
Framework for ubiquitous discovery and access to home services

D. Verslype, J. Nelis, T. Verschueren, W. Haerick, F. De Turck, C. Develder
Ghent University - IBBT,

Dept. of Information Technology - IBCN, Ghent, Belgium
Email: chris.develder@intec.ugent.be

Abstract—To relieve the end user of the configuration burden
that arises when new devices are installed in the (home)
network, service discovery protocols (SDP) have been devised.
These enable automatic discovery of the services these devices
offer. Yet, the existing SDPs are not compatible or interopera-
ble. In this paper, we propose a framework that automatically
translates between the various SDPs. We also solve the problem
of current SDPs that only enable discovery within a single local
(sub)network. Through a remote access component, we enable
sharing of the services between multiple home networks. Hence
we realize sharing of services over the boundaries of SDPs and
home networks. Results of performance measurements on a
proof-of-concept implementation illustrate that the framework
operates transparently to the various SDPs: translation has no
significant impact on response times compared to native SDP
services.

Keywords-service discovery, UPnP, remote access, DNS-SD,
SLP

I. INTRODUCTION

The modern home network is evolving towards a myriad
of different devices that in turn can offer a multitude of
services. Common examples of such devices are printers and
multimedia content providers e.g. cell phones and cameras,
but also media players, e.g. television sets. An end user
typically isn’t as savvy as required to perform the necessary
installation and configuration steps in order to make these
services work. As such, a Service Discovery Protocol (SDP)
tries to relieve the end user from this burden by dynamically
discovering the available services and providing a means
to let these services cooperate with one another. This all
works pretty well in theory, however, since there also is a
multitude of available SDPs, a couple of problems arise.
An application that is written to support services announced
by one SDP cannot use services announced through another
SDP. This effectively divides the home network in virtual
networks. These SDP networks are logically separated in
that services from one SDP network can not be discovered
in another SDP network. Well-known examples of SDPs are
UPnP, SLP and DNS-SD. Suppose a printer service exists
in the UPnP network, if the user’s printing application only
supports SLP, it can only discover printer services in the SLP
network. The user will not be able to use the UPnP printer
through its printer application. Another problem is the fact
that many SDPs make use of IP multicasting or broadcasting
to announce and discover services. As these messages are

not forwarded onto the Internet, the visibility of the services
is limited to the home network. In this article a framework
will be described as a solution to solve these problems.
This will allow services to be shared between different
(SDP) networks, in a fully automatic and transparent way
for the users. When a service is discovered by an end user’s
application, it is unaware of what the original location or
the SDP used to announce the service was.
This paper addresses these problems by proposing a design
of a framework that is pluggable. Besides that we present a
performance analysis of the proposed solution.
The remainder of this paper is structured as follows: in
Section II we give an overview of widely used SDPs.
Subsequently, we present the architecture of our interoper-
ability framework in Section III and an example scenario in
Section IV. Section V contains the performance assessment.
Final conclusions are summarized in Section VI.

II. SERVICE DISCOVERY PROTOCOLS

In this section, we present an inventory of current rela-
tively wide-spread Service Discovery Protocols (SDPs). We
briefly describe their fundamental principles of operation,
and present a taxonomic summary.

A. Service Location Protocol (SLP)

The SLP [1] architecture describes 3 components. The
User Agent is responsible for searching services on the
network based on a description or on specific attributes. The
Service Agent can make one or more services available on
the network. The Discovery Agent is an optional component
that can cache the description of one or more Service
Agents. This cache service is discoverable using SLP as
well.
A User Agent can search for services using a multicast
Service Request message, describing the desired service.
All Service Agents matching the query will reply with a
unicast Service Reply. If a Discovery Agent was found
earlier (by the aforementioned technique or by receiving
a periodic Discovery Agent Advertisement message), it
will not multicast the Service Request, but unicast it to the
Discovery Agent, since all Service Agents have put their
description in the cache with Service Registration messages
upon discovery of the Discovery Agent.
SLP is most commonly used in printer infrastructure,



like the Common Unix Printing System (CUPS), the HP
Jetdirect Print Server, etc. Two open-source SLP Java
implementations exist: OpenSLP and jSLP ([2]).

