T Universiteit Gent
== Faculteit Ingenieurswetenschappen
UNI(\QERNSTITE” Vakgroep Informatietechnologie

Architecturen en algoritmen voor netwerk- en
dienstbewust Grid-resourcebeheer

Architectures and Algorithms for Network and Service Aware
Grid Resource Management

Bruno Volckaert

Proefschrift tot het bekomen van de graad van
ff;\\\ Doctor in de Ingenieurswetenschappen:
Computerwetenschappen
Academiejaar 2005-2006

Z
-
m
@)

Universiteit Gent
== Faculteit Ingenieurswetenschappen

UNIVERSITEIT i i
GENT Vakgroep Informatietechnologie

Promotoren: Prof. Dr. Ir. Bart Dhoedt
Prof. Dr. Ir. Filip De Turck

Universiteit Gent
Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie
Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgi

Tel.: +32-9-331.49.00
Fax.: +32-9-331.48.99

Dit werk kwam tot stand in het kader van een specialisatiebgan het IWT-
Vlaanderen (Instituut voor de aanmoediging van InnovatierdVetenschap en
Technologie in Vlaanderen).

Proefschrift tot het behalen van de graad van
ff;\\\ Doctor in de Ingenieurswetenschappen:
Computerwetenschappen
Academiejaar 2005-2006

Z
-
m
@)

Dankwoord

Plots is het er dan, het beginnen schrijven aan je doctohasats, de samenvat-
ting van 4 jaar doctoraatsonderzoek, eindstation van eegelan boeiende reis
in zicht. De trein was nochtans traag op gang gekomen: hedrkem in je on-
derwerp vraagt veel opzoek- en leeswerk, waarbij je voaebkhf van het koren
moet proberen scheiden. Eens dit stadium voorbij, en nadietlen van een spe-
cialisatiebeurs, hadden we al een beter zicht op wat “Gnsgigenlijk waren
en hoe ver het onderzoek naar deze nieuwe vorm van gedestrithel verwerking
gevorderd was. Kort daarop begonnen we te werken aan onee ieigreng en,
ook al begaven we ons af en toe enkele dagen op een verkeeyd apgauw
waren we niet meer te stoppen.

Tijdens deze boeiende en leerrijke periode kwam ik vanzedfend ook in
contact met tal van mensen die onontbeerlijk waren bij hiestend komen van
dit werk. Bij deze wil ik die mensen dan ook eens in de bloeesetptten, en hun
bedanken voor de steun en het vertrouwen dat ze in me steltlgst en vooral
wil ik prof. Paul Lagasse bedanken voor het gebruik mogenemalan de uit-
gebreide faciliteiten van onze vakgroep. Verder wil ik ookfp Piet Demeester,
prof. Bart Dhoedt, prof. Filip De Turck en dr. Stefaan Vartehbedanken om
me de kans te geven doctoraatsonderzoek uit te voeren, eb@diies tijdens
de vele brainstorm sessies en de bijbehorende begeleRier Thysebaert ver-
dient zeker ook een uitgebreid woord van dank, eerst en oandat veel van
ons onderzoeks-, programmeer- en schrijfwerk in nauwe samrking verricht
is, maar ook voor de vlotte, aanvullende en behulpzame muamiarop dit alles
plaatsvond. Naast Pieter waren ook Marc De Leenheer en Tintéiavan belang
bij het produceren van onderzoeksresultaten en het regigem papers, alsook
onze partners in “Grid-crime”: Maria Chtepen en Jurgen Basfijn oprechte
dank gaat bovendien uit naar het Instituut voor aanmoegligim Innovatie door
Wetenschap en Technologie in Vlaanderen (IWT) voor de figd@ateun die ik
gedurende 4 jaar mocht ontvangen.

Geen werk zonder administratie, en daarbij is onze vakgroexcellente han-
den: Martine Buysse, llse Van Royen, Davinia Stevens, Karfdemelsoen, llse
Meersman, Marleen Van Duyse en Bernadette Becue zijn maatesvan de per-
sonen waar ik regelmatig wel eens bij terechtkwam met vragenent onkosten-
nota’s, reisaanvragen, buitenlijnen en dergelijke meegeiengeduld moeten ze

gehad hebben, toen ik nog maar eens mijn personeelsnumeteemnigvond, of
voor de zoveelste keer de fax niet kon laten doen wat ik hetlatem doen (in dit
geval faxen).

Ook de mensen die verantwoordelijk zijn voor het goed fumaien en on-
derhouden van ons computerpark en netwerk verdienen eemkjed Niet in
de minste plaats dr. Brecht Vermeulen, Bert De Vuyst, Pagaatieputte en
(in het geval van onze Gridinfrastructuur) Stijn De Smet.nkdj hen waren er
nooit grote oponthouden toen hardware en/of software sanetmle occasionele
stroompanne alweer eens voor problemen zorgde. Dag enkwacfe wel bij een
van hen terecht voor een “quick fix”".

