
Noname manuscript No.
(will be inserted by the editor)

Transparent resource sharing framework for Internet
services on handheld devices

Wouter Haerick · Femke Ongenae · Chris

Develder · Filip De Turck · Bart Dhoedt

Received: date / Accepted: date

Abstract Handheld devices have limited processing power and a short battery life-

time. As a result, computational intensive applications can not run appropriately or

cause the device to run out-of-battery too early. Additionally, Internet-based service

providers targeting these mobile devices lack information to estimate the remaining

battery autonomy and have no view on the availability of idle resources in the neighbor-

hood of the handheld device. In this paper, we propose a transparent resource sharing

framework that enables service providers to delegate (a part of) a client application

from a handheld device to idle resources in the LAN the device is connected to. The

key component is the Resource Sharing service, hosted on the LAN gateway, which can

be queried by Internet-based service providers. The service includes a battery model to

predict the remaining battery lifetime. We describe the concept of Resource-Sharing-

as-a-Service that allows users of handheld devices to subscribe to the Resource Sharing

service. In a proof-of-concept, we evaluate the delay to offload a client application to

an idle computer and study the impact on battery autonomy as a function of the CPU

cycles that can be offloaded.

Keywords Resource sharing · battery autonomy prediction · Internet services ·
handheld devices

1 Introduction

The widespread adoption of mobile, personal devices introduces challenges for Internet-

based service providers. These personal, handheld devices have limited processing

power and typically suffer from short battery lifetimes. As a result, network-intensive

and CPU-intensive gaming or multimedia applications do not run smoothly and cause

the device to run out-of-battery early. Additionally, Internet-based service providers

W. Haerick
Gaston Crommenlaan 8 bus 208, 9050 Ghent, BELGIUM
Tel.: +32 9 331 4940
Fax: +32 9 331 4899
E-mail: wouter.haerick@intec.ugent.be

2

Local Area
Network

Internet

Service Provider
(Multimedia, Gaming)

Handheld
device

Idle Resources

LAN
Gateway

Service Request

Evaluate capabilities
and battery autonomy +
Identify idle resources

Deploy (a part of) the
client application

Fig. 1 Offloading (a part of) a client application from a handheld device to idle LAN resources

targeting the constrained, handheld devices experience a lack of information about bat-

tery autonomy and available CPU-power. No standardized technologies or solutions ex-

ist to query battery information of an end-user device, which hinders service providers

to anticipate on low-battery or low-CPU situations. In this paper we will therefore

present and evaluate a resource sharing framework that gives service providers a view

on battery autonomy using the standards TR-069 [1]and UPnP [2]. In case a handheld

device is connected to a LAN, surrounded computational power can be used to sup-

port a resource intensive application. Therefore at least a part of that client application

should be offloaded from the handheld device to idle, surrounded computers. In figure

1, we illustrate a typical scenario where a handheld device initiates a service request

towards a service provider. Upon this request, the service provider evaluates the ca-

pabilities, battery status and presence of idle resource by querying the LAN gateway,

which is accessible from the Internet. In order to save battery and to relieve the CPU,

two conditions need to be met. Firstly, sufficient idle resources should be available in

the LAN. In [3] we have argued that the average CPU usage of desktop PCs in home

and office networks is merely 12.9%. This leaves an important amount of idle CPU

time that could be shared with CPU-constrained devices. Secondly, offloading CPU

cycli from a handheld device towards a desktop PC should result in significant energy

savings. This requires that the energy consumption of wireless data exchange with an

idle computer should be less than the energy savings of the CPU. While power saving

techniques exist to optimize energy consumption of the display and the network inter-

face card, it is the aim of the Resource Sharing Framework to achieve similar power

savings for the CPU without the need to dynamically alter the clock speed.

This paper is structured as following: In the next section we describe different

strategies to relieve handheld devices. We refer to related work on offloading software

components and optimizing battery autonomy, and describe three classes of scenarios

that can benefit from resource sharing. In section 3, we recapitulate the shortcomings of

related work and propose the software components of the Resource Sharing framework.