B. Jini

Jini is a SOA developed originally by Sun in 1999,
currently maintained in the open source Apache River
project.
Jini is based on the Java technology and extends the Java
virtual machine (JVM) to services on other JVMs. Services
can be discovered by querying the Lookup Service.
A Jini service is described by a Java interface and an
accompanying proxy object that implements this interface.
This proxy object is a so called smart proxy: it will only
contact the remote service through a Jini client if necessary,
and will try to do as much work as possible locally. To
advertise the service, the interface and the proxy object
need to be registered in the Lookup Service, so a client can
search for it and load the proxy for direct communication
with the service.
The Jini technology is useable in a wide range of
applications, as it is based on the platform independent
Java technology. Applications reside in the field of eHealth,
mobile services, military, etc.

C. Domain Name Service based Service Discovery (DNS-
SD)

DNS-SD is an SDP, better known as Bonjour, zeroconf
or Avahi, based on DNS. No new messages are defined, it
just describes how to use the DNS protocol for advertising
services.
A DNS server contains a large number of Resource Records.
DNS is mainly used to translate IP addresses to domain
names, information that is stored in the DNS-A records.
But aside this information, also services within an internet
domain (like mail servers) can be defined in DNS-SRV
records, containing IP address, port, used protocol, etc. of
the service, and DNS-TXT records, containing an arbitrary
description of the service. DNS-SD requires supporting
devices in a LAN to run their own DNS server, populated
with SRV records according to the available services on the
device. The communication is done through multicast, to
prevent interference with normal DNS traffic.
Bonjour is the implementation for Apple Macintosh
computers, Avahi for Linux. Devices supporting DNS-SD
are printers, scanners and Digital Audio Access Protocol
(DAAP) servers.

D. Universal Plug and Play (UPnP)

UPnP ([3]) is a set of protocols that together enable
service discovery, service description, service control and

eventing for LAN services.
The UPnP architecture consist of two components: the
UPnP Device, which advertises several UPnP Services, and
the UPnP Control Point, which searches and makes use of
devices.
For discovery UPnP uses the Simple Service Discovery
Protocol (SSDP). When a UPnP Device comes online and
at periodic intervals it advertises itself together with its
services in multicast SSDP message. A Control Point can
listen to these messages or send SSDP multicast searches
defining the type of device or service it is looking for,
which in turn get answered by the matching UPnP Devices.
The Location field of the SSDP responses contains an
HTTP location, where the UPnP XML description of the
device and services can be found. Every service has a
number of UPnP Actions that can be invoked by a Control
Point using SOAP and a number of state variables a Control
Point can listen to, to get evented changes of the service
state, also with SOAP.
UPnP is a widely adopted technology in different fields,
and has a broad range of predefined device and service
descriptions. For A/V applications, UPnP AV ([4]) defines
descriptions for media servers and renderers (implemented
by Windows Media Player, XBox 360, Sony Playstation 3,
Philips streamium products, etc.), UPnP QoS ([5]) defines
descriptions for devices capable of managing quality-of-
service in the home network. For remotely accessing a
UPnP network, UPnP Remote Access is defined. There also
exist predefined descriptions for printers, HVAC devices,
lights, etc.

E. Devices Profile For Web Services (DPWS)

DPWS defines implementation constraints for secure Web
Service messaging, discovery, description and eventing,
similar to UPnP, but build around Web Services.
For discovery, DPWS uses WS-Discovery, a multicast
protocol similar to SSDP. For description, DPWS uses
the Web Services Description Language (WSDL), a
standardized XML format for Web Service description. For
controlling the Web Service the SOAP based WS-Control
standard is used. For eventing the WS-Eventing is used.
A subscriber can specify the delivery mode of the events.
DPWS uses the SOAP delivery mode.
As DPWS was standardized in 2008, the adoption of the
technology is not yet widespread. The HP Jetdirect Print
Server and Windows Network Projector support DPWS.