Verder wil ik ook van de gelegenheid gebruik maken om eens inireau-
genoten in de spreekwoordelijke verf zetten: dr. Erik Vaeuegem, Liesbeth
Peters, Sofie Verbrugge, Filip De Greve, Thomas Bouve, Nioen@nne, Tom
Verdickt, Jurgen Baert en onze nieuwste aanwinst: Stefa@igaesschalck. In de
eerste plaats wil ik dit doen omdat ze altijd te vinden wam@oreen ontspannende
en leuke babbel terwijl ik hen van mijn kant nochtans ted#enet onregelmatige
aanwezigheidsuren en een nogal onstuimig ventilerendeagepc.

De boog kan niet altijd gespannen zijn, dus met enige regehmas er ook wel
tijd voor wat ontspanning. Daarbij wil ik zeker mijn badrmontrienden een pluim
geven: prof. Bart Dhoedt, Koert Vlaeminck, dr. Chris Deg|dl'hijs Lambrecht
en de vele freelancers die af en toe meespeelden. Meer daiblegan we stevig
nakaarten, waarna we de volgende dag (meestal) weer frideaaftrap van onze
onderzoeksactiviteiten stonden. Dr. Steven Van den Bezgltgofie Van Hoecke
verdienen hierbij zeker ook een vermelding als regelmatfgpartners en aan-
brengers van werktips en levenswijsheden. In dit kaderkwildk enkele andere
dichte vrienden en prettig gestoorde uitgaansmedeiehtimet name Kristof
Van Landschoot, Nico Bataillie, Matthias Heyneman en MigleeBruyckere be-
danken voor de vele toffe avonden in Gent en sinds kort ook/érdennen van
Maldegem. Ook m’n vriendin Sarah zou ik bij deze willen bddamvoor de vele
plezante jaren samen.

Als slot zou ik graag nog mijn familie extra willen bedankeyov de vele hulp
en onvoorwaardelijke steun die ik reeds al die jaren mogéraogen heb, en waar
ik in goede en kwade tijden steeds bij terecht kon. Zondé&ejambu ik niet staan
waar ik vandaag sta.

Hoogstwaarschijnlijk heb ik in dit dankwoord nog vele mansergeten ver-
melden, en daarom wil ik ook u, als lezer, bedanken voor @gésse in m’'n werk.

Gent, maart 2006
Bruno Volckaert

Table of Contents
Dankwoord i
Nederlandse samenvatting XXi
Referentieso XXV
English summary XXV
References XXVili
1 Introduction 1-1
1.1 Anintroductionto Grid computing 11-
1.2 Problemstatement, 1-4
1.3 Mainresearch contributions 1-5
1.4 Outline 1-6
1.5 Publications 1-6
1.5.1 Publications ininternational journals 1-
1.5.2 Chapters ininternational publications 1-7
1.5.3 Publications in international conferences 1-7
1.5.4 Publications in national conferences -101
References 1-11
2 Grid Monitoring 2-1
2.1 Introduction 2-1
2.2 Relatedwork 2-2
2.3 Information & Monitoring Framework components 2-4
231 Sensor. e 2-4
2.3.2 Producer 2-6
2.3.3 Directoryservice 2-7
234 CONSUMEr i i it e e e e e e 2-7
2.3.5 Monitoringservice 0 e 2-8
2.3.6 Informationservice, 2-8
2.4 Technology analysis and implementation. 2-10
25 Results. 2-16
251 Testhedsetup L. 2-16
252 Metrics 2-18
2.5.3 Information and Monitoring Service 2-1

