
1

2

3 Q1

4

5
6

7

9

10
11
12
13
14

15
16
17
18
19
20
21
22

2 3

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Q2

The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
O
O

FSALSA: QoS-aware load balancing for autonomous service brokering

Bas Boone a,*, Sofie Van Hoecke a, Gregory Van Seghbroeck a, Niels Jonckheere b, Viviane Jonckers b,
Filip De Turck a, Chris Develder a, Bart Dhoedt a

a INTEC Broadband Communication Networks (IBCN), IBBT, Ghent University, Belgium
b System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel, Belgium

a r t i c l e i n f o a b s t r a c t
24
25
26
27
28
29
30
31
32
33
34
35
36
Article history:
Received 24 December 2008
Received in revised form 22 June 2009
Accepted 15 September 2009
Available online xxxx

Keywords:
Load balancing
Weighted round-robin
Autonomous system
Service brokering
Simulated annealing
High throughput
37
38
39
40
41
42

0164-1212/$ - see front matter � 2009 Published by
doi:10.1016/j.jss.2009.09.033

* Corresponding author. Tel.: +32 9 33 14 979; fax:
E-mail addresses: bas.boone@intec.ugent.be (B

intec.ugent.be (S. Van Hoecke), gregory.vanseghbro
Seghbroeck).

Please cite this article in press as: Boone, B.,
doi:10.1016/j.jss.2009.09.033
E
C

T
E
D

P
RThe evolution towards ‘‘Software as a Service”, facilitated by various web service technologies, has led to

applications composed of a number of service building blocks. These applications are dynamically com-
posed by web service brokers, but rely critically on proper functioning of each of the composing subparts
which is not entirely under control of the applications themselves. The problem at hand for the provider
of the service is to guarantee non-functional requirements such as service access and performance to
each customer. To this end, the service provider typically divides the load of incoming service requests
across the available server infrastructure. In this paper we describe an adaptive load balancing strategy
called SALSA (Simulated Annealing Load Spreading Algorithm), which is able to guarantee for different
customer priorities, such as default and premium customers, that the services are handled in a given time
and this without the need to adapt the servers executing the service logic themselves. It will be shown
that by using SALSA, web service brokers are able to autonomously meet SLAs, without a priori over-
dimensioning resources. This will be done by taking into account a real time view of the requests by
measuring the Poisson arrival rates at that moment and selectively drop some requests from default
customers. This way the web servers’ load is reduced in order to guarantee the service time for premium
customers and provide best effort to default customers. We compared the results of SALSA with weighted
round-robin (WRR), nowadays the most used load balancing strategy, and it was shown that the SALSA
algorithm requires slightly more processing than WRR but is able to offer guarantees – contrary to WRR –
by dynamically adapting its load balancing strategy.

� 2009 Published by Elsevier Inc.
43

61
R

1. Introduction Instead of hard coding service calls in the customer’s source

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
U
N

C
O

RNowadays, many newly conceived applications are constructed
through integration of already available service components. The
approach is made possible through the Service Oriented Architec-
ture (SOA) and ‘‘Software as a Service” paradigm, typically using
web service technologies to publish, discover and integrate service
components. This technology also allows to replicate web services
on new servers to scale in response to the needed demands. SOA
structures large applications as collections of web services from in-
side and outside the company, resulting in greater flexibility and
uniformity. As a result customers no longer buy software for per-
manent in-house installation but only buy services as needed.
Since an increasing number of third-party software companies
are offering web services on a commercial basis, SOA systems
may consist of such third-party services combined with others cre-
ated in-house.
78

79

80

81

82

Elsevier Inc.

+32 9 33 14 899.
. Boone), sofie.vanhoecke@
eck@intec.ugent.be (G. Van

et al. SALSA: QoS-aware load
code, brokers provide dynamic service selection to automatically
select and seamlessly link the services in order to meet the busi-
ness system requirement, optimize response times or reduce the
costs. By using web service brokers, customers only have to inter-
act with the service broker, hiding the complexity of selecting the
appropriate service. These web service brokers keep the services
available for every user and fulfill their requests as quickly as
possible.

In a commercial application typically a Service Level Agreement
(SLAs) can be mediated between the customers and the service
providers defining the functional and non-functional requirements
such as the levels of availability, performance, billing and even
penalties in case of violation of the SLA. Often, a service provider
also wants to service a class of customers on a best effort basis.
In the case of performance, the SLA usually specifies constraints
on the response time. If no special precautions are taken, unex-
pected request patterns can drive a web server into overload, lead-
ing to poor performance since the server is unable to keep up with
the demands, resulting in increased response times. Service pro-
viders can solve this problem by over-dimensioning their resources
and provide dedicated servers for premium customers to meet
balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
mailto:bas.boone@intec.ugent.be
mailto:sofie.vanhoecke@ intec.ugent.be
mailto:sofie.vanhoecke@ intec.ugent.be
mailto:gregory.vanseghbroeck@intec.ugent.be
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
-contrary

Original text:
Inserted Text
WRR-

T

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140Q3

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

2 B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
O
R

R
E
C

their SLAs. Due to the diversity, size and non-intrusiveness of ser-
vice-oriented architectures, stress-test evaluations are not possible
to predict behavior under load, leaving the brokering somewhat
speculative. Consequently, without dedicated servers for premium
customers, intelligent autonomous service brokering is needed in
order not to penalize the premium customers of the services and
guarantee their SLAs, while at the same time providing best effort
to the default customers.

Within this paper, two requirements for service brokers will be
fulfilled: on one hand, the broker should be able to autonomously
guarantee constraints on the response time by fulfilling a n-per-
centile on the response time, i.e. the value for which at most n%
of the response times are fulfilled in less than that value. On the
other hand, brokering should be transparent for the actual servers
executing the service. The latter makes sure that the load balancing
logic needs only to be implemented in the broker, and standard
server software can be used on the servers. This way, no require-
ments have to be imposed to the (external) service providers with-
in distributed service-oriented architectures.

In order to fulfill these requirements, the Simulated Annealing
Load Spreading Algorithm (SALSA) presented in this paper can load
balance requests, and selectively drop some requests from the de-
fault users to reduce the web servers’ load in order to guarantee
SLA to premium customers and provide best effort to default cus-
tomers (see Fig. 1). SALSA provides QoS-aware load balancing for
autonomous service brokering since the SLAs are only mediated
between the customers and the QoS-aware broker. As a result, cus-
tomers do not have to mediate SLAs with the increasing number of
service providers and service providers can be QoS unaware and
are released from mediating SLAs.

