
Trust as differentiator for value-adding home service providers

W. Haerick, J. Nelis, D. Verslype, C. Develder, F. De Turck, B. Dhoedt
Ghent University - IBBT,

Dept. of Information Technology - IBCN, Ghent, Belgium
Email: wouter.haerick@intec.ugent.be

Abstract—The openness of OSGi home service delivery
platforms enables a service provider to deploy new services
which aggregate services from other providers. Without se-
curity measures, each service provider is able to probe the
home network, modify the configurations of other services,
and (ab)use these services in favor of their own services.
Premium service providers however prefer to protect their
value-added services in an attempt to differentiate with low-cost
or free Internet-based service providers. The common home
technologies however lack fine-grained security support and
do not allow to configure trust-based service adaptation. In
this paper, we propose an intelligent residential gateway, with
three security components that facilitate trust-based service
adaptation in a multi provider environment. Using XACML
policies, the collaboration between service components can
remotely be modified. Legacy services can be protected and
collaboration of services can be made dependent on the
outcome of any other service. We compare OSGi virtualisation,
embedded OSGi security and security-as-a-service. The latter
allows for fine-grained access control on method-level. In a
proof-of-concept implementation, we evaluate the performance
overhead of transparent service authentication and three policy
administration approaches. The results illustrate a minimal
overhead to add trust-based service collaboration to any
(legacy) service.

Keywords-service collaboration, trust, UPnP, OSGi

I. INTRODUCTION

In recent studies, promising home service delivery plat-
forms are presented [1], [2], [3], [4] that are based on
OSGi [5] and UPnP [6], and allow service providers to
remotely deploy their services [7]. Considering a multi-
provider context where different service providers–located
in the WAN or regional access network–have access to a
single home service platform, one service provider could
use services from other service providers to build enhanced
services (Figure 1). As an example, a SIP proxy provider
could interact with a Video-on-Demand service to pause
a movie while a SIP call is being established. Similarly,
the SIP proxy provider could also verify the current delay
in the WiFi network and adapt the encoding parameters
accordingly. In the latter case, a SIP proxy service needs
to request information at a WiFi-QoS service that might be
a premium service, deployed and operated by an Internet
access provider. By protecting the premium services, and
restricting access to trusted service providers only, premium
service providers are able to build aggregated services with

best-of-class quality of service. Hence, premium providers
are able to differentiate using trust-based access control.

WAN

Restricted visibility
on services
and devices

Service
integration

Service
security

Service
Provider A

Service
Provider B

Service
Provider C

HOME NETWORKREGIONAL ACCESS NETWORK

Service A

Service C

Resolve
conflicting

configurations

1

2

3

4

e.g. YouTube.com

e.g. SIP Server

e.g. VoD Server

WAN
Gateway

S
LC

GACOS

U
A

R
S

Gateway

Service A1

Service B1

Service B2

Service A2

Service C2

Service C1

WAN

Figure 1. Multi-service provider service delivery architecture

The next-generation service platforms [1], [2], [4] use the
UPnP protocol to discover and manage distributed home
devices. Locally running services can be discovered by
querying the registry of the OSGi service platform. Both
technologies however lack support for fine-grained access
control and remote configuration of trust relations:

• The permission model of OSGi is a too coarse-grained
access control mechanism that is not able to express
access control on method-level. The conditional permis-
sion concept, which consists of (condition, permission)
pairs, does not allow to combine conditions, and as a
result is not able to support adaptive service collabora-
tion policy rules.

• The policy language specified in the UPnP Security
architecture [8], is a custom language that could be
used to protect a UPnP device from being used by
an untrusted control point, e.g. a control point from
an unknown service provider or remote management
provider. The basic language is however not suited
for use as generic policy language inside the OSGi
service platform: Although it supports access control
on method and parameter level, it lacks support for
variables and is not able to combine policies that target
UPnP devices with policies that target an OSGi service
that is not a UPnP service. Trust management is limited
to maintaining an ACL list per UPnP device, which
includes the names of trusted control points.

