
Column Generation for Dimensioning Resilient
Optical Grid Networks with Relocation

Brigitte Jaumard∗, Jens Buysse†, Ali Shaikh∗, Marc De Leenheer† and Chris Develder†
∗ CSE Dpt, Concordia University

Montreal (Qc) Canada
Email: bjaumard@ciise.concordia.ca
† Ghent University – IBBT, INTEC

Ghent, Belgium
Email: jens.buysse, chris.develder@intec.ugent.be

Abstract—Nowadays, the Quality of Service (QoS) in Optical
Grids has become a key issue. An important QoS factor is the
resiliency, namely the ability to survive from certain network
failures. Although several traditional network protection schemes
were devised in the past, they are not optimized for Optical Grids.

In an earlier work, we proposed relocation strategies providing
backup paths to alternate destinations, exploiting the anycast
routing principle of grids. To show the advantage of relocation
(compared to traditional network protection) in terms of reduced
network capacity, we formulated the network dimensioning
problem as an Integer Linear Program (ILP). Yet, its solution
exhibited very poor scalability and appeared not practical for
reasonably large scaled case studies.

Therefore, we propose a novel formulation for the relocation
protection scheme, using column generation (CG). This approach
decomposes the original ILP into two parts, specifically a Re-
stricted Master Problem (RMP) and a Pricing Problem (PP)
which are iteratively and alternatively solved until the optimality
condition is satisfied. Such a CG decomposition has a significant
impact on the complexity of the model, leading to a significant
improvement over previous ILPs in term of scalability and
running times. We demonstrate that the CG method is highly
scalable and generates nearly optimal solutions using casestudies
with up to 300 connections, showing it to be highly competitive
with a previously proposed heuristic. We also perform some
comparisons of the anycast scheme with the classical sharedpath
protection on larger network instances.

I. I NTRODUCTION

Grids are a form of distributed computing where several
computational and data resources are coupled together in
order to execute highly demanding tasks. These emerging
applications require predictable services and on-demand-data
delivery. Consequently, a network supporting a Grid network
should be able to bear large data transfers in a fast and reliable
way. Given their high data rates and low latency, optical
networks based on wavelength division multiplexing (WDM)
technology are ideally suited to support the Grid networks,
thus giving rise to so-called optical grids [1].

A major concern in deploying optical grids is resiliency:
ensuring service continuity under failure conditions is of
utmost importance. To deal with potential network failures,
various network resilience strategies for WDM networks have
been devised (for an extensive overview, see [2] [3]). For
instance, end-to-end (or path) protection schemes have been

developed protecting against single link failures: a primary
path is protected by a link-disjoint backup path which is used
in case of link failure (this link diversity guarantees thatthe
primary and backup path will never fail simultaneously for
any single link failure). This corresponds to the framework
of Classical Shared Path Protection (CSP). These protection
strategies can however be optimized for the optical grid
scenario, by exploiting the anycast routing principle typical of
grid scenarios. There, a user submitting a job only cares about
timely and correct processing of his job, but is indifferent
about the location of the execution of it. So, instead of
reserving a backup path to the resource indicated by the Grid
scheduler under failure-free conditions, it could be better to
relocate the job to another resource if this implies network
resource savings. For example, a backup path to the primary
server could cross a server location. This corresponds to the
so-called Shared Path Protection with Relocation (SPR).

In [4], we have considered the impact of using the relocation
mechanism for the case of shared path protection, i.e. we
allow the wavelengths used for backup paths to be shared
among multiple backup paths as long as the corresponding
primary paths are link disjoint. In small-scale case studies, it
was shown that the bandwidth savings (i.e., reduced number
of provisioned wavelengths) achieved by relocation compared
to traditional shared path protection amounts to 20%. The
reason for the small scale studies in that work is that the
dimensioning problem solved is not scalable to larger scale
scenarios: the classical Integer Linear Programming (ILP)
solutions are known to scale poorly as soon as the instances
are getting larger.

To address this scalability problem, we propose to use
a column generation (CG) approach [5] for modeling and
solving the problem. Indeed, CG models have already been
successfully used for solving several design and management
problems in optical and wireless networks, e.g.,p-cycle based
problems [6] [7] and resource allocation in WiMax networks
[8].