The presented algorithm can be applied in a wide range of
application areas. For example multimedia content delivery can
benefit from autonomous service brokering in order to meet pre-
mium guarantees (for e.g. subscribed customers). The service bro-
ker can dynamically select the needed services (e.g. services for
broadcasting, streaming, payment and security) in order to set up
a video-on-demand stream meeting the request (e.g. high quality,
no delay or limited output device) of subscribed customers while
the non-subscribed customers will have a best effort stream. An-
other case can be found in eCommerce, where a call center for
example negotiates with multiple credit checkers, in order to ac-
quire payment validation. Based on the call center load, the service
broker can divide the requests over multiple credit checkers in or-
der not to lose or displease premium clients. Ehealth, where multi-
ple care providers are integrated, is another case that can benefit
from SALSA service selection since emergency services and alarm
processing services should receive higher priority and guaranteed
execution times.
U
N

C

Broker

QoS-aware

QoS-unaware

Fig. 1. Objective of the simulated annealing load spreading algorithm.

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
The remainder of this paper is structured as follows: Section 2
describes the related work, while in Section 3 the theoretical dis-
cussion and a criterion to check for optimality is presented. Section
4 describes the SALSA algorithm in more detail. The evaluation re-
sults are presented in Section 5. Finally, in Section 6, we will high-
light the main conclusions and identify future work.
176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193
E
D

P
R

O
O

F

2. Related work

Web service brokers dynamically select services to fulfill re-
quests based on the user’s QoS requirements. In Nahrstedt and
Smith (1995) a QoS broker model is described for general distrib-
uted systems. However, this broker does not support flexible ser-
vice selection. In Tao and Lin (2004), a Web service architecture
supporting QoS is presented. However, once the services are se-
lected and the link is established, the client communicates with
the server directly without any broker intervention during the ac-
tual service process. In Verheecke (2007), the Web Service Man-
agement Layer (WSML) is presented using Aspect-Oriented
Programming (AOP) as a mediation layer between the client and
the services. Amongst other, these broker platforms select services
based on known quality criteria such as average latency time, exe-
cution cost or repudiation (Garofalakis et al., 2006), using Multiple
Choice Knapsack (MCK) (Tao and Lin, 2004) or m-dimensional QoS
vectors (Liu et al., 2004). When QoS parameters, such as response
time, can not be guaranteed by the service providers themselves,
the current solutions can not be used to dynamically select the cor-
rect service in order to guarantee QoS constraints since neither of
these broker solutions is able to adapt to the dynamic server load.

In these cases, web service brokers typically use load balancing
(Grosu et al., 2002; Zhang et al., 2001; Cortes et al., 1999) to im-
prove web servers’ performance (Bryhni et al., 2000; Cardellini
et al., 1999). In Shirazi et al. (1995) a survey of load balancing algo-
rithms is presented. Currently, round-robin is the most used load
balancing solution, alternating in a deterministic way between
the different service endpoints. This algorithm is successfully ap-
plied in DNS servers, peer-to-peer networks, and many other mul-
tiple-node clusters/networks. Since all servers are treated equally,
all the service endpoints will be invoked an equal number of times,
regardless of the response times of the servers. Round-robin is
especially suited for brokering when the different service end-
points have (almost) the same response times. If the service end-
points have different response times, weighted round-robin can
be used to compensate for these differences. There, servers are pre-
sented client requests in proportion to their weighting resulting in
fairly distributing the requests amongst service endpoints, instead
of equally distributing the requests.

More successful and accurate load balancing requires the web
service broker to have some notion of the server load (Di Stefano
et al., 1999) in order to adapt the load balancing weight to the cur-
rent load. This can be done by either time based polling the servers
or monitoring their behavior. A round-trip load balancing algo-
rithm monitors the time elapsed between request to the server
and response to the client. The average elapsed time of all requests
during a sliding window is calculated and the server with lowest
calculated average load is selected.

When most requests on the web service broker are of the same
kind, round-trip time based load balancing algorithms will not out-
perform (weighted) round-robin. If however the round-trip algo-
rithm can accurately predict the current load on the servers, this
algorithm will be able to distribute the load better when requests
are heterogeneous and handle high-load conditions. Both
(weighted) round-robin, and round-trip load balancing provide
best effort and can not handle priorities, nor guarantee SLAs.
Current solutions for priority based load balancing consists of
balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
don’t

Original text:
Inserted Text
(

Original text:
Inserted Text
Smith, 1995

Original text:
Inserted Text
)

Original text:
Inserted Text
(

Original text:
Inserted Text
Lin, 2004

Original text:
Inserted Text
),

Original text:
Inserted Text
(Verheecke, 2007

Original text:
Inserted Text
),

Original text:
Inserted Text
(

Original text:
Inserted Text
al., 1995

Original text:
Inserted Text
best-effort

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 3

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
two types of queues, one for default requests and one for premium
requests. Requests from the default queue are only handled when
there are no premium requests queued or when a certain time is
passed (preventing the default requests from starvation if there
are always premium requests queued). A combination of priority
queueuing and weighted round-robin is priority-weighted round-
robin presented in Zhang and Harrison (2007). These priority queu-
ing load balancing strategies however do not ensure total response
time guarantees to premium customers.

For premium customers best effort is however not good enough.
There is a need for service brokers taking into account QoS in order
to ensure total response time and prioritize premium customers. In
order to meet SLAs for premium customers, dedicated servers can
be used. Over-dimensioning the resources can enable a high QoS,
but is an expensive option and leads to a waste of capacity.