This paper therefore contributes to the domain of trust-
based service adaptation by comparing three architectures

JVM

OSGi Service Platform

Virtual OSGi
Service
Platform

Virtual OSGi
Service
Platform

JVM

Modified OSGi Service Platform

JVM

OSGi Service Platform

GACOS

Common
Services and

Libraries

Common
Services and

Libraries

Common
Services and

Libraries

GACOS

Generic
Security
Module

Generic
Security
Module

+
Secure
Service

Lifecycle
Component

Services
(Provider A)

Services
(Provider B)

Services
(Provider A)

Services
(Provider B)

Services
(Provider A)

Services
(Provider B)

Virtualisation/
runtime isolation Embedded security Security as a service

SLC

Figure 2. Three architecture to realize trusted service environment

to realize trusted service environments, and specifying the
design of an user- and context-aware residential gateway.
We have built a proof-of-concept implementation to il-
lustrate the performance overhead for trust-based service
adaptation. A remote configuration agent enables premium
service providers to update the trust relations and service
collaboration policies.

This paper is structured as following: The next sec-
tion compares three gateway architectures for trust-based
collaboration of OSGi services. Section 3 describes the
subcomponents of the trust-aware residential gateway, and
illustrates the use for three key scenarios: transparent service
authentication, trust-based service adaptation and protecting
legacy services. Subsequently, we address the management
aspects to remotely establish trust and configure collabo-
ration policies. In section 5, we evaluate the performance
overhead of transparent authentication versus password or
X.509 authentication, and compare the performance of three
policy administration approaches. In a last section, we
summarize the benefits of the presented security components
for premium service providers.

II. TRUSTED SERVICE COLLABORATION
ARCHITECTURES

In this section we compare three Java-based architectures
to create trusted environments where services can securely
interact with each other: OSGi virtualisation, embedded
OSGi security and security as an (OSGi) service.

A. OSGi virtualisation

A first approach of adding security to an OSGi service
platform, is OSGi virtualisation [1]. As services deployed
inside the home gateway may contain business-critical code
or data, or may give away information on the client base,
the authors motivate to isolate service bundles from different
service providers. The presented approach is to embed the

OSGi framework as a Java service into a core OSGi frame-
work (Figure 2 (left)). The core OSGi instance runs multiple
virtual OSGi environments, all running within the same
Java Virtual Machine. This virtualisation gives each service
provider a separate execution environment. The architecture
specifies a separate installation manager per virtual gateway
but does not define a mechanism to verify the origin of
services at install time.

A controlled way is provided to share common libraries
and services, such as a web service or a generic logger.
These common services or libraries are hosted by the core
OSGi platform, and explicitly exported to all virtual home
gateways. By isolating services from a (group of) service
provider(s), services are protected of being used by non-
trusted services running in the home gateway.

B. Embedded security

A second approach to restrict access to premium services,
consists of modifying the core OSGi framework (Figure 2
(middle)). As a consequence, this security solution can not
be added as a separate bundle by a remote management
server. The changes must be applied in the core OSGi
framework and therefore should replace the existing OSGi
implementation code. As a direct consequence of this inte-
gration into the framework, it has the advantage that the
security solution can not easily be replaced by another
bundle at runtime.

By intercepting all requests for a service object, access
permissions can be verified. Two OSGi objects require
modifications to implement restricted access to a service:
BundleContext and Bundle. The BundleContext object has
the global overview on the OSGi registry and thus on all the
locally registered bundles and listeners. The Bundle interface
defines the actual lifecycle controlling methods: starting,
stopping, updating and uninstalling a service. Compliant
with release 4 of the OSGi specifications, the origin of the

Criteria OSGi
Virtualization

Embedded
security

Security as a
service

SERVICE COLLABORATION POLICIES
Any service with any service - Inflexible X
Trusted environment X X X

GRANULARITY ACCESS CONTROL
Method level - - X
Service level - X X
Service provider X X X

TRANSPARENT SOLUTION
Supporting legacy services X X Transparent

for service
developer

OSGi implementation agnostic X - X

Table I
COMPARISON OF TRUST-BASED SERVICE ARCHITECTURES

calling bundle can be verified against the bundle signature
or the bundle location.

In [9] a similar architecture is proposed that filters the
view a service has on the OSGi service registry. The filtered
view is realized by sending UNREGISTERED events to
those services that are not allowed to use the service. A
service that receives such an event, needs to release the
service, in case it was already using it.