F. Taxonomy

Analyzing these SDPs shows us that there exist a number
of technologies for achieving one or more of these goals: the
automatic discovery of services, description and control of
these services and the eventing of the service state. Table I



SLP DNS-SD Jini UPnP DPWS
discovery X X X X X
description X X X X X
control X X X
eventing X X X

Table I
COMPARISON OF SDPS

Figure 1. High level architecture of the SDP framework

shows a comparison of the studied SDPs concerning these
four aspects. It indicates that the studied SDPs can be
seperated in two groups: the ones only supporting service
discovery and description, not defining how the services are
controlled, and those who offer the complete package.

III. UBIQUITOUS SDP FRAMEWORK

As it is likely that new SDPs will be developed in the
future, the proposed framework has to be easily upgradable
to support the usage of these new SDPs. The framework
therefore uses a plugin model, where support for new
SDPs can be added dynamically. Since service types are
also subject to change, support for service types, control
protocols and eventing mechanisms is provided by plugins.

A. Architecture

The designed framework, depicted in Figure 1, uses a
plugin model and acts as a broker between different SDP
implementations relying on their respective functionality for
service discovery. Furthermore it uses a plugin model for
service types, as well as possible control protocols and
eventing mechanisms.

An SDP module is responsible for the discovery of
services in its SDP network. On the other hand, the SDP
module will receive information about services discovered
by other SDP modules in the framework, which will allow
the SDP module to publish these services in its SDP net-
work. To enable generic service discovery, a generic SDP
independent service description is used in the framework.
When an SDP module discovers a service on its network, it
first translates the SDP dependent service description before
registering the service to the framework. The framework will
notify all interested SDP modules of the new service. The

other SDP modules will translate the service to its service
description before announcing it on its network.

Since new service types can be introduced, the framework
uses service type plugins that add support for specific types
of services. Moreover, control protocols also are supported
through the use of plugins. A printer service that uses the
LPR [6] protocol for printing requires a plugin for the printer
service and a control protocol plugin for LPR is needed.
This way an SDP module can rely on these plugins to do
the translation for a service announced by an SDP without
native control to an SDP that has native control. An example
for this is the translation from an LPR printer announced by
SLP to a UPnP printer. The UPnP printer interface abstracts
the actual printing protocol used, therefore support for LPR
has to be available before the translation can succeed.

The research in this paper focuses on the discovery and
control of services, but also provides plugin support for
eventing mechanisms, since it’s possible different SDPs use
the same eventing mechanism.

B. Remote access

To address the problem most SDPs have, namely the fact
that service discovery and control is limited to the home
network, the proposed framework is combined with UPnP-
Remote Access (UPnP-RA). UPnP-RA allows the sharing of
UPnP services between different networks. This is achieved
by forwarding the UPnP services between the two networks
over a (secure) tunnel.

As UPnP-RA can only share UPnP services, it has to be
used in combination with the framework to enable sharing
of non-UPnP services across the home network boundaries.
If the UPnP SDP module can translate the service from
the non-UPnP presentation to a UPnP service, UPnP-RA
will simply share the service across the home boundaries.
A second possibility is the UPnP SDP module is unable
to translate the non-UPnP presentation to a proper UPnP
service. In this case, the framework service description will
be added to a UPnP wrapper device such that UPnP-RA
can share this device with another home network. Within
the remote home network, the local framework will import
the services included in the UPnP wrapper device. Like this,
non-UPnP services can be shared across home network even
without them being translated to UPnP services.

IV. SCENARIO DESCRIPTION

In Figure 2 you can find the sequence diagram of this
scenario. It describes what happens when an SDP module
discovers a new service.