2.5.4 Producerintrusiveness 2-19

2,55 Producerscalability L. 2-20
2.5.6 Directory Service Scalability 2-2

26 Conclusions 2-22

References 2-25
Grid Simulation 3-1
3.1 Introduction 3-1

3.2 Related Gridsimulators 3-3

3.3 NSGrid simulation framework 3-5

3.3.1 NSGrid architecture 3-5
332 Gridmodel 3-8

333 Jobmodel 3-8

3.34 Clientmodel 3-11

3.35 Resourcemodels 3-12

3.3.5.1 Computational resource model 3-12

3.3.5.2 Storageresourcemodel 3-13

3.3.5.3 Dataresourcemodel 3-14

3.3.5.4 Networkresourcemodel. 3-14

3.3.6 Managementcomponents 3-15

3.3.6.1 Informationservice 3-15

3.3.6.2 Replicamanager 3-17

3.3.6.3 Connectionmanager 3-18

3.3.6.4 Servicemanager 3-20

3.3.6.,5 Servicemonitor 3-21

3.3.6.6 Gridscheduler 3-21

3.3.7 Dynamicresourcemodel 3-24

3.3.7.1 Resourcefailures 3-24

3.3.7.2 Resource unavailability 3-24

3.3.8 NSGridoperation. 3-24

3.4 Scheduling strategies 3-25

3.5 Scheduling algorithms 3-28

3.5.1 Networkunaware 3-29

3.5.2 Networkaware 3-31

3.5.3 Resource locality preference 3-35

3.54 Minimumhopcount. 3-36

355 Serviceaware 3-36

3.6 Simulationresults o 3-37

3.6.1 Simulation environment 3-37

3.6.2 Simulatedtopology oL 3-37

3.6.21 Jobparameters. 3-37

3.6.2.2 Resourcedimensions 3-38

3.6.3 Averagejobresponsetime 3-39

3.6.4 Computational resource idletime 3-40

3.6.5 Influence of sequential data processing 41 3-

3.6.6 Influence of capacitated VPNs 3-41
3.7 Othersimulations 3-42
3.8 Conclusions 3-43
References 3-44
Grid Service Management 4-1
4.1 Introduction 4-1
4.2 Relatedwork 4-3
4.3 Service managementconcept 4-4
4.3.1 Resource-to-service partitioning -4 4
4.3.2 NSGrid implementation 4-6
4.3.2.1 Servicemonitor 4-6
43.2.2 Servicemanager 4-9
4.3.2.3 Information service 4-11
4.4 Partitioning strategies 12-
4.4.1 Genetic Algorithm heuristics 4-13
4411 Local Service CR partitioning 4-14
4.4.1.2 Global Service CR partitioning 4-17
4.4.1.3 Input Data Locality Penalization 4-18
4.4.1.4 Network partitioning 4-19
4.5 Performanceevaluation 4-21
451 Resourcesetup 4-21
452 Jobparameters 4-22
4.5.3 GA-partitioning performance. 4-24
454 Jobresponsetime. 4-25
455 Resourceefficiency oL 4-26
456 Scheduling, 4-28
4.5.7 Priority - service class QoS support L. 84-2
46 Conclusions 4-29
References 4-31
Media Grids 5-1
5.1 Introduction 5-1
5.2 Relatedwork 5-3
5.3 MediaGrid architecture L oL 5-4
5.3.1 MicroGrid 5-4
5.3.2 MacroGrid 5-5
5.4 Audiovisual application/user/company profiles. 5-7
5.4.1 Applicationprofiles. 0 oL 5-7
5.4.2 Userprofiles 5-8
543 Companyprofiles. 5-10
5.5 MediaGrid simulation 5-11
55.1 Usermodel 5-13
5.5.2 MediaNSGoperation 5-13

5.6 Simulationresults 5-15

vi

5.6.1 MicroGridtopology 5-17
5.6.2 MacroGridresourcesharing 5-17
5.6.3 Network aware versus network unaware scheduling . 5-20
5.6.4 Resourceefficiency 5-20
5.7 Conclusions 5-21
References 5-22
Overall Conclusion 6-1
Grid Computing: The Next Network Challenge! A-1
A.1 Theconceptof Gridcomputing A-2
A.1.1 Historical background A-2
A.1.2 What's in a name: Grid computing or cluster computing®-2
A.1.3 No one-size-fits-all: different Grid systems for difént
applicationareas A-3
A.1.4 Grid standardization A-4
A2 TheGridtoday, A-5
A.2.1 Generic Grid management architecture A-5
A.2.2 Glueing Grid resources: Grid middleware systems . .A-5
A.3 Grid applications: casestudies -6 A
A.3.1 Cycle ScavengingGrids A-6
A.3.2 Dedicated scientific computing and data Grids -7 A
A3.3 ServiceGrids Lo A-7
A.3.4 Grid services meetweb services A-7
A4 NewGridtrends A-8
A.4.1 Emergence of new applications A-8
A.4.2 Telecom oriented Grid management A-9
A5 Grid networkimportance o oL A-10
A.5.1 Network aware Grid scheduling A-10
A.5.2 Management and control in the optical transport layer A-12
A6 Conclusions A-13
References A-13
Application-specific hints in reconfigurable Grid schedulng algorithmsB-1

B.1 Introduction B-2
B.2 Relatedwork B-3
B.3 Simulationmodel o B-4
B.3.1 Gridmodel B-4
B.3.2 Gridresourcemodels B-4
B.3.3 Jobmodel B-4
B.3.4 Schedulinghintsmodel B-5
B.4 Algorithms B-6
B.4.1 Algorithm “NoNetwork” B-6
B.4.2 Algorithm “PreferLocal” B-6

B.4.3 Algorithm “Service” oL B-7

Vii

B.5 Simulationresults L B-7
B.5.1 SimulatedGrid B-7
B.5.2 Simulatedjobs, B-7
B.5.3 Per-classresponsetimes B-8
B.5.4 Response times with varying class representation . . .B-8

B.6 Conclusions B-10

References B-10

Network Aware Scheduling in Grids C-1

C.1 Introduction C-2

C.2 Gridmodel C-3
C.2.1 GridresourCes v v v v vt C-3
C.22 Jobs e C-3

C.3 Scheduling algorithms C-4
C3.1 ILP . . . e C-4
C.3.2 Heuristics e C-6

C.3.2.1 NetworkUnaware C-6
C.3.2.2 NetworkAware C-6
C.3.2.3 MinimumHopCount C-7
C.3.2.4 Service differentiation C-7

C.4 Simulationresults Cc-7
C.4.1 Simulatedtopology C-7
C4.2 Gridjobs C-8
C43 Results C-8