C. Security-as-a-service

In contrast with the previous two approaches, the third
alternative allows to apply flexible, method-level policy
enforcement to any legacy service without requiring
changes to the core OSGi framework. Restricted, trust-
based service access control is achieved by wrapping
all premium services (Figure 2 (right)). The wrapper
intercepts each service method call, and evaluates the
requestor’s identity and applicable XACML policies.
Four security-related services, deployed in the residential
gateway, are involved in the configuration and enforcement
of trust-based service collaboration: the secure Service
LifeCycle (SLC) component, the User Awareness (UA)
component, the Generic Access COntrol Service (GACOS)
component and the Multi Service Provider trust manager.
These components are discussed in the next sections.

Table I compares the three architectural options as a func-
tion of the ability to execute service collaboration policies,
the granularity of the access control mechanism and the
transparency with respect to legacy services and current
OSGi implementations.

The OSGi virtualisation approach follows an isolation
approach that hinders service collaboration across virtual
gateways. To deploy services that require the interaction of
multiple other services, all these service providers should
be deployed in the same virtual gateway. The latter compro-
mises the isolation approach. The embedded security solu-
tion, which extends the OSGi permission model, allows to
define policies that evaluate custom conditions. However, as

no policies can be combined and no variables are supported,
a new custom condition need to be defined and programmed
for each new collaboration scenario, making it a solution
that is not practical. The third architecture, which enforces
policies on method level, is suited to define collaboration
policies that require other services to be executed before a
service is accessed.

With respect to access control granularity, all three so-
lutions allow to restrict access to premium services. In
the first and second architecture, a service only discover
the subset of trusted services. The third architecture allows
service providers to discover all services inside the service
platform. However, stringent policies control if a service can
be invoked or not by another service. This third architecture
also enables a gateway manager to enforce policies on
the level of individual methods of a service, taking into
consideration the parameters of the method call and other
contextual information.

From a deployment perspective, a security solution is re-
quired that runs on current OSGi implementations and which
allows to protect legacy services without the need to modify
these services. The OSGi virtualisation approach meets
both requirements. Legacy services need to be reinstalled
inside a virtual gateway instead of inside the core gateway.
These services might require common services from the core
gateway to be imported into the virtual gateway. The second
architecture requires to ‘hack’ an OSGi implementation
to embed the security measures, and as a consequence is
not OSGi implementation agnostic. Only if the proposed
security functionality would become a mandatory part of the
OSGi specifications, this architecture is worth considering.
The third architecture also supports legacy services and can
be added to any OSGi implementation. However, the legacy
services require a modification at install time. The service
lifecycle component needs to add a policy enforcement
function to each of the service methods. As a result, the third
architecture is transparent for service developers. However,
an automated pre-install process needs to be executed before
a service is protected.

III. DESIGNED ARCHITECTURE DETAILS

Given the flexible, fine-granular policy administration
and the support for trust-based service collaboration, we
have adopted the third architecture–providing security as a
service–to enhance OSGi based home service platforms. In
this section, we elaborate on the requirements and design of
a proof-of-concept implementation.

A. Requirements

We target a security service that on itself can be offered
as a premium service. The service should allow any other
premium service to be protected against access of non-
premium services, to participate in trust-based collaboration
scenarios and allow for context-aware adaption. We assume

that all services are hosted on the residential gateway. The
security service should comply to the following features:

• Realtime authentication and policy enforcement mech-
anism on service method level

• Secure access to context information on active, trusted
users and shared (network) resources

• Flexible policy administration that allows define condi-
tional service collaboration

• Trust management to configure which premium service
providers are trusted

B. Architecture components

We present a modular architecture to realize trust-based
service adaptation in a multi-provider environment. The
modules can be plugged into the intelligent gateway archi-
tecture presented in [10]. As mentioned in section II, the
security-as-a-service architecture consists of four security
related sub-services: SLC, UA, GACOS and MSP.

1) The SLC component manages secure installation of a
service. For each signed service, the following process
applies: (1) Verify the identity of the signer against
a store with certificates of trusted service providers,
(2) add a policy to the policy store that uses local
network information or trusted user credentials, (3)
add a security wrapper to each of the methods of
the service that allows to evaluate applicable policies
before granting access to the service.