Web service brokers must support adaptivity to implement
autonomous load balancing (Nami and Bertels, 2007; Kephart
and Chess, 2003; Sterritta et al., 2005) in order to handle dynamic
request loads without a priori over-dimensioning the service pro-
vider’s resources. Therefore in this paper, we study how autono-
mous load distribution can adapt to unexpected traffic and
sudden load peaks, and compare the results with weighted
round-robin.
T
257

258

259

260

261

262

263

264

265

266

267

268

269
C
3. Theoretical model

In this section, the theoretical background and objective are gi-
ven for the SALSA load balancing algorithm, which is described in
more detail in Section 4. We consider the system as depicted in
Fig. 2. The broker acts as a statistical switch that randomly for-
wards client requests to a server with a given probability (similar
to WRR); the SALSA algorithm dynamically updates these probabil-
ities to adapt to changing loads. The broker can also selectively
drop some requests from the default users to reduce the servers’
load in order to guarantee the SLA to premium customers and pro-
vide best effort to default customers.
270

271

272

274274

275

276

277
R
R

E3.1. Problem statement

According to Ardagna et al. (2008), Kanodia and Knightly (2000)
and Levy et al. (2003), the web servers are modeled as M/M/1
queueing systems (Gross and Harris, 1998) to compute response
times of the Web service requests. A Poisson arrival process is as-
sumed. As illustrated in Christodoulopoulos et al. (2007), the Pois-
son process is a very good approximation for the arrival process of
U
N

C
O 278

279

281281

282

284284
285

1

3

2
d p

p d + q1 p

p d + q2 p

p d + q3 p

Broker

pdrop d

Fig. 2. The SALSA theoretical model.

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
E
D

P
R

O
O

F

service requests within a distributed broker platform where the
number of service requests is very large, a single requests requires
only a very small percentage of the provider’s resources and all re-
quests are independent. In Roberts (2001) it is also argued that,
while IP packet arrivals can not be accurately modeled as a Poisson
process, the arrival of flows on the Internet can generally be
approximated as a Poisson process.

The broker is modeled as a statistical switch that randomly for-
wards client requests to a server with a given probability. This en-
sures that, if the arrival process towards the broker is a Poisson
process, the arrival processes to the web services are also Poisson
processes.

The inputs of the problem are defined as follows:

� k: number of web services,
� li: processing intensity for web service i. This parameter can be

estimated by measuring the average delay for a call to the web
service,

� kd: arrival intensity of the default clients. This parameter can be
estimated by the average arrivals per unit of time of default
clients,

� kp: arrival intensity of premium clients,
� t: threshold on waiting time for premium clients,
� n: fraction of premium clients that should be serviced with a

waiting time smaller than t.

The required outputs are the forwarding probabilities of the
broker:

� pi: the forwarding probability to web server i for a default client;
� pdrop: the probability of dropping a request from a default client.P

ipi þ pdrop ¼ 1;
� qi: the forwarding probability to web server i for a premium cli-

ent. No premium client requests will be dropped, since the num-
ber of premium clients and the limit on premium client requests
per second will be known from the SLAs; the servers should be
dimensioned to take at least these limits into account.

P
iqi ¼ 1

The algorithm is subject to the following SLA constraints:

� Ensuring no server is overloaded:

ki < li ð1Þ

� Ensuring the n-percentile, i.e. the probability of the waiting time
for a premium client being smaller than the threshold t should
be greater than n (with Wi the cumulative distribution function
for the waiting time on server i):X

i

qiWiðtÞð ÞP n ð2Þ

� Broker forwarding probabilities:

0 6 pi 6 1; 0 6 qi 6 1; 0 6 pdrop 6 1: ð3Þ
286

287

288

289

290

291

292

293

294

295
3.2. Modeling the SALSA objective

In order to model the different user profiles, two kinds of re-
quests are considered. Premium clients require a SLA guaranteeing
that the total waiting time for a request is less than a certain
threshold, for a certain fraction of the requests (e.g. 95%). Premium
requests should never be dropped. Default clients on the other
hand do not require statistical guarantees and are served on a best
effort basis. In order to ensure that premium requests are served
within the threshold waiting time, default requests may be
dropped. As a consequence, a trade-off needs to be made between
balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
priority weighted

Original text:
Inserted Text
(

Original text:
Inserted Text
Harrison, 2007

Original text:
Inserted Text
).

Original text:
Inserted Text
(

Original text:
Inserted Text
al., 2008;

Original text:
Inserted Text
Knightly, 2000;

Original text:
Inserted Text
al., 2003

Original text:
Inserted Text
),

Original text:
Inserted Text
(

Original text:
Inserted Text
al., 2007

Original text:
Inserted Text
),

Original text:
Inserted Text
(Roberts, 2001

Original text:
Inserted Text
services

Original text:
Inserted Text
service

Original text:
Inserted Text
clients.

Original text:
Inserted Text
clients

Original text:
Inserted Text
clients

Original text:
Inserted Text
client

T

296

297

298

299

300

301

302

303

304

305

307307

308

309

310

311

312

314314

315
316
318318

319

321321
322

323

324

326326

327

328

329

330

331

332

333

334

335

337337

338

340340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

398398

399

400

401

4 B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

dropping default client requests and exceeding the premium
threshold for more than the allowable fraction.

As a result, the objective of the SALSA broker algorithm is to
minimize the average waiting time for all clients as well as the
fraction of dropped requests, while upholding the contract for pre-
mium clients by guaranteeing the n-percentile, and ensuring no
server is overloaded.

Since every server is modeled as a M/M/1 queueing system,
Fig. 2 presents the effective arrival intensity for server i, assuming
an arrival intensity k:

ki ¼ pikd þ qikp ð4Þ

The following formulae for the average waiting time, and the n-
percentile per server i can be easily derived through application of
standard queueing theory:

� The cumulative distribution function for the waiting time on
server i:

WiðxÞ ¼ 1� e�ðli�kiÞx ð5Þ

� The average waiting time (including the service time):

�wi ¼ 1=ðli � kiÞ ð6Þ

� n-percentile waiting time:

wn
i ¼ lnð1� nÞ=ðki � liÞ ð7Þ

The average waiting time for the total system, neglecting the
delay in the broker itself, can then be found from:

�w ¼
X

i

ki � �wið Þ
,X

i

ki ð8Þ

The minimum for the SALSA objective can either be a local min-
imum inside the region of the solution space defined by the con-
straints or it can be found on the edge of the solution space. Both
the expression for the average waiting time (Eq. (6)) and the con-
straint on the n-percentile (Eq. (2)) are non-linear, making theoret-
ical treatment of the optimum difficult. If a local minimum is found
in the inner region of the solution space, this minimum is guaran-
teed to be the minimum of the system. The derivatives of the aver-
age waiting time are, with p1 substituted with 1� pdrop �

Pk
i¼2pi:

@ �w
@pi
¼ �kdl1

ðl1 � k1Þ2
þ kdli

ðli � kiÞ2
ð9Þ

@ �w
@qi
¼ �kpl1

ðl1 � k1Þ2
þ kpli

ðli � kiÞ2
ð10Þ

A local extremum is found when:

li � kiffiffiffiffiffili
p ¼ l1 � kiffiffiffiffiffiffil1

p ð11Þ

By using these equations, the SALSA objective can be tested for
efficiency in the case the minimum is found in the inner region of
the solution space. However, it is possible that the actual global
minimum is on the bounds of the solution space; this should be
checked using other means.