We also describe the concept of Resource-Sharing-as-a-Service that allows users of

handheld devices to benefit from resource sharing by subscribing to an Internet-based

resource sharing provider. Subsequently, we present the battery model that is used by

the Resource Sharing framework to estimate remaining battery lifetimes. In section

5, we evaluate the startup delay to offload a (part of a) client application and study

3

Resource sharing
to circumvent low battery

Resource sharing
to enable CPU-intensive services

Resource sharing
to maximize autonomy

Local Area
Network

Internet

Service
Provider

Handheld
device

Available
resource

Local Area
Network

Internet

Service
Provider

Handheld
device

Available
resource

Internet-based service provider
interacts with the handheld device

OR

Local Area
Network

Internet

Service
Provider

Handheld
device

Available
resource

Internet-based service provider
interacts with a nearby PC that forwards
processed data to the handheld device

Limited
data

exchange

(a) (b)

Internet-based service provider
interacts with a nearby PC connected

to a power outlet

Fig. 2 Three classes of scenarios that benefit from resource sharing

the energy savings in case a local task is offloaded to a nearby, idle computer. These

energy savings are studied as a function of the offloaded CPU. Finally, we conclude the

benefits of the Resource Sharing framework in comparison with related work.

2 Strategies to relieve a handheld device

2.1 Three classes of scenarios

Different motivations may exist to relieve handheld devices and to consider offloading

tasks to more powerful resources. As depicted in figure 2, we have identified three

classes of scenarios that benefit from resource sharing:

– Resource sharing to circumvent low-battery issues: In case a handheld device is in a

low battery mode, or in case a service provider may predict that the handheld device

will encounter battery issues during service execution, a resource sharing framework

allows to transfer the client application to another computer. As a result, an user

of a mobile device can initiate a service from the handheld computer. However, the

service provider will establish a session with a nearby, idle LAN resource.

– Resource sharing to enable CPU-intensive services: If the handheld device does

not meet the minimal CPU requirements of a service, offloading a part of the client

application to an idle resource has the advantage that the user may continue to

use his personal device for the user input, however complex calculations can be

delegated to a more powerful resource in the LAN.

– Resource sharing to maximize battery autonomy : In a third class of scenarios, where

a handheld device has sufficient battery and meets the CPU requirements, the use of

a resource sharing framework might be beneficial to optimize the battery autonomy.

In section 5, we will evaluate the conditions that need to be met to increase the

battery autonomy.

In the first class of scenarios, the service provider will establish a service session

with the idle, powerful LAN PC. Given that the exchange of data between the handheld

device and the LAN resource consumes a considerable amount of energy (consumed

by the wireless network interface card and the CPU), it is not energy efficient if the

handheld device forwards broadband data streams towards the idle resource. Therefore,

4

in case broadband data streams need to be preprocessed by the idle LAN PC, the

session with the service provider should be set-up with the LAN PC and not with the

handheld device. This is what is illustrated on the right in figure 2.

2.2 Related work

Our work mainly relates to two aspects of resource optimization: (1) optimal offloading

of software components in a distributed environment and (2) adopting strategies to

optimize the energy consumption of mobile devices.

Offloaded software components Considerable research has been performed with respect

to offloading computations using software agents [5–7]. However, whereas these studies

strive to improved service execution times and better overall resource utilization, our

RSF distinguishes itself by minimizing the energy consumption of local resource utiliza-

tion on battery-powered devices by means of battery autonomy prediction. In [6,7] the

run-to-completion times have been optimized, together with the overall processor idle

time, by coupling predictive application data with scheduling heuristics. The authors

of [7] propose an iterative heuristic algorithm to obtain load balancing across multi-

ple processing nodes. In [5] an energy-aware middleware is proposed to share resources

across home networks using virtualization technology. Given the small topology of LAN

networks and its mostly constant network delays, the presented scheduling algorithm

are not applicable to the Resource Sharing Framework we propose. Additionally, these

scheduling algorithms and middleware solutions do not consider battery autonomy of

constrained devices.