• the SDP module discovers a new service or device.
(step 1 & 2)

• Does there exist a ServiceDescription object and/or
DeviceDescription object for the service or device in
the framework and can the SDP module do a translation
to this object? (step 3,4 & 5)



Figure 2. message diagram for the scenario of Section IV

• Yes:
– If the framework has a ServiceControl object

for this service, it gets coupled with this Ser-
viceDescription object. (step 6,7 & 8)

– The SDP module translates to the available Ser-
viceDescription object and/or DeviceDescription
object. (step 9)

– The translated service or device are passed to the
DeviceManager. (step 10 & 11)

• No:
– An SDP specific DeviceDescription implementa-

tion is made without loss of information.
• All SDP modules get notified of the addition of a new

DeviceDescription to the framework. (step 12)

V. PERFORMANCE ASSESSMENT

In this section we will evaluate the introduced network
load and delay of using a proof-of-concept implementation
of our framework on a testbed. We used two techniques
for the data: passive discovery, in which an SDP module
will only listen to service notification packets; and active
discovery, in which an SDP module will broadcast packets
itself to actively discover services. The former does not add
traffic on the network, the latter does.

A. Proof-of-concept implementation

The most important requirement of the implementation
is the pluggability, we need to be able to easily add or
remove different SDP modules, plugins for a service type
and plugins for a specific control protocol. For this reason
we chose OSGi [7] as a development platform.

B. Evaluation setup

In Figure 3 the test setup for the LAN is shown. The
framework taking care of service translations is running on
PC-A. On PC-B a CUPS print server is sharing a varying
number of virtual printers (through SLP or DNS-SD). PC-C
will be looking for printer services.

Figure 3. LAN setup

Figure 4. UPnP Remote Access setup

In Figure 4 you can see the setup for the remote access
case. It has two home networks A and B connected with
each other using UPnP Remote Access. PC-D is doing the
service translations for Network B and PC-E for Network A.
PC-F is running the CUPS print server. Time measurements
were performed using logging information and wireshark.

C. Network load evalution

1) SDP module network load: Every SDP module has
the responsibility to look for services in its own network, to
offer to the framework for translation. As stated before this
can be done using active or passive discovery. Our DNS-
SD SDP module uses active discovery on startup, to find
the currently available services and afterwards switches to
passive discovery. The network traffic added in this case is
limited to the few multicast packets for searching all services
and their responses at startup. As SLP does not support
passive discovery, our SDP module stays polling for new or
removed services. When choosing a small polling interval,
the extra traffic will be larger. A large polling interval will
introduce delay between the introduction of a new service
and the translation to all SDP networks. Table II shows
some numbers on the load for different polling intervals and
different number of available services.



#SLP services
delay 0 1 2 3 4

4 s 57 103 99 817 126 079 144 925 162 253
6 s 56 586 92 093 126 483 144 403 150 649
8 s 52 423 80 955 119 332 128 149 146 440

10 s 52 388 80 955 144 825 128 149 134 634

Table II
SLP NETWORK LOAD (BYTES/S)

Figure 5. framework network load

2) framework network load: After services are discov-
ered, they are translated to all other SDP networks supported
by the framework, which causes additional traffic as well.
In this section we will compare the total service traffic,
including the traffic generated by the framework, to the
situation where no framework is running. On the CUPS
server on PC-B (see Figure 3) we’re running 4 SLP printers
and 3 DNS-SD printers. On PC-B we’re polling for SLP
printers (with an interval of 10 seconds). In a first stage we
measure the SLP traffic without the translation framework.
In a second stage we run the framework with the SLP and
DNS-SD module started on PC-A.

In Figure 5 you can see the measured traffic in function
of the number of active services. When the framework is
active the total amount of traffic is linear to the number
of services and has roughly doubled in comparison to the
situation without the framework.

3) conclusion: The network load for discovery depends
on whether a certain SDP can discover the services passively
and the polling interval. In both cases the additional traffic
is very limited. The total extra traffic depends on the number
of services that need to be translated. If no services need to
be translated the discovery traffic is doubled (using active
discovery). In case there is translation necessary this factor
will augment, since the virtual services all contribute to the
additional network traffic.