4. SALSA: simulated annealing based load spreading algorithm

This section discusses the SALSA algorithm, implementing the
above defined objective. The strategy of the broker is to use for-
warding probabilities in such a way that the average waiting time
for each client is minimized, while at the same time ensuring that
the n-percentile waiting time for premium clients is below the gi-
ven threshold t, and avoiding dropped calls for default clients. In
Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
order to explore the solution space and find an optimum solution
for the SALSA objective, Simulated Annealing is used.
E
D

P
R

O
O

F

4.1. Basic algorithm

Simulated annealing (SA) (Salamon, 2002; Kirkpatrick et al.,
1983) is a generic probabilistic meta-algorithm for locating a good
approximation to the global optimum of a given function in a large
search space. Analogously to annealing in metallurgy, each step
within the SA algorithm updates the current state to a random
nearby state. During the SA algorithm a temperature parameter
is gradually decreased and the next random state is chosen with
a probability depending on the difference between the correspond-
ing optimization function values, and the temperature parameter.
The optimization function value of a state is analogous to the inter-
nal energy of a material in a certain state. The optimization func-
tion is therefore called the Internal Energy Function. The current
state changes almost randomly when the temperature parameter
is high (high temperature), but increasingly stabilizes as the tem-
perature parameter goes to zero. The goal is to bring the system,
from an arbitrary initial state, to a state with the minimum possi-
ble energy.

To evaluate a given set of forwarding probabilities, an Internal
Energy Function is used to give a score, which is to be minimized.
For each server, the actual arrival intensity is calculated, based on
the forwarding probabilities. From the arrival intensity and pro-
cessing intensity for the server, the average waiting time can be
calculated using Eq. (6).

If the processing intensity is not larger then the arrival intensity
ðli 6 kiÞ, the server will of course not be able to handle the load.
Since this is unacceptable, the score is increased by a large constant
ð106Þ, and additionally increased by the same large constant mul-
tiplied with a percentage of how severely the web service is over-
loaded. The latter helps the Simulated Annealing algorithm by
differentiating between several undesirable solutions based on
the quality of the resulting solution. If the server is not overloaded,
the score is increased with the average waiting time ð�wÞ divided by
the threshold t, proportionally to the fraction of arrivals to this ser-
ver, in order to minimize the average waiting time.

If less than a fraction n of the premium requests are serviced
with a waiting time smaller than t, i.e.

P
iðqiWiðtÞÞ < n, a second

component is added to the score, consisting of the fraction of re-
quests which are not serviced in time multiplied with a constant
penaltyThreshold. This accounts for the constraint in Eq. (2). Finally,
a penalty is added to the score, proportional with the percentage of
dropped calls.

score ¼
X

i

serverscorei þ thresholdscoreþ penaltyDrop� pdrop

ð12Þ

serverscorei ¼
106 � 1þ ki�lið Þ

li

� �
li 6 ki

ki
ð1�pdropÞkdþkp

�wi
t otherwise

8><
>:

ð13Þ

thresholdscore ¼
penaltyThreshold� n�

P
i

fraci

� � P
i

fraci < n

0 otherwise

8<
:

ð14Þ

fraci ¼
0 li 6 ki

qiWiðtÞ otherwise

�
ð15Þ

The algorithm starts with random values for all pi and qi. From
there, neighbor states are selected by choosing two random indices
from either the p- or the q-array. The probability indexed by the
balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
Simulated Annealing

Original text:
Inserted Text
Load Spreading Algorithm

Original text:
Inserted Text
,

Original text:
Inserted Text
,

402

403

404

405

406

408408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 5

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
first one is increased with a given step size, and the probability in-
dexed by the latter one is decreased with it. The step size is linearly
dependent of the temperature, and thus decreases exponentially
with the iteration number.

Algorithm 1. Random step function
T

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470
E
C

4.2. Tuning the algorithm

4.2.1. Number of iterations
A simulated annealing algorithm can run endlessly. However

we assume that the algorithm converges after a number of itera-
tions and stop after a fixed amount of iterations. This amount,
and the convergence of the algorithm, is investigated in Section
5.3.4.

4.2.2. Penalty factors
The ability of the algorithm to successfully identify constraint-

meeting solutions depends on the penalty factors. Two configura-
ble parameters are present in the algorithm: penaltyThreshold
and penaltyDrop. penaltyThreshold controls the penalty associated
with exceeding the n-percentile threshold for premium clients.
penaltyDrop controls the penalty associated with dropping calls
from default clients. Since dropping more calls will leave more
headroom for meeting the threshold requirements, and relaxing
the threshold requirements will enable the algorithm to find solu-
tions with less dropped calls, these penalties provide a trade-off
between dropping default clients and exceeding thresholds. Choos-
ing an appropriate value for these penalties will depend on the
application.
 R 471

472

473

474

475

476
R5. Evaluation results

The simulated annealing load balancing algorithm (see Section
4) is implemented to evaluate its correctness and its performance.
U
N

C
O

(a) (b)

Fig. 3. Applicability of the SALSA algorithm compared to weighted round robin (WRR

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
In the first evaluation, we compare the applicability of the SALSA
algorithm with several other load balancing algorithms for a num-
ber of server setups. The second evaluation is set in a highly con-
trolled simulation environment, where especially the correctness
of the mechanism is evaluated. The last evaluation is an experi-
mental evaluation which uses several generated request patterns
to stress-test a web service broker that can use a variety of load
balancing algorithms. This experiment is especially set up to eval-
uate the differences between the SALSA 95%-priority-algorithm
and weighted round-robin, and whether the algorithms can fulfill
the goals set in the Introduction.
E
D