2) The UA component has a centralized view on all active
home users, and offers the interface to administer
credentials and policies. Interactions with this com-
ponent allows trust-based user-awareness of services.
The information about active users is retrieved from
user management systems that authenticate users when
they join a home network, or from IP packet inspection
of data packets containing user information. Only
services signed with a trusted certificate can query
the User Awareness component. From the WAN-side,

Hardware

Operating System

Service Platform

Firewall
NAT

RADIUS
DB

802.11 CPU Memory

JVM

Hardware

Operating System

Service Platform

SIP
Proxy

Video
Trans
coder

Custom Services
 Trust-related services

... intelligent
RGW

Remote Management Agent

GACOS Authentication & Authorization

Service
Life

Cycle

TR-069 UPnP

...
User

Awareness

TR-069 UPnP

Multi
Service
Provider

TR-069 UPnP

Credentials
(password,

X.509)
XACMLRADIUS

Figure 3. The intelligent gateway: Trust-related components provide
awareness of active users, available services and available resources.

 ACService

 ACWrapper

 gacos

 PAuthP

PDP

PIP PAP

Credentials

Service
services.

management.
servicelifecycle

Service
+ PEP

IN OUT

invoke
any OSGi

service

BundleSignerLoginModule
X509LoginModule
PasswordLoginModule

 services.management.multiprovider

ServiceProviders

 +setParameterValues()
 +getParameterValues()
 +getTR069Object()

-addServiceProvider()
-removeServiceProvider()
-setExternalVisibility()
-shareService()
-unShareService()
-installService()
-uninstallService()
-isOwnerOfService
-isTrustedSP

 TR-069

<<interface>>
TR069Interface

services.userawareness

services.management.servicelifecycle

PEP

ACService

ServiceRequestor

PDP

PAuthP PIP PAP

Access
Request

Access
Granted

(a)
Authenticate

(b)
getContextInfo

(c)
getPolicies

Service provider Hash of certificate Visible services Symbolic name Location

-VisibilityMap

VisibilityMap

VideoProvider

ConfigProvider

er4rfgvlkfgflklllvm

cgfl3dlk9fmlfdxkb

VideoService

VideoService

VideoServiceV1
VideoServiceV1

http://...
http://...

Figure 4. GACOS policy enforcement

access to the TR-069 User Awareness Manager is
limited to a pre-configured, trusted RMS.
The User Awareness component introduces the con-
cept ‘Trust Circle’. A trust circle groups users and
devices with identical service permissions. Any user
or device can belong to multiple trust circles, and by
default a trust circle ‘home user’ and ‘guest’ is created.
A signed service can find out if a user belongs to any
of the (default) trust circles, and restrict functionality
or adapt service behavior accordingly. Therefore the
following methods are exposed by the User Awareness
component:
• public boolean isTrustedUser(String user, String

trustCircle);
• public boolean isUserOnline(String user);
• public String getIPOfUser(String user);
• public String getUserOfIP(String ip);
• public String getMACOfUser(String user);
• public String getUserOfMAC(String mac);
• public String getTrustCircleOfUser(String user);

By invoking these methods as part of the evaluation of
a policy, user-aware service adaptation can be realised.

3) The GACOS component is the core security com-
ponent that (1) performs authentication, (2) gathers
contextual information on network, user preferences
and user accounts, (3) retrieves matching policies and
(4) evaluates if a calling party should get access to the
targeted service. The GACOS implementation is based
on SUN’s libraries for XACML [11]. The evaluation of
an access request involves the following components:
A Policy Enforcement Point (PEP), an Access Control
Service (ACService), a Policy Decision Point (PDP), a
Policy Authentication Point (PAuthP), a Policy Infor-
mation Point (PIP) and a Policy Administration Point
(PAP). Figure 4 illustrates the component interactions.
Each of the GACOS components has a well-defined
responsibility:
• PEP: guards access to a set of resources and asks

the ACService to make an authorization decision
considering the origin of the subject of the request.

• ACService: is the discoverable service that acts

as a facade to a PEP, and forwards the access
requests to a PDP.

• PDP: makes the authorization decision using in-
formation from PAuthP, PIP and PAP.

• PAuthP: screens the credentials of the subject,
finds a proper authentication module and evaluates
the authenticity of the subject.