Optimizing energy efficiency Energy efficiency is an important topic in the area of

ubiquitous computing and has been discussed for many years. Different strategies have

been proposed to allow constrained devices to spend more time in a low(er)-energy

state. Amongst these energy reducing techniques are display power saving modes [9,

10], dynamic voltage scaling of CMOS based processors [11,12], network protocol opti-

mizations reducing the number of (re-)transmissions and collisions [13,14], and trans-

mission power control mechanisms [15,16]. In the case of PDAs, the maximum energy

consumption of the wireless 802.11 interface is significantly higher than the maximum

for the display or CPU. Reducing the transmission rate of data will however have neg-

ligible impact on the per-packet energy consumption as not the bitrate but the active

time is a measure for energy consumption [17,18]. As a result main energy optimization

should be realized by shaping the idle time of a wireless interface considering different

usage patterns. In this paper we explore the potential, local energy savings of offload-

ing a part of the application from a mobile, constrained device to a nearby personal

computer.

3 Transparent Resource Sharing Framework

In this section we propose the main components of our transparent Resource Shar-

ing Framework (RSF). The framework overcomes the shortcoming of grid computing

solutions by focusing on battery autonomy prediction instead of load balancing and

optimized scheduling. Additionally, our resource sharing framework is based on the

5

standards TR-069 and UPnP, respectively for remote management and LAN-side ser-

vice discovery and execution. With a remote management interface, our framework

allows for the integration with any service provider that has established a trust rela-

tion with a trusted third party managing the LAN network.

3.1 Requirements for adoption by broad range of devices

The involved actors in our Resource Sharing Framework are (1) the handheld device,

(2) the service provider, (3) the LAN gateway and (4) a pool of idle, powerful resources.

The handheld device and the idle resources need to be monitored in terms of battery

status and available CPU-time. We assume that the LAN gateway collects all these

monitored data, and provides an interface to trusted Internet-based providers. In order

to allow adoption of the RSF by a broad range of devices, we have identified the

following requirements:

– Device compatibility and portability: Partly as result of the rapid adoption of

wireless technologies, LAN networks are evolving towards highly heterogeneous

networks. The RSF should therefore be able to cope with devices running differ-

ent operating systems and varying hardware. Operating system specific CPU and

battery monitoring calls should therefore be clearly separated from the service ori-

ented resource sharing calls. To increase portability, the RSF is implemented as

a java service platform with modular OSGi services. Automatic detection of the

operating system allows integrating with the proper native libraries for battery and

CPU monitoring.

– Standards-based: The RSF should avoid imposing additional standards to LAN net-

works. It was therefore a design decision to adopt not only the discovery mechanism

of UPnP [2], but also to specify each capability in the RSF as an extended basic

UPnP device. While the emerging UPnP-protocol is used to describe the capabili-

ties, support for TR-069 [1](and its extensions) is foreseen for remote management

purposes.

3.2 Framework components

The RSF is implemented as a java-based, modular software framework with the core

intelligence deployed in the LAN gateway, compliant with the architectural gateway

architecture presented in [4]. Each module complies with the OSGi specifications [19]

and can be remotely deployed into the OSGI service platform. The monitoring compo-

nent, to monitor CPU and battery, is also implemented as an OSGi module and as a

result requires the Java-based OSGi service platform on each of the involved handheld

and idle devices.

Figure 3 gives an overview of all the Resource Sharing Framework modules dis-

tributed across the involved devices. The following service components need to be

deployed in the LAN network to enable resource sharing scenarios:

– TR-069 Resource Manager (TR-069): The TR-069 Resource Manager, hosted by

the LAN gateway, enables an Internet-based provider to remotely allocate idle

resources by sending SOAP messages that comply with the TR-069 standard.