P
R

O
O

F5.1. Applicability evaluation of SALSA

In the first set of evaluations we analytically calculate the re-
sponse times given a particular load balancing algorithm and a par-
ticular server setup. In this evaluation, we require 95% of the
response times of premium requests to be lower than 100 ms.
The throughputs of both the premium and the default requests
are discretely varied between 0 and 150 requests/s. By interpolat-
ing these calculated results, we can determine the area where the
95-percentile of the response times of the premium requests is
lower than the threshold – we call this the applicability of that par-
ticular load balancing algorithms for that particular server setup.
These calculations are done for three different server setups: (i)
two very fast servers (10 ms and 20 ms); (ii) two distinct servers,
but with their response times well under the threshold (9 ms
and 28 ms); and (iii) three very different servers with one server
close to the threshold (10 ms, 50 ms and 90 ms). The results are
shown in Fig. 3 for the following load balancing algorithms: SALSA,
weighted round-robin (WRR), dedicated server (Ded) and priority
queue (PQ). We notice that the applicability of our SALSA load bal-
ancing algorithm is in most cases better or as good as the applica-
bility of the other algorithms. Only the priority queue algorithm
can outperform SALSA. However, in the trivial case with at least
one extremely slow server (cf. server setup (iii)), the priority queue
algorithm is no match for our SALSA algorithm – not even for the
other evaluated load balancing algorithms. The applicability of
the dedicated server solution and weighted round-robin is much
stricter than that of the SALSA algorithm. As can be see from
Fig. 3, weighted round-robin provides on average good results with
a wide variation in throughputs (for premium and default re-
quests). That is why, in the following sections, we will describe
an in-depth comparison of the performance of the SALSA algorithm
to the weighted round-robin load balancing algorithm using simu-
lation and testbed evaluation.
(c)

), dedicated server (Ded) and priority queue (PQ) load balancing for three cases.

balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
trade off

Original text:
Inserted Text
round robin,

Original text:
Inserted Text
requests/second.

Original text:
Inserted Text
-

Original text:
Inserted Text
round robin

Original text:
Inserted Text
-

Original text:
Inserted Text
round robin

Original text:
Inserted Text
round robin

Original text:
Inserted Text
round robin

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

6 B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
5.2. Performance evaluation of SALSA

Within the simulation evaluation, the theoretical performance
of SALSA is evaluated and the optimality of the solutions that the
SALSA algorithm returns, is validated using the optimality criterion
of Section 3.2. A Poisson arrival process is assumed for both default
and premium clients, for which both kd and kp, respectively are
known.

Within the simulation, the SALSA algorithm is run for given kd

and kp, and based on the resulting pi; qi and ki, multiple perfor-
mance attributes are calculated.
524

525

526

527

528

529

530

531

532

533

534

535
5.2.1. Inputs
In order to easily validate the results of the testbed experiment

in Section 5.3 to the simulation results, the average service times in
the simulation are chosen accordingly to the average service times
of the web services used in the experimental evaluation. The
experiment consists of two servers offering average service times
of 9 ms and 28 ms, corresponding to l1 ¼ 111:11 req=s and
l2 ¼ 35:71 req=s, respectively. As a consequence, the maximum
throughput this system can handle is 146.82 req/s. As a result, kd

and kp are varied in the simulation between 0 and this maximum.
The threshold value t is set to 100 ms, and the percentile n set to
0.95.
T
536

537

539539

540

541

542

543

544

545

546

547

548

549

550
E
C

5.2.2. Optimality of the returned SALSA results
First, a test was run to determine the optimality of the results

returned by the SALSA algorithm. For this, the optimality criterion
obtained in Section 3.2 was used. Fig. 4 shows the value of
j l2�k2ffiffiffiffil2
p � l1�kiffiffiffiffil1

p j, which should be zero if an optimum is found in the

inner region of the problem’s solution space, as a local extremum
will satisfy li�kiffiffiffiffili

p ¼ l1�kiffiffiffiffil1
p .

For small values of kd and kp, i.e. kd þ kp < 50, the optimality
measure differs from zero. Inspection of the returned pi and qi

for these values shows that pi ¼ 0 or qi ¼ 0 for one of the servers
i. An exhaustive search was conducted in this area, and no local ex-
trema were found inside the solution space. This means that the
optimum has to be found on the edge of the solution space (were
the optimality criterion derived in Section 3.2 is different from
U
N

C
O

R
R 551

0

50

100

150 0

50

100

1500

1

2

3

4

5

λdλp

Fig. 4. Optimality measure for the SALSA algorithm. For small values of kd and
kpðkd þ kp < 50Þ, and large values of kd and kpðkd þ kp > 90Þ, the optimality measure
is different from zero; here the SALSA algorithm found a better solution on one of
the boundaries of the solution space. For the values in between, the optimality
measure is close to zero, which proves the optimality of the solution in this region.

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
E
D

P
R

O
O

F

zero). The SALSA algorithm found the optimum on the edge of
the solution space and forwarded all requests to the same server.

For large values of kd and kp, i.e. kd þ kp > 90, the optimality
measure again differs from zero; here the algorithm finds an opti-
mum on the boundaries that model the constraints on server load
or exceeding thresholds. There are no solutions that fit the opti-
mality criterion and that also fall within these constraints.

In between these regions, the optimality measure is close to
zero, confirming the optimality of the results from the SALSA
algorithm.

In order to further evaluate the optimality of the returned SAL-
SA results, the same simulation was run with the penalties for
dropping clients and exceeding priority thresholds set to zero. This
effectively eliminates the corresponding boundaries on the solu-
tion space. The results are shown in Fig. 5. In this test, the optimal-
ity measure stays also close to zero for large values of kd and kp. For
the area with small values of kd and kp, only an exhaustive search
could confirm the optimality of the results.

From these results, we can conclude that our Simulated Anneal-
ing based algorithm is indeed able to find optimal results.

5.2.3. Performance of SALSA compared to weighted round-robin (WRR)
Another simulation was done to compare the performance of

the SALSA algorithm with weighted round-robin. The weighted
round-robin algorithm was run for the same given kp; kd. The arri-
val intensity for server i is calculated:

ki ¼ ðkp þ kdÞ �
liP

ili

For this test, the fraction of clients serviced with a service time
below the threshold t was calculated. Figs. 6 and 7 show the results
for the SALSA algorithm and weighted round-robin respectively. In
both graphs, a contour line is plotted for the n-percentile value of
0.95. As can be seen on Fig. 6, the SALSA algorithm can guarantee
the 95-percentile for kp < 90, irrespective of the value for kd. Using
the weighted round-robin algorithm (Fig. 7), the system fails to
meet the 95-percentile for much smaller values of kp and kd. Both
kp and kd have an influence on this, so that a high amount of default
clients can deny QoS to the premium clients. Furthermore, if no
special precautions are taken, the system gets overloaded when
kd þ kp P 147:82.
0

50

100

150 0

50

100

150
0

1

2

3

4

5

λdλp

Fig. 5. Optimality measure for the SALSA algorithm, where the penalties for
dropping clients and exceeding priority thresholds are set to 0. Here, the optimality
measure is also close to zero for large values of kd and kp .

balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
.