• PIP: adds environment information to the
XACML request upon request of the PDP.

• PAP: manages the persistence of XACML poli-
cies.

For the implementation of the PAuthP service, we
use the Java Authentication and Authorization Service
(JAAS) libraries that offer a framework for pluggable
authentication modules (PAM). This framework of-
fers a number of default login modules such as the
LdapLoginModule and Krb5LoginModule to authen-
ticate subjects respectively using LDAP and Kerberos.
In the scope of a multi-service OSGi platform, we have
added a BundleLocationLoginModule, a custom Pass-
wordLoginModule and a X509KeyStoreLoginModule
to authenticate respectively OSGi services and end-
users or service providers. The BundleLocationLogin-
Module module verifies the installation location of a
service against a list of trusted locations. For this veri-
fication, we use the BundleLocationPermission defined
in release 4 of the OSGi specifications. The Password
Loginmodule allows to verify (username, password)
pairs, and the X509KeyStoreLoginModule verifies if
the supplied X.509 certificate is signed with the private
key of a CA known in the keystore.

4) The MSP component offers the interface for re-
mote management of trust relations between premium
service providers as well as for remote updates of
service collaboration policies. The management as-
pects are discussed in the section IV.

C. Key scenarios

The aforementioned, security components enable a num-
ber of trust-related scenarios that are key for premium
service providers. We elaborate on three scenarios and
describe which components are involved.

• Transparent service authentication: To enforce ac-
cess decisions based on the identity of the requesting
service, the ACService needs to receive the credentials
of that service from the PEP. However, this should
not require service providers to change their method
signatures to include these credentials as additional
parameters in their service requests. As a consequence,
the PEP itself should be able to transparently extract
the identity of the calling service. This way of trans-
parent service authentication is achieved by querying
the stacktrace information to retrieve the class name of
the calling bundle. From the class name, we query the

bundle context to retrieve the signature from the bundle.
With these data, a subject with a bundle credential can
be created and passed to the ACService.

• Trust-based service collaboration policies: The
GACOS component uses the XACML policy language
to express trust-based policies. As an example, we
consider a SIP Proxy service which only allows home
users to access the PSTN network, thus blocking
untrusted users. We therefore extended the XACML
default functions with an external function that is able
to invoke any OSGi service specified. Using this custom
XACML function, named use − osgi − service −
with − argument, we are able to express policies
that interact with the User Awareness component. The
XACML snipplet below illustrates how we configured
a SIP proxy service to block non-trusted users call-
ing to the PSTN network by invoking the method
getTrustCircleOfUser of the UA component.
<Rule RuleId="PSTNaccess" Effect="Permit">

<Description>Only home users are allowed to call
to the PSTN network (block guests)</Description>

<Condition>
<Apply FunctionId="urn:oasis:function:string-equal">
<Apply FunctionId="use-osgi-service-with-argument">
<AttributeValue>services.user.UserAwarenessManager</>
<AttributeValue>UserAwarenessManager</AttributeValue>
<AttributeValue>getTrustCircleOfUser</AttributeValue>

<SubjectAttribute ... AttributeId="sip_subject-id">
</SubjectAttributeDesignator>
</Apply>
<AttributeValue>homeuser</AttributeValue>
</Apply>
</Condition>

</Rule>

The XACML condition is expressed as a nested func-
tion: the outer function is a string equation and the
inner function queries the User Awareness component.
If the trust circle of the SIP user equals ‘home user’
then the effect of the policy is to permit the INVITE
SIP message to be forwarded to the SIP-PSTN gateway.
Similary, an XACML condition can also verify signa-
tures against an X.509 certificate, or integrate with any
other credential data store.

• Support for legacy services: We support protection of
any legacy service through the AccessControlWrapper
component that allows to add a Policy Enforcement
Point to any OSGi service. The Service LifeCycle
component, which manages the installation of a service
into the service platform, is extended with a method
that invokes the AccessControlWrapper module of the
GACOS component. This wrapper generates a new
service implementation that invokes ACService before
every functional call to the original service implemen-
tation. This new service implementation is added to
the Activator class of the service, which is at runtime

recompiled to add these minor changes. A reference to
the new service implementation is added to the OSGi
registry instead of a reference to the unprotected service
implementation.