6

R
A

D
IU

S

LAN
Service

Management

SIP
Provider

PSTN

112

IPTAB
LES

C
A

P
TIV

E
 PO

R
TA

L

D
H

C
P

S
IP P

R
O

X
Y

U
A P

R
O

X
Y

OSGi

intelligent
RGW

S
LC

TR-069

GACOS

U
A

R
S

Voice + VideoPlayer
Local

Execution
Local or remote

Execution

UPnP Resource
Monitor

UPnP SLC

UPnP Requester

OSGi

JVM

UPnP Resource
Monitor

UPnP SLC

OSGi

JVM

UPnP Resource
Monitor

UPnP SLC

OSGi

JVM

IDLE
HOME

RESOURCES

Local or remote
Execution

Remote TR-069
Resource Request

Local UPnP
Resource Request

UPnP Messages
to collect CPU, memory status

Offloading
computational task

SIP session setup

Verify resources

Fig. 3 Software components of the Resource Sharing Framework deployed on the handheld
device, idle computers and LAN gateway

– UPnP Resource Sharing (RS) Service: This UPnP service, hosted by the LAN

gateway, takes the actual resource sharing decisions based on the monitored data,

admission criteria, job priorities and resource allocation strategy.

– UPnP Resource Monitors: Each participating home computer runs a UPnP Monitor

service that can be queried to retrieve information about CPU, memory, storage,

battery and the java virtual machine. This UPnP service communicates with the

ResourceWrapper service that handles the native calls to the underlying operating

system.

– UPnP Resource Requesters: Constrained devices may run a UPnP Resource Re-

quester service. A local service that can distribute computational intensive tasks,

can use this UPnP control point to find any available resources inside the home.

– UPnP SLC Service: Each participating LAN computer also runs an UPnP Ser-

viceLifeCycle (SLC) Service that allows to install and run computational tasks in

favor of handheld devices

3.3 Resource-Sharing-As-A-Service (RSaaS)

The presented RSF supports the concept of Resource-Sharing-as-a-Service (RSaaS) and

as a result enables LAN Service Management providers to offer resource sharing as a

value-adding service. The role of LAN Service Management provider could be played

by the Internet access provider, which already manages the Internet connectivity to

the LAN gateway. Figure 4 depicts the mobile user that subscribes to RSaaS at a LAN

Service Management provider. Upon acceptance of the subscription request, the LAN

Service Management provider is able remotely deploy the presented RSF components as

7

Local Area
NetworkInternet

Service Provider
(Multimedia, Gaming)

Handheld
device

Idle Resources

LAN Service
Management

RSaaS

subscribe

deploy
service

components

partner
agreement

Fig. 4 Resource-Sharing-as-a-Service offered by a LAN Service Management Provider

these are OSGi modules that can be installed using a standard TR-069 install message.

This install message triggers the Service Lifecycle Component of the LAN gateway. As a

consequence, all components can be remotely deployed in a way which is transparent for

the end-user. The requirements for these automated installations are a TR-069 enabled

LAN gateway, and an OSGi service platform installed on all participating LAN devices.

Service providers that support resource sharing, which means that their client software

can be (partly) offloaded to a computational computer, need to have an agreement with

the LAN Service Management providers in order to let mobile users benefit from their

RSaaS subscription. For each service request, that originates from a LAN network that

has subscribed to RSaaS, the Internet-based service provider should include the LAN

Service Management provider to identify idle resources to optimize battery autonomy

and to enable resource-intensive services that would otherwise not run. For security

reasons, the LAN gateway should only process resource sharing request originating from

a trusted LAN Service Management provider. The TR-069 specification recommends

the use of SSL to guarantee the authenticity of the requestor of TR-069 messages.