Original text:
Inserted Text
,

Original text:
Inserted Text
.

U
N

C
O

R
R

E
C

T

O
O

F

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

0
50

100
150 0

50
100

150
0

0.2

0.4

0.6

0.8

1

λdλp

Fig. 6. Fraction of premium clients whose service time is below t, using the SALSA
algorithm. The 95-percentile can be guaranteed for kp < 90, irrespective of the value
for kd .

0
50

100
150 0

50

100

150

0

0.2

0.4

0.6

0.8

1

λd
λp

Fig. 7. Fraction of premium clients whose service time is below t, using the WRR
algorithm. The system fails to meet the 95-percentile for smaller values of kp and kd

than with SALSA.

0
50

100
150

0

50

100

150
0

0.2

0.4

0.6

0.8

1

λp
λd

Fig. 8. Fraction of dropped calls with the SALSA algorithm.

Fig. 9. Test setup f

B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 7

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
E
D

P
R5.2.4. Fraction of dropped default requests

Fig. 8 shows the fraction of dropped calls for the SALSA algo-
rithm for varying kp and kd.

5.3. Testbed evaluation of SALSA

For this experiment, a prototype web service broker has been
implemented. The testbed configuration and results are discussed
in this section.

5.3.1. Testbed configuration
The test setup for the experimental evaluation, shown in Fig. 9,

consists of three important components: a load generator, two web
servers and the web service broker.

The load generator simulates real user behavior as Poisson pro-
cesses realizing different request patterns for the two classes of
users (premium and default customers).

The web servers both expose one Axis2 (Axis2/Java, xxxx) web
service, with an average service time of respectively 9 ms and
28 ms.

The web services exposed by the web servers are purely compu-
tational services. As a consequence, their execution time is directly
proportional to the amount of service requests (see Fig. 10). This
behavior is in agreement with the modeling approach taken in
Section 3.1. For not purely computational web services, for
or evaluation.

balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033

T
E
D

P
R

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Fig. 10. Stress-testing both computational web services.

8 B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
C
example services doing I/O as well, the assumption of an M/M/1
queueing system will be an overestimation, resulting in slightly
over-dimensioning the load using SALSA. The web service broker
is implemented using Apache Synapse (Synapse, xxxx), a light-
weight and high performance Enterprise Service Bus (ESB). The
Synapse engine comes with a set of transports, mediators and stan-
dard brokering capabilities, such as round-robin load balancing
and fail-over. Some additional mediators are implemented to sup-
port different load balancing algorithms such as weighted round-
robin and QoS monitoring. In order for the 95%-priority load bal-
ancing algorithm to work properly the optimization component
used in the simulations of the previous subsection is also incorpo-
rated in the web services broker. This component will provide the
optimized load distribution to the broker for use in its load balanc-
ing strategy. In order to minimize the possible system impact of
both the ESB core functionality and the optimization component,
running the presented SALSA algorithm, they execute at the top le-
vel in separate threads. To further avoid potential resource con-
straints, the web service broker is deployed on an extremely
powerful Linux server with a multi-core AMD OpteronTM processor
designed for optimum multi-threaded application performance.
E

Fig. 11. Scores of different setups, in logarithmic scale. After 100,000 iterations, the
algorithm shows no more improvements.

5

U
N

C
O

R
R5.3.2. Confidence intervals

The throughput of premium and default requests is needed as
an input to the SALSA algorithm. Contrary to simulation, in real
world scenario’s these throughputs are unknown. Since Poisson ar-
rival processes can have fluctuating arrival intensities, confidence
intervals are used to estimate these arrival intensities and indicate
the reliability of the estimates (Clopper and Pearson, 1934). The
confidence level sets the boundaries of a confidence interval. In or-
der to guarantee a 95th percentile to premium users, the confi-
dence level for the arrival intensity needs to be 97.5% as well as
the optimizing threshold within SALSA. Combining both estimates,
a 95th percentile can be guaranteed to premium users. The 97.5%
confidence level, with 0% area in the lower tail and 2.5% area in
the upper tail, can be constructed using the v2-distribution with
risk level a ¼ 0:025 (i.e. 97:5 ¼ 100 � ð1� aÞ). Based on a 97.5%
confidence level, a sample rate of 100 incoming messages is at least
needed. Whenever the algorithm needs an estimate of the current
throughput, the throughput over the last 100 arrivals is calculated
and used as input for the SALSA algorithm.
80
40

20
100

10
50

4050

λ
λ

Fig. 12. Optimality measure for the SALSA algorithm showing the chosen samples
for comparing SALSA and WRR in Table 1.
5.3.3. Input request patterns
Since a commonly used model for random, mutually indepen-

dent message arrivals is the Poisson process, the first input request
pattern are two Poisson processes, one for the default requests and
one for the premium requests, with variable arrival rate kd and kp,
respectively.
Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
Using Poisson arrival processes, extreme conditions such as a
particular time period exhibiting an abnormally large number of
events (Poisson burst), or contrary no events at all, are possible.
Although within Poisson processes bursts can appear, a second in-
put request pattern is used to explicitly evaluate the capabilities
of the load balancing algorithm to handle request bursts on top of
the Poisson bursts. Within a burst both kd and kp are increased at
once. The period of the burst varies in the configured request
pattern.
O
O

F

5.3.4. Number of iterations
In order to know after how many iterations on average the algo-

rithm will show no improvements on the forwarding probabilities,
a simulation has been conducted that uses different setups with an
increasing number of iterations. Four setups were chosen, using 2–
5 servers. Fig. 11 shows the scores for the solutions obtained for
the different setups. From the results it is shown that after
100,000 iterations, the algorithm converges, and shows no more
improvements on the resulting QoS. In our experimental setup, this
takes about 2 s.
balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
Opteron™processor

Original text:
Inserted Text
2 to 5

Original text:
Inserted Text
100000

Original text:
Inserted Text
seconds.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 9

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
5.3.5. Penalty factors
To guide the simulated algorithm into the direction of con-

straint-meeting solutions, penalty factors are applied to solutions
that does not meet the constraints. A proper setting of these pen-
alty factors is important, because a large penalty factor sorts out
non-constraint-meeting solutions very quickly while a low penalty
can result in non-constraint-meeting solutions to be the result at
U
N

C
O

R
R

E
C

T

Table 1
Comparing SALSA to WRR. Notice that in several tests the 95th percentile is lower for WRR.
is always met by the SALSA algorithm in contrast to WRR.