The paper is organized as follows. In Section II, we present
the classical ILP formulation [4] which proved to perform
badly when applied on larger network instances. We continue
in Section III with the new column generation model where we



explain how to create and solve the CG model. We conclude
in Section IV with the description of a heuristic to solve
the resilient optical grid dimensioning problem [9]. The last
Section V, is devoted to a case study and comparisons of
performance of the two ILP models and the heuristic where
we conclude that both the CG model and the heuristic scheme
are very efficient, scalable and generate comparable solutions
for large traffic instances.

II. T HE CLASSICAL ILP FORMULATION

We first investigate two ILP models for dimensioning re-
silient optical grids assuming a relocation strategy. The traffic
model is such that each connection represents a point-to-point
connection between a source and a destination. Furthermore,
we assume that all optical cross-connects (OXC) are able
to perform wavelength conversion. The network and traffic
instances are described by the following parameters:

G = (V, L), a graph representing an optical grid
V Node set, indexed byv ∈ V

Vb ⊂ V , a set of nodes with resources (i.e. grid server
sites).

L Link set, indexed bỳ ∈ L

K Request set, indexed byk ∈ K

Ksd Request set for the requests fromvs to vd, indexed
by k ∈ Ksd

Dsd = |Ksd|, i.e., number of unit demands between
sourcevs and destinationvd

SD Set of pairs(vs, vd) such thatDsd > 0
CAP` for all ` ∈ L, transport capacity of link̀ ∈ L. We

will assume all links have the same transport capacity
(in terms of wavelengths), sayCAP` = CAP for all
` ∈ L.

The ILP Model that is presented below is fairly similar
to [4], except for the notations, which we simplified and
made consistent with the column generation model of the next
section.

The variables are as follows.

wk
` binary variable which is equal to 1 if requestk is

routed (working path) through̀, 0 otherwise.
pk

` binary variable which is equal to 1 if requestk is
routed (backup path) through̀, 0 otherwise.

CAPP
` ∈ Z

+. Integer variable that is equal to the number
of shared backup wavelengths on link`.

bk
v decision variable that is equal to 1 ifv is used as

backup resource for connectionk.
CAPP

k``′∈ Z
+. Integer variable to help count the backup

wavelengths.

The objective function (1) aims at minimizing the overall
network capacity:

min
∑

`∈L

(

CAPP
` +

∑

k∈K

wk
`

)

. (1)

The first set of constraints define the demand constraints
and the flow conservation constraints for the primary paths:

∑

`∈ω+(v)

wk
` −

∑

`∈ω−(v)

wk
` =















−1 if v = vs

+1 if v = vd

0 otherwise

v ∈ V, k ∈ Ksd, (vs, vd) ∈ SD. (2)

The next set of constraints expresses the demand constraints
and flow conservation constraints for the backup paths:

∑

`∈ω+(v)

pk
` −

∑

`∈ω−(v)

pk
` =















−1 if v = vs

bk
v if v ∈ VB

0 otherwise

v ∈ V, k ∈ Ksd, (vs, vd) ∈ SD. (3)

Then, we must ensure that pairs of working and backup
paths do not overlap:

wk
` + pk

` ≤ 1 ` ∈ L, k ∈ K. (4)

We next calculate the capacities on link`:

CAPP
`′ ≥

∑

k∈K

CAPP
k``′ `, `′ ∈ L : ` 6= `′ (5)

CAPP
k``′ ≥ wk

` + pk
`′ − 1 k ∈ K; `, `′ ∈ L : ` 6= `′ (6)

If we consider Classical Shared Path Protection (CSP), we
have to set thebk

v variables to 1 ifv is the primary server of
connectionk:

bk
v =







1 v is the primary server ofk

0 otherwise.
(7)

On the other hand, if we consider Shared Path Protection with
Relocation (SPR), constraints (7) have to be replaced with
constraints (8) in order to allow each backup server to be
different from each primary server:

∑

v∈VB

bk
v = 1 k ∈ K. (8)

