary server:
made consistent with the column generation model of the next
section. dovk=1 keKk. (8)

The variables are as follows. veVE

& . : o . . I1l. COLUMN GENERATIONILP MODEL
wy  binary variable which is equal to 1 if requekstis _ )
routed (working path) through O otherwise. A. Creating and solving the CG model
P binary variable which is equal to 1 if requektis The philosophy of Column Generation is to limit the number

routed (backup path) through O otherwise. of variables explicitly included in the ILP problem. This
CAPl’ € Z*. Integer variable that is equal to the numbeamounts to leaving out columns in an implicit matrix from
of shared backup wavelengths on liAk of the LP. This reduction of the problem size is motivated by
bk decision variable that is equal to 1ifis used as the fact that the values of the associated variables are zero
backup resource for connectidn in the optimal solution (i.e. there are non-basis varigbles
CAPL,€ Z*. Integer variable to help count the backuiCG corresponds to an iterative procedure where columns are
wavelengths. added one at a time and only if their addition allows reducing

}he value of the cost objective function. Hence, the origina
cost minimization problem is split into two sub-problems: a
Restricted Master Problem (RMP) and a Pricing Problem (PP).
) The RMP is a restricted version of the original problem as it

The objective function (1) aims at minimizing the overal
network capacity:

min cAPy + wk
> (cwt + 3

LelL keK

(1) only contains a subset of the original columns. This RMP
needs to be solved optimally after which we formulate a



reduced cost function which serves as the objective functid, with ¢ belonging to several working paths (modeled here

of the second sub-problem, so-called Pricing Problem (PBroughout the various configurations associated with wgrk

PP needs to be minimized under several constraints i.e. fl@hs containing), we must ensuré’ to have a large enough

constraints defining the relations among the coefficienta oftransport capacity:

column. If the reduced cost solution is less than zero, itmaea . e e P , ,

we have identified a variable whose addition in the RMP will Z wg P 2° S CAPp - LEEL: AL (1)

increase the objective value and the RMP needs to be solved cet

again with the added variable (and associated column). If BP The Pricing Problem

has no solution with a negative reduced cost, the current LPThe second component in the decomposition induced by the

solution is indeed the optimal solution of the LP relaxat@n column generation model corresponds to the so-calledngici

the problem. All what remains, is to derive an ILP (Integesroblem. When solving the pricing problem, we either find a

Linear Program) solution. new configuration which when added to the RMP will improve
Getting an ILP solution when the LP relaxation is solveghe current cost of the RMP, or we will be able to conclude

using column generation requires a branch-and-price ndeth@at we have reached the optimal value of the LP relaxation.

in order to get an optimal solution, see e.g. [10]. Howewes, i The number of pricing problems equals the number of pairs

usually quite costly in terms of computational time, andyverof source and destination nodes.

often only heuristics are sought after, with the informatio | et us denote the dual vectors (which are the parameters of

on how far the heuristic solution is from the optimal onehe PP) as follows:
throughout the so-called optimality gap, i.e. the differen 1 ;
between the values of the heuristic ILP solution and the uid dual vector of constra!nt (10

uj,  dual vector of constraint (11)

optimal LP relaxation value. Popular heuristics are sa@vin C . .
the ILP made of the generated columns in order to reach theThe objective function of the PP for demand pGir, va) of

optimal LP solution and rounding off methods, [10], [7]. his source and destination nodes, corresponds to the minionzat

study, we use the first heuristic approach, and got optiynah?
gaps less than 1%, i.e., very acurate near optimal ILP 0lsiti COST.q(w,p.b) = > wy—uly— Y Y ujpwepy (12)
(€L (EL V' EL LAY

f the reduced cost function:

B. CG specific parameters

c A configuration. It is defined for a given pair of
source and destination nodés;, v;), and consists
of a working path fromw, to v,, and a protection
path either fromv; to vy, or tov, to a nodev € Vp.

The set of constraints is similar to the one of the classical
ILP in II, except that the constraints only apply for a given
pair of source and destination nodes (i.e. configuratjon

Csq Set of configurations associated with the dair, v,) -1 ifv=uw4
¢ - (vs UBESD Coa Z wg — Z wp =+l ifv=uvq
wi = 1iflink ¢ is used by the working path in config- tewt(v) tew(v) 0 otherwise
urationc € Cyq4, O otherwise.
I =1 if link ¢ is used by the protection pathe C,q, vev (13)

whether the protection goes tg or to an alternate
destination node € Vg, 0 otherwise.