Input pattern kd kp

80

100

120

0

20

40

60

0 10 20 30 40 50

40 20

0 10 20 30 40 50

80

100

120

0

20

40

60

10 40

0 10 20 30 40 50

80

100

120

0

20

40

60

50 50

0 10 20 30 40 50

80

100

120

0

20

40

60

80 5

0 10 20 30 40 50

80

100

120

0

20

40

60

80 40

0 10 20 30 40 50

80

100

120

0

20

40

60

100 20

0 10 20 30 40 50

80

100

120

0

20

40

60

40–80 20–40

0 10 20 30 40 50

80

100

120

0

20

40

60

40–80 20–40

0 10 20 30 40 50

80

100

120

0

20

40

60

40–80 20–40

0 10 20 30 40 50

80

100

120

0

20

40

60

40–80 20–40

0 10 20 30 40 50

80

100

120

0

20

40

60

40–80 20–40

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
the end. The penalties provide a trade-off between dropping de-
fault clients and exceeding thresholds. In the algorithm, the penal-
ties are applied to the fraction of dropped clients, and the fraction
of premium clients who exceed the threshold waiting time, respec-
tively. For this experiment, exceeding the threshold is penalized 10
times more than dropping default clients. Since the penalties
have to be considerably higher than the expected penalties for
E
D

P
R

O
O

F

But the main goal, at least 95% of the requests needs to be served within the threshold,

Algorithm 95% (ms) Crossing threshold (%)

SALSA 53 1.66
WRR 51 0.71

SALSA 54 2.28
WRR 53 0.59

SALSA 59 0.47
WRR 201 28.70

SALSA 63.9 2.47
WRR 54.7 0.75

SALSA 93.3 4.76
WRR 201 26.81

SALSA 57 1.314
WRR 77 3.31

SALSA 67.8 2.16
WRR 152 17.15

SALSA 99 4.92
WRR 84 4.76

SALSA 62 1.89
WRR 71.9 2.89

SALSA 76 2.71
WRR 52 0.20

SALSA 94.1 4.94
WRR 76.7 2.92

balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
constraint meeting

Original text:
Inserted Text
non-constraint meeting

Original text:
Inserted Text
non-constraint meeting

Original text:
Inserted Text
trade off

653

654

655

656

657

659659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

10 B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
the waiting time, i.e. ki
ð1�pdropÞkdþkp

�wi
t , and considerably lower than the

penalty for overloading the server ð106Þ in order to never chose a
solution with overloaded servers above a bad solution which does
not overload the servers, the penalties in this experiment were
chosen:

penaltyDrop ¼ 1000
penaltyThreshold ¼ 10;000
T

718

719

720

721

722

723

724

725

726

727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751Q4
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
U
N

C
O

R
R

E
C

5.3.6. Comparison to weighted round-robin
In order to compare the performance of our simulated anneal-

ing algorithm, the weighted round-robin algorithm (WRR) is run
in the same experiment setup. As can be seen in Fig. 12, within
these tests, some of the kd and kp were chosen such that the opti-
mum is found in the inner region of the solution space, while oth-
ers where chosen such that the optimum is on the boundaries. In
both cases however, SALSA is able to guarantee the 95th percentile.

The detailed results are shown in Table 1.
As can be seen in this table the weighted round-robin slightly

outperforms the SALSA algorithm in underloaded circumstances.
This is normal since all requests on the web service broker are of
the same kind. As a result, weighted round-robin performs very
well, while the SALSA load balancing algorithm requires more pro-
cessing resulting in lower responsiveness. Since SALSA allows for
autonomous brokering, the real arrival intensities are estimated
using a confidence interval, resulting in the SALSA algorithm
slightly over-dimensioning and being outperformed by WRR in
underloaded circumstances. If however many prior requests need
to be handled and the platform gets overloaded, the SALSA algo-
rithm is able to guarantee the 95% to the prior requests while
weighted round-robin crosses the threshold for more than 5% of
the requests. Both SALSA and WRR can handle bursts. However,
for long-term bursts, SALSA notices the higher arrival rates and
immediately adjusts the load balancing in order to guarantee the
QoS requirements, contrary to WRR. As a result, we can conclude
that SALSA is able to dynamically adapt its load balancing strategy
to handle dynamic request patterns without a priori over-dimen-
sioning the web servers’ resources in order to guarantee the SLAs
to premium customers.

6. Conclusion and future work

By using the SALSA algorithm, requiring slightly more process-
ing than weighted round-robin, brokers can guarantee a n-th per-
centile response time to their premium users, while providing best
effort to the default customers. As service-oriented architectures
have largely distributed topologies, SOA broker architectures can
benefit from our SALSA algorithm as the service providers can be
QoS unaware, released from mediating SLAs, and don’t have to be
a priori over-dimensioned. SALSA provides QoS-aware load balanc-
ing for autonomous service brokering since the SLAs are only med-
iated between the customers and the QoS-aware broker. To this
end, the SALSA algorithm divides the load taking into account a
real time view of the requests by measuring the arrival rates at that
moment. If needed, requests from the default users will be dropped
to reduce the web servers’ load in order to guarantee the SLA to
premium customers. By using Business Activity Monitoring, pro-
viding real time information about the status of service processes
and transactions, the decision-making process within SALSA can
be improved by using the derived intelligence to analyze and im-
prove the efficiency of the load balancing. Business Activity Moni-
toring provides brokers with the ability to instrument their
services to monitor events, correlate these events with each other
and to understand their impact on the Key Performance Indicators.
Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
We will continue the design of advanced load balancing algo-
rithms, fulfilling QoS requirements and optimize the decision-
making within the SALSA algorithm by using Business Activity
Monitoring.
O
F

Acknowledgments

Part of this work is supported by the Research Foundation Flan-
ders (Fonds Wetenschappelijk Onderzoek Vlaanderen) in the con-
text of the DyBroWS project on ”Intelligent dynamic brokering of
Web services”.