III. C OLUMN GENERATION ILP MODEL

A. Creating and solving the CG model

The philosophy of Column Generation is to limit the number
of variables explicitly included in the ILP problem. This
amounts to leaving out columns in an implicit matrix from
of the LP. This reduction of the problem size is motivated by
the fact that the values of the associated variables are zero
in the optimal solution (i.e. there are non-basis variables).
CG corresponds to an iterative procedure where columns are
added one at a time and only if their addition allows reducing
the value of the cost objective function. Hence, the original
cost minimization problem is split into two sub-problems: a
Restricted Master Problem (RMP) and a Pricing Problem (PP).
The RMP is a restricted version of the original problem as it
only contains a subset of the original columns. This RMP
needs to be solved optimally after which we formulate a



reduced cost function which serves as the objective function
of the second sub-problem, so-called Pricing Problem (PP).
PP needs to be minimized under several constraints i.e. the
constraints defining the relations among the coefficients ofa
column. If the reduced cost solution is less than zero, it means
we have identified a variable whose addition in the RMP will
increase the objective value and the RMP needs to be solved
again with the added variable (and associated column). If PP
has no solution with a negative reduced cost, the current LP
solution is indeed the optimal solution of the LP relaxationof
the problem. All what remains, is to derive an ILP (Integer
Linear Program) solution.

Getting an ILP solution when the LP relaxation is solved
using column generation requires a branch-and-price method
in order to get an optimal solution, see e.g. [10]. However, it is
usually quite costly in terms of computational time, and very
often only heuristics are sought after, with the information
on how far the heuristic solution is from the optimal one,
throughout the so-called optimality gap, i.e. the difference
between the values of the heuristic ILP solution and the
optimal LP relaxation value. Popular heuristics are solving
the ILP made of the generated columns in order to reach the
optimal LP solution and rounding off methods, [10], [7]. In this
study, we use the first heuristic approach, and got optimality
gaps less than 1%, i.e., very acurate near optimal ILP solutions.

B. CG specific parameters

c A configuration. It is defined for a given pair of
source and destination nodes(vs, vd), and consists
of a working path fromvs to vd, and a protection
path either fromvs to vd, or to vs to a nodev ∈ VB.

Csd Set of configurations associated with the pair(vs, vd)
C =

⋃

(vs,vd)∈SD

Csd

wc
` = 1 if link ` is used by the working path in config-

urationc ∈ Csd, 0 otherwise.
pc

` = 1 if link ` is used by the protection pathc ∈ Csd,
whether the protection goes tovd or to an alternate
destination nodev ∈ VB, 0 otherwise.

C. The Master Problem

The only set of variables which need to be optimized are
the zc ∈ Z

+ and capc
` ∈ Z

+. Eachzc represents the number
of selected copies of configurationc. The wc

` and pc
` are the

parameters.
The objective function which minimizes the total network

capacity, can be written as follows:

min
∑

`∈L



capP
` +

∑

(vs,vd)∈SD

∑

c∈Csd

wc
` zc



 (9)

Demand constraints are written as follows:
∑

c∈Csd

zc ≥ Dsd. (vs, vd) ∈ SD (10)

The next set of constraints express the capacity requirement
for a link `′ in a backup path. Indeed, if̀′ protects link

`, with ` belonging to several working paths (modeled here
throughout the various configurations associated with working
paths containing̀), we must ensurè′ to have a large enough
transport capacity:

∑

c∈C

wc
` pc

`′ zc ≤ CAPP
`′ `, `′ ∈ L : `′ 6= `. (11)

D. The Pricing Problem

The second component in the decomposition induced by the
column generation model corresponds to the so-called pricing
problem. When solving the pricing problem, we either find a
new configuration which when added to the RMP will improve
the current cost of the RMP, or we will be able to conclude
that we have reached the optimal value of the LP relaxation.
The number of pricing problems equals the number of pairs
of source and destination nodes.

Let us denote the dual vectors (which are the parameters of
the PP) as follows:

u1
sd dual vector of constraint (10)

u2
``′ dual vector of constraint (11)

The objective function of the PP for demand pair(vs, vd) of
source and destination nodes, corresponds to the minimization
of the reduced cost function:

COSTsd(w, p, b) =
∑

`∈L

w` − u1
sd −

∑

`∈L

∑

`′∈L:` 6=`′

u2
``′w`p`′ (12)

The set of constraints is similar to the one of the classical
ILP in II, except that the constraints only apply for a given
pair of source and destination nodes (i.e. configurationc).