Referring to figure 3, it is illustrated how a SIP provider may involve a LAN Service

Management provider to transfer the video transcoding part of a SIP video session from

a handheld device to a computational resource elsewhere in the LAN network. It is

the LAN Service Management provider who communicates with the TR-069 Resource

Sharing Manager on the LAN gateway. This TR-069 service interacts with the core

Resource Sharing (RS) service. The latter makes a decision to transfer the transcoding

service to an idle resource in order to extend the battery lifetime of the handheld

device.

4 Battery autonomy prediction

The core Resource Sharing service, installed on the LAN gateway, uses a battery au-

tonomy model we proposed in previous work to predict the remaining autonomy of

handheld devices. This battery model assumes four main energy consumers: display,

CPU, wireless network interface card and I/O operations. As the energy consump-

tion depends on the type of hardware used, a calibration step is required to define

the device-specific model parameters. Table 1 below shows the model parameters we

defined for the iPAQ hx2490 performing the tests as described in [3].

8

Table 1 Parameter values of the battery autonomy model for the iPAQ hx 2490 for the
display, CPU and wireless interface card

Model parameter Setting Energy (mWh)

Edisplay 50% brightness 922 mWh
ECPU 520 MFLOPS 842 mWh
ECPUdata−out

100KB 0.035 mWh

ENICdata−out
Sending 1250 mWh

ECPUdata−in
100KB 0.801 mWh

ENICdata−in
Listening 102 mWh

The battery model considers two energy penalties in case a part of a service is

offloaded: (1) the additional energy required to run the RSF and (2) the additional

energy to exchange data between the handheld device and the idle, computational

resource. These two energy penalties should be compensated by the energy gain of

the CPU. Figure 5 illustrates the potential energy savings of the iPAQ hx2490 in case

a locally running application is partly offloaded to a powerful PC. To evaluate the

battery autonomy as a function of the offloaded CPU, we introduce the leverage factor

L:

L =
CPUoffloaded

CPUlocal
(1)

As the potential energy savings not only depend on the offloaded CPU, but also

on the data exchanged with the computational resource, figure 5 shows the battery

autonomy for different active times of the wireless network interface card (WNIC).

Figure 5 illustrates that for a locally running application on the iPAQ hx2490 with

50% of the CPU offloaded to a computational resource (this means L=1), energy can

be saved if the WNIC is not longer than 25% of the time active. In case the WNIC is

active for more than 50% of the time, no energy gains are possible. Within the RSF, this

battery model is used to predict the remaining battery lifetime. The Resource Sharing

service on the LAN gateway monitors the actual battery status, and using the CPU

and network requirements provided by the service provider the remaining battery time

Fig. 5 Battery autonomy model for different active times of the wireless network interface
card (WNIC)

9

Table 2 Breakdown of the time to offload the video service to an idle resource, and to release
allocated resources as soon the video service has been stopped.

Execution step Average delay (ms)

Resource allocation 1299
Install offloaded service 737
Start offloaded service 1010

3046 (offloading)

Stop service 363
Uninstall service 792
Release resources 631

1768 (releasing)

is calculated. If the remaining battery time is less than the expected service execution

time, the Resource Sharing service tries to allocate an idle resource to transfer the

complete service from the handheld device to a nearby computer.

5 Performance evaluation

5.1 Evaluation of startup delay

We have implemented a proof-of-concept of the Resource Sharing Framework with

an iPAQ hx2490 running the UPnP Resource Sharing Monitor on top of a J9 IBM

JVM, one desktop PC acting as LAN gateway and two other PCs acting as idle,

computational resource. The PDA runs a local OSGi service platform with an OSGi

video player. Instead of playing the video from the local disk, the PDA requests an idle

resource inside the home network to run a video transcoding bundle. This transcoding

bundle is able to stream the movie with an average bitrate of 86.6 Kbps, compared to

the local movie with an average bitrate of 941 Kbps. For this specific configuration,

however, the graphical processing of both scenarios loaded the CPU for 100% and, as a

result no energy gains could be obtained by playing the remote, transcoded movie. The

demo setup is however useful to evaluate the time delay introduced by the resource

sharing framework. Table 2 illustrates the time split to start an offloaded service as

well as the time split to de-allocate resources.