C.4.3.1 Bandwidthofcorenetwork C-8
C.4.3.2 ParametersofILP C-9
C.4.3.3 Turnaroundtime C-10
C.4.3.4 Network utilization C-10
C.5 Conclusions e C-10

References C-11

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

List of Figures

Global Gridcomputing oL 1-2
Gridtaxonomy 1-4
Grid Monitoring Architecture overview 2-3
Information & Monitoring Framework components 2-4
SENSOr 2-6
Producerandconsumer 2-7
Directory service e 2-8
Monitoring and information service -92
Resource query message passingorder -10 2
Sample LDAP directory service informationtree 2-13
Directory service managementGUI 32-1
Realtime consumer GUI 2-15
HTML output for measurements 2-17
Testbedtopology 2-18
Producer vs. MDS GRIS vs. WS-IS network intrusiveness . . .2-20
Producer vs. MDS GRIS vs. WS-IS cpu intrusiveness 2:21
Producer vs. MDS GRIS vs. WS-IS throughput 212-
Producer vs. MDS GRIS vs. WS-IS response times =22 2
Directory Service vs. MDS GIIS throughput 2-23
Directory Service vs. MDS GIIS response times2-23
NSGrid Tcl/C++ dual layered architecture 3-5
NSGrid implementation architecture 3:7
Gridmodel 3-9
Non-blocking job, simultaneous transfer and execution. . . . 3-10
Non-blocking job, pre-staged inputdata 3-10
Sample multi-service clientworkflow :18
Computational resource processor allocation 3-13
Network model 3-15
Computational resource failure -253
Computational resource unavailability 325
NSGrid Tcl input file generation 28-
NSGridoutputGUI 3-27

Job blocking on lastinputblock 23B-

3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
411
412
4.13
414

51
5.2
5.3
5.4
55
5.6
5.7

5.8
5.9
5.10
511

Al
A2
A3
A4
A5

B.1

Network unaware scheduling 13-3
Network aware scheduling 3-34
Simulated Gridtopology 3-38
Job response time: parallel /O L. -393
CR allocations: idletime 3-4
Job response time: pre-staged input L. 3:41
Job response time: upfront VPN reservations3-42
Standard Grid 4-6
VPG partitioned Grid o 4-7
VPG partitioningmessages 4-8
Grid example - no resource-to-service partitioning 4-13
Grid example - local service CR partitioning 4-17
Grid example - global service CR partitioning 4-19
Grid example - global service CR patrtitioning IDLP 4-21
Grid example - Global service CR partitioning IDLP witktwork
partitioning 4-22
Simulated multi-site Grid topology 4:23
GA solution calculationtime 28-
GA optimal fitnesstrend 4-25
Job response times for GA-based partitioning heosisti. 4-27
Network resource efficiency -2
VPG service class priority support 4-29
Typical MicroGrid scenario 5-4
Physical MacroGrid 5-6
Logical MacroGrid 5-6
Task workflow of typical audiovisual company user classe . . 5-11
MediaNSGfrontend 5-14
MicroGrid topologies o 5-16
Influence of topology on average job response time - mtaware
scheduling L 5-16
Simulated MacroGridtopology 5-1
Influence of MacroGrid resource sharing on avg. job naspdime 5-18
Network unaware vs. network aware scheduling5-19
Computational resource blocking times 5-20
Global computingGrid o A-3
Gridtaxonomy A-4
Generic Grid management architecture A-6
Average network link utilization -
Average turnaround time for data jobs and cpu jobsA-11
Simulated job lifespan with indication of start-of-l&ents; non-

blockingjob B-5

Xi

B.2
B.3
B.4

Cl1
C.2
C3
C4
C5
C.6

Simulatedtopologyo B-8
Average jobresponsetime B-9
NoNetwork, PreferLocal and Service schedule perfogaan. . . B-9
General overview of scheduling algorithm c-4
Simulated topology C-8
ILP jobthroughput C-9
ILP utilizationof coresites LC-
Average job turnaroundtimes @c-1
Weighted average hopcount C-11

2.1
2.2

3.1
3.2

4.1
4.2

51
5.2
5.3

Al
A2

B.1

Cl

List of Tables

Communication technologies 12-1
Testbed componentsetup L. 2-18
Grid simulator characteristics 3:5
Relevantjob properties 3-38
Sample Grid site properties L .. #4-1
Relevant service class properties 4-24
Typical audiovisual application requirements 5-9
Network and storage requirements of typical audiotvisteeams . 5-10
Audiovisual company typical user class representation 5-12
Gridcasestudies A-7
New Grid trends and requirements A-9
Simulated jobclasses, B-8