∑

`∈ω+(v)

wc
` −

∑

`∈ω−(v)

wc
` =















−1 if v = vs

+1 if v = vd

0 otherwise

v ∈ V (13)

∑

`∈ω+(v)

pc
` −

∑

`∈ω+(v)

pc
` =















−1 if v = vs

bv if v ∈ VB

0 otherwise

v ∈ V (14)

wc
` + pc

` ≤ 1 ` ∈ L (15)

If we consider CSP, we need the following constraints:

bv =







1 v is the primary server ofc.

0 else,
(16)

while, if we consider SPR, we replace constraints (16) with
the following constraints:

∑

v∈VB

bv = 1 (17)
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Fig. 1. European network

As can be observed, the expression of the reduced cost (12)
is nonlinear. In order to reduce to a linear integer programming
model, we introduce the following set of variables:

wp``′ = w`p`′ ∈ {0, 1} `, `′ ∈ L : ` 6= `′ (18)

The expression of the objective (i.e., reduced cost) of the
pricing problem becomes:

COST(w) =
∑

`∈L

w` − u1
sd −

∑

`∈L

∑

`′∈L:` 6=`′

u2
``′wp``′ (19)

We then need to add the following linearization constraints
to enforce the relation (18) between the variablesw`, p`′ and
wp``′ :

wp``′ ≥ w` + p`′ − 1 `, `′ ∈ L : ` 6= `′. (20)

Note that if we want to reinforce link capacity constraints
in the CG model, we need to add the following constraints:

∑

c∈C

wc
` zc + CAPP

` ≤ CAP` ` ∈ L (21)

in the master model and change pricing constraints as follows.

COSTsd(w, p, b) =
∑

`∈L

w` − u1
sd +

∑

`∈L

∑

`′∈L:` 6=`′

u2
``′w`p`′

−
∑

`∈L

u3w`, (22)

whereu3 is the dual vector associated with (21).

IV. H EURISTIC

As an alternative to the above linear programming solutions,
we also devised a heuristic to solve the dimensioning problem
for both CSP and SPR cases. We adapted the one presented

in [9], where traffic is described by a demand vector that
only specifies the sources and lets the heuristic determine the
destinations. In the current work, we assume a static traffic
matrix with both the source and destination nodes present(for
the primary paths). The objective of the heuristic is again to
minimize the overall required capacity, i.e. to minimize the
required number of wavelengths for both primary (by limiting
path length) and backup (by maximizing sharing) connections.
It proceeds in two stages: (i)

1) Initialization: Find a pair of link disjoint paths from
the source to the destination with minimum cost. (In
the SPR case, the primary and backup resources are not
necessarily identical.)

2) Optimization:Find a new configuration (i.e., the combi-
nation of a primary and a backup path) which minimizes
the total network utilization by rerouting both. In most
circumstances, the primary path does not get altered, but
the backup path does get rerouted over links which are
part of another backup path, protecting a link disjoint
primary path. In the SPR case, we also try to change
the backup resource and see if we cannot find a better
configuration.

For more details about the heuristic, we refer the reader to [9].

V. CASE STUDY

We have considered an European topology, comprising 28
nodes and 40 bidirectional links, as depicted in Fig. 1. We
have chosen 5 nodes as Grid server resource sites: Dublin,
Paris, Zurich, Munich and Berlin.

To evaluate the solutions of the classical ILP and CG
models, together with the heuristic solution, we have randomly
generated multiple demand matrix instances with a varying
number of connections. The results described in this section
correspond to average values on a set of 11 instances.

A. Comparative Performances

Before we go into the details of the comparative perfor-
mances of the different methods on large traffic instances, we
first evaluate the results on smaller instances. In Figure 2(a)
and Figure 2(b), we plotted the total number of wavelengths
which the different methods output for the optimized capacity
value, with a number of requests varying from5 to 20. In all
plots, ILP refers to the classical ILP model, CG to the CG
ILP model, H to the heuristic described in Section IV, while
CSP and SPR refers to Classical Shared Path Protection and
Shared Path Protection with Relocation respectively.

For the demand set with more 9 than demands, difficulties
started to appear when solving the classical ILP model in a
reasonable time frame. Indeed, out of the 11 solved instances,
there were always one or two instances which could not be
solved within the 72 hours time limit we set ourselves. This is
why for demand set with more than15 requested connections,
we did not use the classical ILP model anymore.