Sofie Van Hoecke and Gregory Van Seghbroeck would like to
thank the IWT (Institute for the Promotion of Innovation through
Science and Technology in Flanders), and Bas Boone would like
to thank the BOF (Bijzonder Onderzoeksfonds) of Ghent University,
for financial support through their Ph.D. grant.
E
D

P
R

OReferences

Ardagna, D., Ghezzi, C., Mirandola, R., 2008. Model driven QoS analyses of composed
web services. In: LNCS Proceedings of the 1st European Conference on Towards
a Service-Based Internet, Madrid, Spain.

Apache Axis2/Java. <http://ws.apache.org/axis2/>.
Bryhni, H., Klovning, E., Kure, O., 2000. A comparison of load balancing techniques

for scalable web servers. IEEE Network, 58–64.
Cardellini, V., Colajanni, M., Yu, P.S., 1999. Load balancing on web-server systems.

IEEE Internet Computing 3 (3), 28–39.
Christodoulopoulos, K., Varvarigos, M., Develder, C., De Leenheer, M., Dhoedt, B.,

2007. Job demand models for optical grid research. In: Proceedings of the
11th Conference on Optical Network Design and Modelling (ONDM), Athens,
Greece.

Clopper, C.J., Pearson, E.S., 1934. The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika 26, 404–413.

Cortes, A., Ripoll, A., Senar, M.A., Luque, E., 1999. Performance comparison of
dynamic load-balancing strategies for distributed computing. In: Proceedings of
the 32nd Annual Hawaii International Conference on System Sciences (HICSS-
32).

Di Stefano, A., Lo Bello, L., Tramontana, E., 1999. Factors affecting the design of load
balancing algorithms in distributed systems. Journal of Systems and Software
48 (2), 105–117.

Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A., 2006. Contemporary web
service discovery mechanisms. Journal of Web Engineering 5 (3), 265–290.

Gross, D., Harris, C., 1998. Fundamentals of Queueing Theory, 3rd ed.
Grosu, D., Chronopoulos, A.T., Leung, A.T., 2002. Load balancing in distributed

systems: an approach using cooperative games. In: Proceedings of the Parallel
and Distributed Processing Symposium.

Kanodia, V., Knightly, E.W., 2000. Multi-class latency-bounded web services. In:
Proceedings of the IEEE/IFIP International Workshop on Quality of Service
(IWQoS).

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer 36
(1), 41–50.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by Simulated
Annealing, Science, Number 4598 220 (4598), 671–680.

Levy, R., Nagarajarao, J., Pacici, G., Spreitzer, M., Tantawi, A., Youssef, A., 2003.
Performance management for cluster based web services. In: IFIP/IEEE Eighth
International Symposium on Integrated Network Management, vol. 246, pp.
247–261.

Liu, Y., Ngu, A.H.H., Zeng, L., 2004. QoS computation and policing in dynamic web
service selection. In: Proceedings of the WWW’04.

Nahrstedt, K., Smith, J.M., 1995. The QoS broker. IEEE Multimedia Magazine 2 (1).
Nami, M.R., Bertels, K., 2007. A survey of autonomic computing systems. In:

Proceedings of the Third International Conference on Autonomic and
Autonomous Systems (ICAS07).

Roberts, J.W., 2001. Traffic theory and the internet. IEEE Communications Magazine
39 (1), 94–99.

Salamon, P., 2002. Facts, Conjectures And Improvements For Simulated Annealing.
SIAM Monographs on Mathematical Modeling and Computation. Society for
Industrial and Applied Mathematics, US.

Shirazi, B.A., Hurson, A.R., Kavi, K.M. (Eds.), 1995. Scheduling and Load-Balancing in
Parallel and Distributed Systems. IEE CS Press.

Sterritta, R., Parasharb, M., Tianfieldc, H., Unlandd, R., 2005. A concise introduction
to autonomic computing. Advanced Engineering Informatics Autonomic
Computing 19 (3), 181–187.

Apache Synapse. <http://synapse.apache.org>.
Tao, Y., Lin, K.J., 2004. The design of QoS broker algorithms for QoS-capable web

services. In: Proceedings of the IEEE International Conference on e-Technology,
e-Commerce and e-Service.
balancing for autonomous service brokering. J. Syst. Software (2009),

http://ws.apache.org/axis2/
http://synapse.apache.org
http://dx.doi.org/10.1016/j.jss.2009.09.033
Original text:
Inserted Text
strategie

Original text:
Inserted Text
decision making

Original text:
Inserted Text
Acknowledgment

786
787
788
789
790
791

792
793
794
795
796

797

B. Boone et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 11

JSS 8379 No. of Pages 11, Model 5G

29 September 2009
ARTICLE IN PRESS
Verheecke, B., 2007. Ph.D. Thesis, Dynamic Integration, Composition, Selection and
Management of Web Services in Service-Oriented Applications, Department of
Computer Science, System and Software Engineering Lab, Vrije Universiteit
Brussel, 2007.

Zhang, Y., Harrison, P.O., 2007. Performance of a priority-weighted round robin
mechanism for differentiated service networks. In: Proceedings of the 16th
U
N

C
O

R
R

E
C

T

Please cite this article in press as: Boone, B., et al. SALSA: QoS-aware load
doi:10.1016/j.jss.2009.09.033
International Conference on Computer Communications and Networks (ICCCN
’07), Honolulu.

Zhang, J., Hamalainen, T., Joutsensalo, J., Kaario, K., 2001. QoS-aware load balancing
algorithm for globally distributed web systems. In: Proceedings of the info-tech
and info-net (ICII01), Beijing.
E
D

P
R

O
O

F

balancing for autonomous service brokering. J. Syst. Software (2009),

http://dx.doi.org/10.1016/j.jss.2009.09.033

	SALSA: QoS-aware load balancing for autonomous service brokering
	Introduction
	Related work
	Theoretical model
	Problem statement
	Modeling the SALSA objective

	SALSA: simulated annealing based load spreading algorithm
	Basic algorithm
	Tuning the algorithm
	Number of iterations
	Penalty factors

	Evaluation results
	Applicability evaluation of SALSA
	Performance evaluation of SALSA
	Inputs
	Optimality of the returned SALSA results
	Performance of SALSA compared to weighted round-robin (WRR)
	Fraction of dropped default requests

	Testbed evaluation of SALSA
	Testbed configuration
	Confidence intervals
	Input request patterns
	Number of iterations
	Penalty factors
	Comparison to weighted round-robin

	Conclusion and future work
	Acknowledgments
	References