Job properties C-8

List of Acronyms

A

ACE Adaptive Communication Environment
ASAP As Soon As Possible

C

CDR Common Data Representation

CM Connection Manager

CORBA Common Object Request Broker Architecture
CR Computational Resource

D

DIT Directory Information Tree

DN Distinguished Name

DR Data Resource

E

EGEE Enabling Grids for E-Science in Europe
F

FCES First Come First Served

XVi

GA Genetic Algorithm

GGF Global Grid Forum

GlIS Grid Information Index Server
GMA Grid Monitoring Architecture

GRIS Grid Resource Information Service
GS Grid Scheduler

GUI Graphical User Interface

H

HTTP HyperText Transfer Protocol

I

IAT Inter Arrival Time

ILP Integer Linear Program

P Internet Protocol

IS Information Service

ISP Internet Service Provider

J

JAMM Java Agents for Monitoring and Management
L

LAN Local Area Network

LCG LHC Computing Grid

LDAP Lightweight Directory Access Protocol

LHC Large Hadron Collider

Xvii

MAN
MDS
MPLS

NWS

OGSA
OGSl

QoS

R-GMA
RM
RTT

SM
SMON
SOAP
SQL

Medium Area Network
Globus Monitoring and Discovery Service
MultiProtocol Label Switching

Network Weather Service

Open Grid Services Architecture
Open Grid Services Infrastructure

Quality of Service

Relational Grid Monitoring Architecture
Replica Manager
Round Trip Time

Service Manager

Service Monitor

Simple Object Access Protocol
Standard Query Language

xviii

SR

TCP
TIO
TPM

UbP

VO
VPG
VPN

WAN

WS-IS
WSDL
WSRF

XML

Storage Resource

Transport Control Protocol
Tivoli Intelligent Orchestrator
Tivoli Provisioning Manager

User Datagram Protocol

Virtual Organisation
Virtual Private Grid
Virtual Private Network

Wide Area Network

Web Service Information Service
Web Service Description Language
Web Service Resource Framework

eXtensible Markup Language

Nederlandse samenvatting
—Summary in Dutch—

De grote verspreiding van het internet en de beschikbahkaei krachtige com-
puters en hogesnelheidsnetwerken tegen een relatief tsgjerls geeft ons tegen-
woordig de mogelijkheid om een ruime viateit aan gedistribueerde resources met
elkaar te verbinden en, mits voorzien van de nodige softwgebruik te maken
van hun gebundelde kracht. Deze aaneenkoppeling van betespdynamische
resources tot een {nificeerde, krachtige machine wordt “metacomputing” of
“Grid computing” [1, 2] genoemd. Toepassingen die nuttigrgék kunnen maken
van een Gridinfrastructuur zijn onder meer gedistribueatdtaverwerking (v.b.
CERN DataGrid [3]), computationeel intense jobverwerkamggeavanceerd col-
laboratief onderzoek (vb. EScience Grid [4]). Tegenwapnekreisen bepaalde
toepassingen &ér rekenkracht dan de huidige clusters en supercomputareku
leveren en kunnen daarom enkel economisch verantwoorévoiégd worden in
de context van een Grid.

Vanuit de bedrijfswereld en onderzoeksinstellingen isaar dok een grote in-
teresse in software die eenvoudige ingebruikname van @ndie bijbehorende
Gridapplicaties toelaat. Deze software moet toelaten odisgéueerde, hetero-
gene resources op een transparante, veilige en performmemtier te gebruiken,
en is reeds beschikbaar onder de vorm van enkele standa@rdniidieware
toolkits zoals Globus [5] en de LCG middleware [6]. Tot voarrtkwerd er
echter weinig onderzoek gedaan naar de invlioed van het rietypeonder meer
de algehele resource-effigitie en de optimaliteit van resource-assignaties door
Gridschedulingalgoritmen. Dit is deels te verklaren vamld historische ver-
bondenheid van Grids met het clustercomputingconcept. clB§tercomputing
kan verwerking ook gedistribueerd plaatsvinden, maamu®n de resources zich
in tegenstelling tot Grids allemaal op geografisch dezelédatie en zijn deze
geinterconnecteerd door middel van een hogesnelheidsretwet aanzienlijk
kleinere vertragingen. Hierdoor is de status van netwedueces bij het nemen
van o.a. schedulingbeslissingen minder belangrijk darGhijls. Bovendien is
de resource- en topologieconfiguratie van een clusterdigligekend en kan de
status eenvoudiger gecontroleerd worden dan bij geodhadjedistribueerde en
dynamische Gridsystemen.

Het werk dat we in dit boek presenteren kan opgesplitst wodeneerdere
delen. Allereerst bespreken we hoe we een performante @albeine Grid-mo-
nitoringarchitectuur ontwikkeld hebben met als doel st@che waarden met be-