We observe a small optimality gap for CG, comparing it
to the exact ILP solution. The heuristic performs quite well
also, but worse than CG. We calculated the average gap for



(a) CSP : Total number of wavelengths. (b) SPR: Total number of wavelengths

(c) CSP: execution time (d) SPR: execution time

Fig. 2. The results obtained for cases with a demand from 5 to 20. (Note the different scales for the execution times of CSP and SPR.)

(a) Total number of wavelengths (b) Execution time of methods

Fig. 3. Results obtained for cases with a demand from 50 to 300.

the request range [5, 13] (since the ILP average does not
include all 11 instances for demands beyond 13 requests).
With respect to the comparison between the two protection
schemes, there is only an optimality gap of2.46% in the CSP
and1.11% in the SPR case if we compare ILP with CG. The
heuristic generates inferior results compared to CG: on average
a difference of8.63% for CSP,8.15% for SPR. Comparing
the results generated by the CG method and the heuristic, we
come to the conclusion that the gap between them remains
fairly constant: for CSP a difference of5.48% and for SPR
5.71%. This lead us to the conlusion that the CG has an output

which estimates the optimal output very well and the heuristic
has suboptimal solutions, which are still acceptable.

The trend is fairly similar in 3(a) where we plotted the
total number of wavelengths for the demand sets with50 to
300 requested connections. We ascertain that the difference
between the total number of wavelengths for the heuristic and
CG averages to4.99% for the CSP case and6.92% for SPR.

As a last observation, note that the conclusions made in
[4] and [9] are confirmed are large traffic instances: relocation
impacts the network dimension by introducing a network load
reduction (NLR). Here, it amounts to±22%, independently



of the requested number of connections.

B. Computational Effort

Scalability is a known issue in planning problems solved
by ILPs. This is our main motivation for using other tech-
niques such as heuristics and decomposition column genera-
tion techniques. In Fig. 2(c) and Fig. 2(d), we compare the
computational times (in seconds) of the three methods.

Firstly, we observe that up to 9 requests, the classical
ILP model performs better than the CG model. This can be
explained by the initial phase of the CG solution which is
heavier than in the classical ILP. The CG model does not have
a “warm” start: we begin with an empty matrix and slowly
add one column at a time, building a feasible solution with
the drawback that as long as a critical number of columns
has not yet been generated (at least as many as the number
of constraints), dual values are not as meaningful. Therefore,
generated columns are usually not the ones that will be part of
the optimal solution with a nonzero value for the associated
variables. In addition, as there are as many pricing problems
as the number of pairs of origin and destination nodes and
as we use a classical round robin procedure to regularly solve
them, there is a cost in terms of the number of iterations before
reaching the optimal solution of the LP solution.

Results on larger traffic instances show that the heuristic
generates very good solutions, however with a computational
cost that is comparable with the solution of the CG model. It
therefore shows that, on the one hand, CG model offers a fairly
scalable tool even for large ILP models, and on the other hand
that there is a trade off in heuristics between the computational
time and quality of the solutions: accurate solutions maybe
costly to reach with a heuristic when the problem to be solved
is quite combinatorial in nature.

VI. CONCLUSION

We have developed a new scalable ILP model based on a
column generation method that allows investigating further the
SPR protection scheme in optical grids. By splitting the tradi-
tional ILP formulation into a Restricted Master Problem and
a Pricing Problem, column generation is able to handle large
network instances (which the traditional ILP could not cope
with). Numerical results from a study on an European Network
have shown that CG leads to a very good approximation of
the optimal result. When comparing the CG method to the
proposed heuristic, we see that although the estimation of the
result with CG is better, the execution time of the heuristicis
favorable. But this does not hold anymore for larger instances
where we notice that the computational effort for the heuristic
and CG is similar.

Future work includes the improvement of the CG ILP
and there are different avenues along which we walk e.g.,
warm start, better exploration scheme of the different pricing
problems. It also allows thinking of additional constraints to
be taken into account in the efficient dimensioning of resilient
optical grids, e.g., with respect to QoS constraints. We can
also investigate the impact of the number of server sites on the

network dimensions (and savings by SPR), as in [1] without
resilience.
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