IV. MANAGING TRUST-BASED COLLABORATION AND
ADAPTATION

To participate in adaptive service collaboration scenar-
ios, a policy enforcement wrapper is needed around each
premium service, and policies and credentials need to be
configured to define trust relations and service behavior. The
Multi Service Provider (MSP) component covers this remote
configuration of trusted providers and flexible policies.

We propose a three-step, remote configuration process: (1)
Add a signed certificate of the involved service providers to
a key store, (2) configure in a VisibilityMap which service
providers are allowed to manage which service, (3) add
trust-based method-level access restriction. The following
methods, provided by the MSP component, are accessible
from the WAN through the SOAP-based TR-069 manage-
ment protocol:

• addServiceProvider: This method takes a signed X.509
certificate as input, and stores this certificate in the cer-
tificate store using the UA component of the gateway.

• setExternalVisibility: This method takes a service and a
service provider as input, and updates the VisibilityMap
to allow the service to be managed by the given service
provider.

• shareService: This method takes as input parameters
the certificate from two service providers (the service
owner and the configuration provider), and the resource
and an action to be protected. After verifying the signa-
tures of the signed certificates, the origin of the resource
is verified against the service provider that claims to
be the service owner. Finally, the XACML policies
are added to allow all services from the configuration
provider, to access the given resource and action.

• installService: This method allows to install a protected
service. During installation a PEP is added, the Visibil-
ityMap is updated to allow the owning service provider
to configure his service, and the policies are updated to
allow the service to use the GACOS component.

Figure 5 depicts Service Provider A which configures a
trust relation with another service provider. Firstly, service
provider A exchanges its credentials during a two-way
SSL handshake with the main TR-069 Management Agent
that forwards the configuration messages to the TR-069
MSP component. A Policy Enforcement Point around the
MSP component verifies if service provider A should get
access to the User Awareness component that has a central
view on all users, credentials and policies. In each of the
three configuration steps, security-related data is persisted,
respectively in a certificate keystore, the VisibilityMap–this
map defines which service provider may configure which

Home Gateway

TR-069
MSP

X.509
Store

Visibility
Map

XACML
Policies

1b 2b 3b

1a
2a

3a

UA

Remote
Credential and Policy

Administration

Service Provider A

Management
Services A

Service A1

Service A2

Service B1

Service B2

Service A31

Trust Verification and
Policy Enforcement

Service
Provider A

Service
Provider B

Trust-based delegation
of remote management

from provider A to provider B
(configured in the VisibilityMap)

XACML-based
Adaptive and Collaborative

Service Policies

GACOS

User Awareness

Other (contextual) services

A

2
B

C
VisibilityMap XACML

Trust Credentials

Figure 5. Three-step trust and policy configuration

services–and an XACML policy store to hold the service
behavior policies. As an example, service provider A may
allow service provider B to configure and use the services
from Service Provider A. The initial trust with Service
Provider A should be manually configured by a home user,
or could be added by the trusted internet access provider
that operates the connectivity with the gateway.

Figure 6 illustrates the realtime trust verification and
policy enforcement process, performed by the GACOS com-
ponent. GACOS is involved in:

• remote configuration to verify if Service Provider B is
allowed to access the Management Service of Service
Provider (left side). The VisibilityMap is queried to
identify trusted service providers.

• trust-based policy enforcement of service A3 trying
to access service B2 (right side). Depending on the
XACML policy added in the third step of the remote
configuration, the GACOS component may invoke the
User Awareness component, or any other (contextual)
services, to verify if the requesting services is trusted.
In case the context information does not match with the
policy, access to service B2 is denied, or some of the
service parameters are changed. This allows to config-
ure a collaboration scenario where a service first verifies
the delay in the home network, and subsequently adapts
the voice codec to be used in a SIP conversation.

V. PERFORMANCE EVALUATION

In section II, we have compared three alternative security
architectures—OSGi virtualisation, OSGi embedded secu-
rity and security-as-a-service—from a functional point of
view. We motivated the selection of the third option which
allows for flexible, fine-grained access control on method
level. However, from a performance point of view the third
architecture is the only one that introduces a performance
overhead on the level of a service call. Additionally, the
requirement of transparent service authentication requires a
PEP to query the stack trace, which consumes additional
time. In this section, we therefore evaluate the performance
overhead of transparent service authentication and three
different approaches to administer XACML policies.