interval average delay
4 s 5 268 ms
8 s 6 322 ms

10 s 6 769 ms

Table III
SLP DELAYS

test delay
#1 36 ms
#2 17 ms
#3 33 ms
#4 19 ms
#5 25 ms

Table IV
TRANSLATION DELAY

D. Delay evaluation

1) delay between SDPs: The delay we want to depict here
is the one between the announcement of a service in an SDP
network and the discovery of that same service in another
SDP network after translation of the framework. On the LAN
setup we tested 2 scenario’s: an SLP printer is announced
on PC-B and is discovered with DNS-SD on PC-C with
the framework running on PC-A; in the second scenario we
announced an DNS-SD printer and discovered it with SLP.
The delay discussed here can be split up in 3 parts: the
delay for discovery, the translation of the service and the
delay for publication. Discovery can introduce delay based
on the used method (passive or active).

In Table III we show some averages for the SLP delays
for several polling intervals. We measured an average of 1.8
s for the discovery of a DNS-SD service.

Table IV shows some test results for the translation of a
service. The translation step only converts the description
discovered by the fist step to the framework representation
of the service, so the delay of this step is negligible. The
delay of the publication step is similar to the discovery delay,
only this time the framework is the publisher and the service
consumer is the discoverer.

2) delay between home networks: Apart from the delay
introduced by sharing services between SDP networks, the
delay coming from UPnP-RA has to be taken into account.
UPnP-RA creates a secure tunnel between the homes, and
makes UPnP services in Network A (see Figure 4) available
in Network B (and vice versa). The delay UPnP-RA intro-
duces comes down to three parts: the discovery of the service
in A, the transmission from A to B and the publication in
B. Since UPnP supports active discovery, the transmission
step will introduce the biggest delay. If the original service
was UPnP, no additional translation step has to be taken into
account.

3) conclusion: The translation delay is negligible com-
pared to the SDP protocol specific discovery and publication
delays. The biggest chunk of the delay when sharing services



between home networks comes from the transmission be-
tween the networks, and is highly dependent on the distance
and network infrastructure between these networks.

VI. CONCLUSION

Currently, multiple service discovery protocols exist to
enable automatic discovery of services in local networks.
They are however not interoperable, and usually limited to a
single subnetwork. The framework we propose enables for
automatic translation between SDPs, and additionally fea-
tures remote access to allow ubiquitous sharing of services
over network boundaries. We successfully demonstrated this
concept in a proof-of-concept realization. Performance as-
sessment based on measurements showed that the framework
overhead is minimal, and no perceptible performance degra-
dation could be observed when comparing use of services
native to a certain SDP versus services translated to that
particular SDP by our framework.

ACKNOWLEDGMENT

Part of this work was supported by the IWT Q-MATCH
project.

C. Develder is supported by the Research Foundation –
Flanders (FWO–Vl.) as a postdoctoral fellow.

REFERENCES

[1] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan,
“Service Location Protocol,” RFC 2165 (Proposed Standard),
Internet Engineering Task Force, Tech. Rep. 2165, June
1997, updated by RFCs 2608, 2609. [Online]. Available:
http://www.ietf.org/rfc/rfc2165.txt

[2] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: Dis-
tributed Applications Through Software Modularization,” in
Middleware, 2007, pp. 1–20.

[3] A. Presser et al., “UPnP Device Archi-
tecture,” 15 Oct. 2008. [Online]. Available:
http://www.upnp.org/resources/documents.asp

[4] J. Ritchie and T. Kühnel, “UPnP AV Ar-
chitecture:1,” 25 Jun. 2002. [Online]. Available:
http://www.upnp.org/specs/av/default.asp

[5] UPnP Forum, “UPnP QoS.” [Online]. Available:
http://www.upnp.org/specs/qos

[6] L. McLaughlin, “RFC 1179: Line printer daemon protocol,”
RFC 1179 (Informational), Internet Engineering Task
Force, Tech. Rep. 1179, Aug. 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1179.txt

[7] N. Goeminne, K. Cauwel, F. De Turck, and B. Dhoedt,
“Deploying QoS sensitive services in OSGi enabled home
networks based on UPnP,” in Proc. Int. Conf. on Internet
Computing (ICOMP2006), Las Vegas, NV, USA, 26-29 Jun.
2006.