The 1299 ms for resource allocation is mainly spent in the DomoWare UPnP

basedriver which is responsible for the translation between the XML-formatted UPnP

messages and the java objects. In total it takes 3 additional seconds to start an applica-

tion that requires remote execution. To optimize this delay, the dependent UPnP base

driver of DomoWare and the default OSGi installation functionality of the Knopflerfish

software need to be analyzed.

5.2 Evaluation of battery autonomy

The same setup is used to illustrate resource sharing for CPU intensive services, and

to validate the energy model we proposed in [3]. For this test setup, an OSGi service

generates a CPU load of 100% on a handheld device by calculating the value of Pi with

a certain accuracy. This computational task takes 941 seconds on the hx2490 PDA and

10

Fig. 6 Evaluation of battery autonomy model for a CPU-intensive application service that is
partly offloaded to an idle computer. The graph on the right shows the battery autonomy in
case the UPnP resource information updates are turned off, whereas on the left the handheld
device regularly sends UPnP messages with resource information.

only 2 seconds on a 2,8 GHz pentium desktop PC. Consequently, resource sharing not

only saves CPU power, it can also result in reduced calculation times and hence higher

responsiveness. The demo service has been designed as two interacting software com-

ponents: One local parent component that manages temporary results, and one child

component performing the calculations. The latter can be offloaded to an idle resource.

In this setup, the handheld device discovers itself an idle resource in its neighborhood

and deploys the child component on that idle resource. By varying the number of

decimals to be calculated locally on the handheld device - in favor of more decimals

calculated remotely - energy consumption is measured for different leverage factors.

In order to request a nearby resource at the Resource Sharing service and to transfer

state data between the two application components, 13KBytes of outbound data and

11KBytes of inbound data are processed by the WNIC of the PDA. This requires less

than a second of send time. Figure 6 depicts the battery autonomy calculated with the

energy model, compared to the autonomy derived from the measured energy consump-

tion. Although an energy gain was expected as the result of very limited send time of

the WNIC, we observe a high energy consumption that fits with the energy model for

WNICactive = 72%. Two effects are causing this loss of energy: (1) Every 5 seconds

the PDA sends its resource information to the UPnP Resource Sharing Service and

hence wakes up the WNIC, (2) the WNIC of the hx2490 remains in a high power state

for several seconds after sending has completed.

Turning of the UPnP resource information updates sent from PDA to the RGW

results in the expected energy gains as illustrated on the right of figure 6. For a leverage

factor L=1, meaning that 50% of the local computations are offloaded, this figure

illustrates that resource sharing delivers an increase in autonomy of 18,5%.

6 Conclusions

The widespread adoption of handheld devices poses challenges for Internet-based ser-

vice providers, in particular for resource intensive gaming and multimedia services. For

handheld devices that are connected to a LAN, offloading a part of the service to an

11

idle LAN resource may considerable increase the autonomy of the handheld device. In

contrast to resource scheduling algorithms for large-scale grid computing architectures,

which focus on the overall optimization of resource utilization, we presented in this pa-

per a Resource Sharing Framework (RSF) that optimizes battery autonomy. The core

Resource Sharing service uses a battery model to predict the autonomy and to decide

for complete or partial offloading. As the RSF is based on the well-adopted standards

UPnP and TR-069, it allows Internet-based service providers to remotely offload a part

of a service from a mobile, battery-powered devices to an idle LAN resource. We dis-

cussed potential energy gains for the iPAQ hx2490 and illustrated quantitative energy

savings that highly depend on the active time of the wireless network interface card.

We described how the RSF supports the concept of Resource Sharing as a service. As

a result, resource sharing could be offered as a novel, value-adding service by Internet

access providers.

Acknowledgements C. Develder is supported by the Research Foundation - Flanders (FWO–
Vl.) as a postdoctoral fellow.