XXii NEDERLANDSE SAMENVATTING

trekking tot typische job- en resourcekarakteristiekerieometen. De algemene
opbouw van deze monitoringarchitectuur (met sensoredysenten, consumenten
en een directory service) wordt uit de doeken gedaan, aldeogebruikte im-
plementatietechnologé®. We vergelijken de performantie en functionaliteit van
het ontwikkelde Gridmonitoringplatform met die van anderenitoringpakket-
ten (0.a. Globus Monitoring and Directory Service 2 - MDSP BEh moeten na
uitgebreide metingen concluderen dat ons monitoringmatfmet een minimum
aan systeembelasting de beste performantie en schaalthagmnbiedt. Zo is de
processorbelasting bij het simultaan bevragen van eerupeodiit ons monito-
ringplatform door 600 gebruikers lager dan 6 procent, wigaém antwoord gefor-
muleerd wordt met een gemiddelde responstijd van 0,01 secwat een factor
10 beter is dan bij MDS2). Als we de performantie van de dawcservices met
elkaar vergelijken, zien we dat onze oplossing zo’n 458 d&gwngen per seconde
kan afhandelen, terwijl dit bij MDS2 slechts 311 bevragimger seconde is. Deze
resultaten worden mogelijk gemaakt door de combinatie eagebruikte imple-
mentatietechnologén met een schaalbaar architecturaal ontwerp.

In een tweede stadium bespreken we de nood aan een Gridgimdiea in
staat is om netwerkinterconnecties accuraat voor te stelidegelijkertijd toelaat
om een grote vaiteit aan Gridtopologién en resourceconfiguraties te modelleren.
Dit leidt tot de ontwikkeling van NSGrid, een op ns-2 [8] gebarde Gridsimu-
lator die modellen bezit om jobs en resources (computdgompslag-, data- en
netwerkresources) voor te stellen. NSGrid is bovendiemzien van verschillende
Gridmanagementcomponenten, zoals een scheduler, repleteverk- en service-
manager, monitoring- en informatiediensten. Vervolgensden schedulingalgo-
ritmen voorgesteld die rekening houden met de toestandegmurce-interconnec-
ties om performante jobschedules op te stellen. Deze &igemiworden gévalu-
eerd op verschillende Gridtopologie en jobpatronen, gebruik makend van NS-
Grid. Uit de resultaten blijkt dat het opnemen van de sta&umsnetwerkconnecties
in het schedulingproces kan leiden tot betere jobassigaliij Gridinterconnec-
tiebandbreedtes van 10 Mbps wordt een gemiddelde jobresjpbopgemeten die
61 procent beter is dan wanneer geen netwerkinformatiermpgen wordt in het
schedulingproces. Bovendien tonen we bij hetzelfde scem@a@an dat computa-
tionele resourcereservaties gemiddeld 30 procent vanijaduonigebruikt worden,
wegens het wachten op invoer- en/of uitvoerdata (wat veltragr is indien er
correct rekening gehouden wordt met de status van de newseikrces op het
moment van schedulen).

Er wordt dieper ingegaan op een geautomatiseerde senacegementarchi-
tectuur die, rekening houdend met het gemonitorde apjdgedrag, een verde-
ling van Gridresources over verschillende serviceklassawingt. Serviceklassen
zijn in dit geval een verzamelnaam voor jobs die eenzelfdeagevertonen met
betrekking tot hun gevraagde verwerkingskracht en ddensiteit. Deze verde-
ling van resources over serviceklassen met verschillendétpiten, samen met
het dynamisch instaritien van managementcomponenten (scheduler, informatie-
diensten, etc.) exclusief toegewijd aan die servicekladsat toe een Grid op te
splitsen in meerdere “Virtual Private Grids”, elk afgesteap de karakteristieken

SUMMARY IN DUTCH XXiii

van een welbepaalde serviceklasse. We bespreken hierbghitende resour-
cepartitioneringsalgoritmen gebaseerd op genetisclogitgen, en evalueren de
performantie van deze algoritmen gebruik makend van NSGtitlde resultaten
blijkt dat niet alleen de gemiddelde computationele en reétvesource-effiéntie
verbeteren (met gemiddelde winsten tot respectievelijled®,5 procent), maar
ook dat gemiddelde jobresponstijden omlaag gaan (bij sd¢medwaarbij reke-
ning gehouden wordt met de status van netwerkresourcesitent 80,5 procent
winst opleveren) en dat het mogelijk wordt om geautomatéseerviceklassepri-
oriteiten af te dwingen.

Tot slot wordt in dit werk een recente ontwikkeling besprukéet gebruik
van Gridtechnologie voor de verwerking van digitale autioele data bij organ-
isaties verantwoordelijk voor radio- en televisieprodest Verschillende orga-
nisatieprofielen (gebruikers, applicaties, vereisten,) etvorden voorgesteld en
kunnen gesimuleerd worden met MediaNSG, een uitbreidingi8@rid die in
staat is om het gebruik van Gridtechnologie in de audioVéssector na te boot-
sen.

XXIV NEDERLANDSE SAMENVATTING

Referenties

[1] lan Foster and Carl Kesselman, editof$ie Grid: Blueprint for a New Com-
puting Infrastructure Morgan Kaufmann, 1999.

[2] lan Foster and Carl Kesselman, editoffie Grid: Blueprint for a New Com-
puting Infrastructure 2nd EditionMorgan Kaufmann, 2003.

[3] CERN http://ww. cern. ch/.

[4] Enabling Grids for E-Science in Europehttp://egee-intranet.
web. cern. ch.