A. Evaluation setup

The test setup consists of an OSGi service platform from
Knopflerfish, installed on a desktop PC with a 2.4Ghz
processor. All trust-related components are added during
startup of the platform: SLC, UA, GACOS and MSP. For
test purposes we developed a MovieService that offers
the method getMostPopularMovie to a test client. This
service returns a string value with the name of a popular
movie, and is not protected. Depending on the test, we will
add another security wrapper to the service and measure the
performance overhead of authentication the requestor and
evaluating the collaboration or adaptation policies.

B. Evaluation results

We evaluate the performance overhead of transparent
service authentication and three different ways of managing
complex collaboration policies.

During transparent service authentication, the requesting
service is identified by querying the stack trace to retrieve
the class name, and the OSGi bundle context to gather
the bundle credentials (trusted location or signed X.509
certificate). This method of grabbing subject credentials
introduces a performance overhead. Through a performance
test, we would like to compare this overhead to traditional
authentication of passwords or signed certificates.

In a first test, we deploy the MovieService without a PEP.
In a second test, a PEP is added to the MovieService that
transparently adds the bundle credentials. In a third test, the
signature of the getMostPopularMovie method is extended
by the AccessControlWrapper to include a username and
password, or X.509 certificate, in the service request. The
tests are performed on a desktop computer with an AMD
2.4Ghz processor.

Figure 7 shows a response time of 1.8 ms to execute
the MovieService without authentication. The second bar
in the graph shows an execution time of 5.1 ms in case
authentication is performed using an empty login module.

Home Gateway

TR-069
MSP

X509
Store

Visibility
Map

XACML
Policies

1b 2b 3b

1a
2a

3a

UA

Remote
Credential and Policy

Administration

Service Provider A

Management
Services A

Service A1

Service A2

Service B1

Service B2

Service A31

Trust Verification and
Policy Enforcement

Service
Provider A

Service
Provider B

Trust-based delegation
of remote management

from provider A to provider B
(configured in the VisibilityMap)

XACML-based
Adaptive and Collaborative

Service Policies

GACOS

User Awareness

Other (contextual) services

A

2
B

C
VisibilityMap XACML

Trust Credentials

Figure 6. Realtime trust verification and policy enforcement during remote
configuration (left side) and service collaboration (right side)

No auth. Dummy auth. Passw. Auth. X.509 Auth. Bundle Auth.
0

1

2

3

4

5

6

7

8

9
Authentication performance overhead

R
es

po
ns

e
tim

e
[m

s]

Figure 7. Performance overhead of transparent OSGi service authentication
compared to default password and X.509 authentication

The overhead of the PAM framework is thus 3.3 ms. The
next three bars show the service execution time for respec-
tively password, X.509 and bundle authentication. With a
total execution time of 7.1 ms for bundle authentication and
8.2 ms and 8.4 ms for password and X.509 signature au-
thentication, the performance overhead of transparent bundle
authentication is limited to 2 ms (compared to 3.1 ms and
3.3 ms to verify a password and a signature).

The GACOS component leaves the remote management
provider three choices to maintain complex policy files:

• use default XACML functions
• use the custom XACML function that executes a single

OSGi service that holds the complete policy
• combine multiple custom XACML functions, each ex-

ecuting an OSGi service that hold a subpolicy
From a functional point of view, the first option allows

to keep all the logic inside the policy file, whereas in the
second and third option the policy details are hidden in
OSGi services. However, the first option is less flexible as it
requires adaptations to the GACOS components every time
an additional environment variable is needed to describe
a policy. While the third option allows re-use of subpoli-
cies, the second option offers the advantage of changing a
policy at a single location. Another criterion that remote
management providers might consider, in choosing one of
the three approaches to maintain policies, is the performance
overhead.

The performance test consists of a test client contacting
the MovieService, which has an access policy that consists
of multiple conditions. These conditions are string equations
using the service name as parameter. The conditions are
logically combined with the OR-relation. The number of
conditions is increased from 10 to 100. The policy is
implemented using default XACML functions, using a single
OSGi service with the complete policy, and using a policy
that repeatedly invokes a unitary OSGi service to evaluate
the string equation.