-1 if v=uv,
C. The Master Problem Z pE— Z pE = b, if veVp
The only set of variables which need to be optimized are  scw+(v) tewt (v) 0 otherwise
the z¢ € Z* andcap§ € Z". Eachz* represents the number
of selected copies of configuratien The wj andp§ are the vev (14)
parameters.
The objective function which minimizes the total network
capacity, can be written as follows: wi+p; <1 LeL (15)
If we consider CSP, we need the following constraints:
: P c .c
9 . .
min > feapf+ D, ) wie © 1 v is the primary server of.
el (’L}S,Ud)GS’D ceCyy bv _ (16)
Demand constraints are written as follows: 0 else
Y 2> D (vs,va) €SD (10) Wwhile, if we consider SPR, we replace constraints (16) with
cECoy the following constraints:
The next set of constraints express the capacity requiremen Z b, =1 (17)

for a link ¢/ in a backup path. Indeed, i’ protects link vEVE
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As can be observed, the expression of the reduced cost (1%
is nonlinear. In order to reduce to a linear integer programgm

model, we introduce the following set of variables:

wpeer = wepe € {0,1} L0 € L:0#0  (18)

in [9], where traffic is described by a demand vector that
only specifies the sources and lets the heuristic deterrhime t
destinations. In the current work, we assume a static traffic
matrix with both the source and destination nodes present(f
the primary paths). The objective of the heuristic is again t
minimize the overall required capacity, i.e. to minimizes th
required number of wavelengths for both primary (by lingtin
path length) and backup (by maximizing sharing) connestion
It proceeds in two stages: (i)

1) Initialization: Find a pair of link disjoint paths from
the source to the destination with minimum cost. (In
the SPR case, the primary and backup resources are not
necessarily identical.)

2) Optimization:Find a new configuration (i.e., the combi-
nation of a primary and a backup path) which minimizes
the total network utilization by rerouting both. In most
circumstances, the primary path does not get altered, but
the backup path does get rerouted over links which are
part of another backup path, protecting a link disjoint
primary path. In the SPR case, we also try to change
the backup resource and see if we cannot find a better
configuration.

more details about the heuristic, we refer the readed]to [

V. CASE STuDY

We have considered an European topology, comprising 28
nodes and 40 bidirectional links, as depicted in Fig. 1. We
have chosen 5 nodes as Grid server resource sites: Dublin,

The expression of the objective (i.e., reduced cost) of tharis, Zurich, Munich and Berlin.

pricing problem becomes:

COsT(w) = Z We = Ugg — Z Z upwpee

LeL LeEL L' e L:bA£L

(19)

To evaluate the solutions of the classical ILP and CG
models, together with the heuristic solution, we have ranlgio
generated multiple demand matrix instances with a varying
number of connections. The results described in this sectio

We then need to add the following linearization constraint®rrespond to average values on a set of 11 instances.

to enforce the relation (18) between the variahlesp,, and

wpee .

wpger > we 4+ pe — 1 00 eL:0+10. (20)

Note that if we want to reinforce link capacity constraint
in the CG model, we need to add the following constraints

> wiz“+cap) <cap,  L€L (21)

ceC

A. Comparative Performances

Before we go into the details of the comparative perfor-
mances of the different methods on large traffic instances, w
girst evaluate the results on smaller instances. In Figuag 2(
and Figure 2(b), we plotted the total number of wavelengths
which the different methods output for the optimized capaci
value, with a number of requests varying fréno 20. In all

plots, ILP refers to the classical ILP model, CG to the CG

in the master model and change pricing constraints as fellovU‘P model, H to the heuristic described in Section IV, while

COSTsq(w,p,b) = Z wy — u;d + Z Z ufz/wgpg/

leL LeL V' eL:4#£L

— Z wdwy, (22)

LeL

whereu? is the dual vector associated with (21).

IV. HEURISTIC

CSP and SPR refers to Classical Shared Path Protection and
Shared Path Protection with Relocation respectively.

For the demand set with more 9 than demands, difficulties
started to appear when solving the classical ILP model in a
reasonable time frame. Indeed, out of the 11 solved ins&ance
there were always one or two instances which could not be
solved within the 72 hours time limit we set ourselves. This i
why for demand set with more thars requested connections,
we did not use the classical ILP model anymore.