[5] I. Foster. Globus Toolkit Version 4: Software for Service-Orientedt&ms
Lecture Notes in Computer Science, 3779:2-13, 2005.

[6] LHC Computing Grid projectht t p: / /| cg. web. cern. ch/ LCG

[7] K. Czajkowski, S. Fitzgerald, |. Foster, and C. Kessaim&rid Information
Services for Distributed Resource Sharirig Proc. of the 10th IEEE Interna-
tional Symposium on High-Performance Distributed Comumt2001.

[8] The Network Simulator - NSAtt p: // ww. i si . edu/ nsnani ns.

English summary

Widescale adoption of the internet and the availability @fvprful computational
resources and high-bandwidth networks at a relatively rsiodest, presents us
with the opportunity to interconnect a wide variety of distited resources in order
to harness their combined capabilities. This interconoerdf heterogeneous, dy-
namic resources in order to construct a single unified, pvarachine is called
“metacomputing” or “Grid-computing” [1, 2]. Applicatiorthat can use this Grid
infrastructure to their advantage are among others digathdataprocessing (e.g.
CERN DataGrid [3]), computationally intense batch protegand advanced col-
laborative research (e.g. EScience Grid [4]). Nowadaysiesapplications de-
mand more computational power than can be provided by ductesters or su-
percomputers, and can therefore only be processed (undieorically sain con-
ditions) when utilising a Grid.

Industrial and research communities are increasingly rimiegested in soft-
ware that allows easy deployment of Grids and the accompgr@rid applica-
tions. This software has to support utilising distributbdterogeneous resources
in a transparent, secure and well-performing manner, anelaidily available in
the form of standard Grid middleware toolkits such as Gldajsand the LCG
middleware [6]. Until recently however, little researctstmeen done on the influ-
ence of the network on (among others) computational rescefficiency and the
optimality of assigning resources to jobs by different Gratheduling algorithms.
This can be partially explained because of the historic eotion of Grids with
the cluster computing concept. Cluster computing allovss jio be processed
in a distributed way, but the computational and storageuress are (in contrast
with Grids) all located at the same geographical locatioth are interconnected
by means of high speed network links with relatively smalbgls. This renders
the status of network resources when taking schedulingsides less important
than when scheduling jobs in a Grid. On top of this, when atehis employed
for processing jobs, its resource and topology configunasdully known mak-
ing it easier to monitor resource state than when a geogralbphdistributed and
dynamic system (such as a Grid) is used.

The work we present here can be subdivided in multiple p&itst off, we dis-
cuss how we have developed a performant and scalable Gridaring platform
capable of delivering realistic values regarding typicél and resource character-
istics. The overall architectural structure of this moniig platform (with sensors,
producers, consumers and a directory service) will be @xgih together with the
implementation methods that were used. We compare perfaenand function-

XXVi ENGLISH SUMMARY

ality of the developed Grid monitoring platform with thateisting leading mon-
itoring platforms (a.o0. Globus Monitoring and Directoryr@ee 2 - MDS2 [7])
and have to conclude that our monitoring platform offerditbst performance and
scalability, with a minimum of resource load; processodladnen simultaneously
querying a producer b§00 users is lower thafi percent, with query answers for-
mulated with an average response tim&ofi seconds (which is ten times better
than MDS2). If we compare the performance of the directoryises, we notice
that our solution can handl&8 queries per second, while MDS2 can only handle
311 queries per second. These results are made possible bexfahsecombi-
nation between utilised implementation technologies andrahitectural design
focussed on scalability.

In the next part we discuss the need for a Grid simulator tbairately repre-
sents network interconnections and at the same time allovgehing of a large
variety of Grid topologies and resource configurations.sTéads to the develop-
ment of NSGrid, a Grid simulator based on ns-2 [8] offeringdels to represent
jobs and resources (computational, storage, data and rietespurces). NSGrid
also provides different Grid management components: stbeq replica man-
agers, network managers, service managers, monitoringnforchation services,
etc.. We present Grid scheduling algorithms that take ictpant the state of
resource interconnections to construct well-performiviy $chedules. These al-
gorithms are then evaluated on different Grid topologies jab patterns, utilis-
ing the NSGrid simulator. The results show that taking intocaunt the state of
network connections when scheduling jobs on a Grid can lehetter job assig-
nations: with Grid interconnection bandwidths idf Mbps we measure average
job response times that abé percent better than when no network information is
included in the scheduling process. For the same scenagishaw that computa-
tional resource reservations spend on aveBageercent of their time idling, while
waiting for input and/or output data to arrive/be sent (vahian be avoided when
taking into account the state of network resources at the tischeduling).