Figure 8 shows the performance results. Expressing a pol-
icy using default XACML functions or using a single OSGi
service performs equally. Evaluating 100 rules also shows a
similar performance compared to evaluating 10 rules. The
third alternative approach, which repeatedly invokes a basic
OSGi service, however has a dependence on the number of
conditions. The performance degradation is a result of the
performance overhead of the UseOsgiServiceWithArgument
class. For every call to an OSGi service, the OSGi service
registry is queried and a method call is constructed from the
parameters supplied in the policy.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

Number of conditions

R
es

po
ns

e
tim

e
[m

s]

Performance evaluation of policy aggregation strategies

Default XACML
One OSGi service per condition
One aggregated OSGi service

Figure 8. Performance overhead of three policy administration approaches

VI. CONCLUSIONS

In this paper we have compared three alternative ar-
chitectures to create a trusted home service environment:
OSGi virtualisation, embedded security and security as a
service. Only the latter supports fine-grained access control
on method level and parameter level, and allows to define
policies to orchestrate services from other service providers.
As a result, access to a service can be made dependent
on services that check network conditions, contextual (user)
information or any other (legacy) service. From a perfor-
mance point of view, security as a service introduces an
overhead on method level. In a proof-of-concept, we have
evaluated the overhead of transparent service authentication,
which proved to be less than the performance overhead
for password and certificate signature verification. We have
also compared different approaches to configure trust-based
policies. Policies with default XACML rules and policies
that implement all rules in a single OSGi service, show equal
performance. Policies that refer for each rule to a separate
OSGi service, show a performance with degrades fast for
an increasing number of rules. However, the latter allows
for modular, re-usable policy administration. We have also
defined a remote interface that enables a service provider to

delegate the management of a specific service to a trusted
service provider.

With flexible trust management and fine-grained access
control, the presented security components allow premium
service providers to aggregate only trusted services. Hence,
premium service providers can differentiate with low-cost
service providers by remotely configuring secure collabora-
tion of trusted, value-added services.

ACKNOWLEDGMENT

C. Develder is supported by the Research Foundation –
Flanders (FWO–Vl.) as a postdoctoral fellow.

REFERENCES

[1] Y. Royon and S. Frenot, “Multiservice home gateways: busi-
ness model, execution environment, management infrastruc-
ture,” Communications Magazine, IEEE, vol. 45, no. 10, pp.
122–128, October 2007.

[2] C. Wu, C. Liao, and L. Fu, “Service-oriented smart home ar-
chitecture based on osgi and mobile agent technology,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 37, pp.
193–205, 2007.

[3] D. Zhang, H. Lee, and X. Ni, “A new service delivery
and provisioning architecture for home appliances,” IEEE
International Conference on Consumer Electronics, vol. 40,
pp. 378–379, 2003.

[4] D. Kang, “Upnp av architectural multimedia system with a
home gateway powered by the osgi platform,” IEEE transac-
tions on consumer electronics, vol. 51, pp. 87–93, 2005.

[5] OSGi Alliance, “Osgi server platform release 4,” 2005.

[6] Universal Plug and Play Forum, “http:// www.upnp.org/.”

[7] B. Yoon-Hak, “Nom 2.0: innovative network operations and
management for business agility,” Communications Magazine,
IEEE, vol. 46, pp. 10–16, 2008.

[8] Universal Plug and Play Forum, “Upnp device architecture
v1.0. 2002, http:// www.upnp.org/.”

[9] N. Goeminne, G. De Jans, F. De Turck, B. Dhoedt, and
F. Gielen, “Service policy enhancements for the osgi service
platform,” Proceedings of the 9th International Component-
Based Software Engineering Symposium, 2006.

[10] W. Haerick, N. Goeminne, K. Cauwel, G. De Jans,
F. De Turck, B. Dhoedt, P. Demeester, S. Bracke, W. Acke,
and C. Bouchat, “Success in home service deployment: Zero-
touch or chaos?” Journal of the communications network,
vol. 4, no. Part 3, pp. 36–43, jul-sep 2005.

[11] “Sun’s xacml implementation,”
http://sunxacml.sourceforge.net/.