References

1. DSLHome Technical Workgroup, TR-069: CPE WAN Management Protocol,
http://www.broadband-forum.org/ (2004).

2. Universal Plug and Play Forum, http://www.upnp.org/.
3. Haerick, W., De Winter, D., Vandenberghe, P., De Truck, F., Dhoedt, B., Acke, W., Break-

ing the barriers of constrained, mobile devices in the home, In the proceedings of the Asian
International Mobile Computing Conference 2007, p35-44, Calcutta, India (2007).

4. C. Wu, C. Liao, and L. Fu, Service-oriented smart home architecture based on osgi and
mobile agent technology, IEEE Transactions on Systems, Man, and Cybernetics, vol. 37,
pp. 193205 (2007).

5. Hlavacs, H., Weidlich R., Hummel K., Houyou A, Berl A., de Meer H., Distributed energy
efficiency in future home environments, Annales des telecommunications, vol. 61, 9-10, pp.
473-485 (2008).

6. Abraham, A., Buyya, R., Nath, B., Nature’s Heuristics for Scheduling Jobs on Compu-
tational Grids, In International Conference on Advanced Computing and Communications
(2000).

7. Cao, J., Spooner, D., Jarvis, S., Saini, S., Nudd, G., Agent-Based Grid Load Balancing Using
Performance-Driven Task Scheduling, In International Parallel and Distributed Processing
Symposium (April 2003).

8. Nudd, G., Kerbyson, D., Papaefstathiou, E., Perry, S., Harper, J., Wilcox D., PACE : A
Toolset for the Performance Prediction of Parallel and Distributed Systems., Int. J. of High
Performance Computing Applications, Special Issues on Performance Modelling, 14(3), pp.
228-251 (2000).

9. Margi, B., Obraczka, K. Manduchi, R., Characterizing System Level Energy Consump-
tion in Mobile Computing Platforms, In IEEE WirelessCom 2005 - Symposium on Mobile
Computing (2005).

10. Choi, I., Shim, H., Chang, N. Low-power color TFT LCD display for hand-held embedded
systems, In ISLPED (2002).

11. Gruian, F., Hard real-time scheduling for low energy using stochastic data and DVS pro-
cessors, In Proc. of Intl. Symp. on Low-Power Electronics and Design (Aug. 2001).

12. Grunwald, D., Levis, P., Farkas, K., Morrey, C., Neufeld, M., Policies for dynamic clock
scheduling, In Proc. of 4th Symposium on Operating System Design and Implementation
(Oct. 2000).

13. Chen, J., Sivalingam, K., and Agrawal, P., and Kishore, S., Comparison of MAC Protocols
for Wireless Local Networks Based on Battery Power Consumption, IEEE Infocom’98, San
Francisco, USA, pp. 150-157 (March 1998).

12

14. Gauthier, P., Harada, D., Stemm, M., Reducing Power Consumption for the Next Gen-
eration of PDAs: It’s in the Network Interface!, Proceedings of MoMuC ’96 (September
1996).

15. Lee, D., Panigrahi, D., Dey, S., Network-aware image data shaping for low-latency and
energy-efficient data services over the palm wireless network, In WWC (3G Wireless) (2003).

16. Kravets R., Krishnan, P., Power Management Techniques for Mobile Communication, In
MOBICOM Conference Proceedings (1998).

17. Lattanzi, E., Acquaviva, A., Bogliolo A.,. Run-time software monitor of the power con-
sumption of wireless network interface cards, In Proceedings PATMOS-04, pp. 352-361.
SpringerVerlag (2004).

18. Xu, R., Li, Z., Wang, C., Ni, P., Impact of data compression on energyconsumption of
wireless-networked handheld devices, In Proceedings of the 23rd IEEE International Con-
ference on Distributed Computing Systems, IEEE Computer Society Press, Los Alamitos,
CA (2004).

19. OSGi Alliance, OSGi Server Platform Release 4 (Oct. 2005).