As an alternative to the above linear programming solutions We observe a small optimality gap for CG, comparing it
we also devised a heuristic to solve the dimensioning probld¢o the exact ILP solution. The heuristic performs quite well
for both CSP and SPR cases. We adapted the one preseated, but worse than CG. We calculated the average gap for
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Fig. 3. Results obtained for cases with a demand from 50 to 300

the request range [5, 13] (since the ILP average does mdtich estimates the optimal output very well and the heigrist
include all 11 instances for demands beyond 13 requestss suboptimal solutions, which are still acceptable.

With respect to the comparison between the two protectionThe trend is fairly similar in 3(a) where we plotted the
schemes, there is only an optimality gap20£6% in the CSP  total number of wavelengths for the demand sets Wiitto
and1.11% in the SPR case if we compare ILP with CG. Thg00 requested connections. We ascertain that the difference
heuristic generates inferior results compared to CG: ore@eée between the total number of wavelengths for the heuristit an
a difference 0f8.63% for CSP,8.15% for SPR. Comparing CG averages td.99% for the CSP case angl92% for SPR.

the results generated by the CG method and the heuristic, We\s a |ast observation, note that the conclusions made in
come to the conclusion that the gap between them remajn$and [9] are confirmed are large traffic instances: refocat
fairly constant: for CSP a difference 6f48% and for SPR jmpacts the network dimension by introducing a network load
5.71%. This lead us to the conlusion that the CG has an outpdlduction (NLR). Here, it amounts t&:22%, independently



of the requested number of connections. network dimensions (and savings by SPR), as in [1] without

) resilience.

B. Computational Effort

Scalability is a known issue in planning problems solved ACKNOWLEDGMENT
by ILPs. This is our main motivation for using other tech- The first author has been supported by a Concordia Uni-
niques such as heuristics and decomposition column genes@sity Research Chair (Tier ) and by an NSERC (Natural
tion techniques. In Fig. 2(c) and Fig. 2(d), we compare thgciences and Engineering Research Council of Canada). grant
computational times (in seconds) of the three methods. ~ For the authors from Belgium, the work described in this

Firstly, we observe that up to 9 requests, the classid2®per was carried out with the support of the BONE-project
ILP model performs better than the CG model. This can KBuilding the Future Optical Network in Europe), a Network
explained by the initial phase of the CG solution which ief Excellence funded by the European Commission through
heavier than in the classical ILP. The CG model does not hat 7th ICT-Framework Programme. C. Develder and M. De
a “warm” start: we begin with an empty matrix and slowlj-eenheer are supported by the Research Foundation — Fander
add one column at a time, building a feasible solution wittFWO) as post-doctoral fellows. J. Buysse is supported by a
the drawback that as long as a critical number of columfiD grant of the Flemish government agency for Innovation

has not yet been generated (at least as many as the nunftyepcience and Technology (IWT).

of constraints), dual values are not as meaningful. Thezefo
generated columns are usually not the ones that will be part o
the optimal solution with a nonzero value for the associatet]
variables. In addition, as there are as many pricing problem
as the number of pairs of origin and destination nodes anl]
as we use a classical round robin procedure to regularlyesolv
them, there is a cost in terms of the number of iterationsreefo
reaching the optimal solution of the LP solution.

Results on larger traffic instances show that the heuristiﬁ]
generates very good solutions, however with a computdtiona
cost that is comparable with the solution of the CG model. 1#4]
therefore shows that, on the one hand, CG model offers & fairl
scalable tool even for large ILP models, and on the other hand
that there is a trade off in heuristics between the compriati  [5]
time and quality of the solutions: accurate solutions maybg’]
costly to reach with a heuristic when the problem to be solved
is quite combinatorial in nature. -

VI. CONCLUSION

We have developed a new scalable ILP model based on a
column generation method that allows investigating furthe (8]
SPR protection scheme in optical grids. By splitting thelitra
tional ILP formulation into a Restricted Master Problem and®9]
a Pricing Problem, column generation is able to handle large
network instances (which the traditional ILP could not copgoj
with). Numerical results from a study on an European Network
have shown that CG leads to a very good approximation of
the optimal result. When comparing the CG method to the
proposed heuristic, we see that although the estimatioheof t
result with CG is better, the execution time of the heuriiic
favorable. But this does not hold anymore for larger inséanc
where we notice that the computational effort for the heigris
and CG is similar.

Future work includes the improvement of the CG ILP
and there are different avenues along which we walk e.g.,
warm start, better exploration scheme of the differentipgc
problems. It also allows thinking of additional constrairid
be taken into account in the efficient dimensioning of reaiii
optical grids, e.g., with respect to QoS constraints. We can
also investigate the impact of the number of server siteien t
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