We give an in-depth discussion of an automated service neameagt archi-
tecture that, taking into account monitored Grid applmatbehaviour, enforces a
partitioning of the Grid resource pool among the differeavge classes. Service
classes in this case are collections of jobs that preseritasibehaviour regard-
ing their processing and I/O requirements. This partitigrof resources amongst
service classes with different priorities, together witk tlynamic deployment of
management components (scheduler, information senate$,for exclusive use
by those service classes, allows subdividing a Grid intctiplal “Virtual Private
Grids”, each tuned to the characteristics of their serviaex We discuss different
resource partitioning heuristics based on genetic alyostand evaluate the per-
formance of these heuristics using NSGrid. The results shatvcomputational
and network resource efficiency improve (with average imgnoents ofl7 and
5.5 percent respectively), combined with lower average jopaase times (when
employing a network aware scheduling algorithm this can l®830.5 percent
better job response times) and that it becomes possibletéonatically enforce
service class priorities.

ENGLISH SUMMARY XXVil

Finally, a recent trend will be discussed: the use of Gridtetogy for process-
ing digital audio/visual data in organisations that arepoesible for radio and
television production / distribution. Different organiie profiles (users, appli-
cations, requirements, etc.) are presented and can beasgdldy means of Me-
diaNSG, an extension to NSGrid capable of modelling difiereedia company
Grid deployments.

XXVili ENGLISH SUMMARY

References

[1]

(2]

3]
[4]

(5]
[6]
[7]

(8]

lan Foster and Carl Kesselman, editof$e Grid: Blueprint for a New Com-
puting Infrastructure Morgan Kaufmann, 1999.

lan Foster and Carl Kesselman, editof$ie Grid: Blueprint for a New Com-
puting Infrastructure 2nd EditionMorgan Kaufmann, 2003.

CERN http://ww. cern. ch/.

Enabling Grids for E-Science in Europehttp://egee-intranet.
web. cern. ch.

I. Foster. Globus Toolkit Version 4: Software for Service-Orientegt&ms
Lecture Notes in Computer Science, 3779:2-13, 2005.

LHC Computing Grid projectht t p: / /1 cg. web. cern. ch/ LCG

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesseim&rid Information
Services for Distributed Resource Sharirig Proc. of the 10th IEEE Interna-
tional Symposium on High-Performance Distributed Comumt2001.

The Network Simulator - NSAt t p: / / ww. i si . edu/ nsnam ns.

Introduction

1.1 Anintroduction to Grid computing

The main workhorses for processing computationally cormpteblems have long
been supercomputers and clusters, with work often origigdtom the research
and development community. However, problems are becomargasingly de-
manding, challenging the capabilities of even the most piavsupercomputer or
cluster systems. This led to the idea of joining resourceslive these problems in
a reasonable time frame, effectively interconnecting gaplgically remote com-
putational, storage and data resources into a single nuentyeching system. As
a first step in realizing this concept, the maturation of titernet in the nineties
led to the first global distributed computing projects. Twwjects in particu-
lar have proven that the concept works extremely well. Ttst firoject, distrib-
uted.net [1], used thousands of independently owned carpatross the Internet
to crack encryption codes. The second is the SETI@homeqti@g Over two
million people have installed the SETI@home software agerte the project’s
startin May 1999. This project proved that distributed catmmg could accelerate
computing project results while at the same time managiogept costs (IBM’s
ASCI White [3] supercomputer is rated at 12 TeraFLOPs ands¢fst0 million.
SETI@home currently gets on average 15 TeraFLOPs and he$5@3K so far).
Grid computing is increasingly being viewed as the next phafsdistrib-
uted computing and enables organizations to share congpuiarage and data
resources across department and organizational bousdarg secure, efficient

1-2 INTRODUCTION

Data

A\ Client
N Resources

\, Scientiic
~Input

Figure 1.1: Global Grid computing

manner. One of the main motivations for this new computingagigm lies in
the observation that the demand for resources is ever ggowitile on the other
hand vast resource pools remain underused. Grid technalagyat solving this
mismatch by offering its users transparent access to atyafieesources, making
abstraction of the exact geographic location of the physé&source.

Although some similarities exist, Grid computing differerh cluster comput-
ing in a number of key aspects. First, due to the geograpsicitaition of Grid
resources (see figure 1.1), a Grid does not have a centrahmtimiion point (in-
stead it consists of resources from multiple administeatiemains), whereas all
cluster resources can usually be administered from onédoceé&econd, this geo-
graphic distribution entails drastically different resoeiusage policies and hetero-
geneity of equipment: a variety of resources will be cone@dtty a wide range of
network technologies, whereas a cluster will usually cstrefia large collection of
homogeneous resources interconnected by a proprietaryrtnigh speed / short
range network links. This again indicates an importantititive Grid feature:
communication links can be long haul, possibly subject togestion, while the
Grid topology itself is subject to frequent change, due opbssibly dynamic na-
ture of resources and the decentralized authority oveuresasage (this dynamic
behaviour can easily be spotted in the case of SETI@homeGyios, based on
desktop pc’s donating unused CPU cycles).

The term “Grid computing” [4, 5] suggests a computing pagedsimilar to
the operation of an electric power grid: the same way anritatbutlet delivers
power without the consumer knowing exactly where that eleadtpower is gen-
erated, a variety of geographically dispersed resouraebedransparently joined
into a shared resource pool for consumers to access on agededbasis. Al-

INTRODUCTION 1-3

though this ideal is still a few years off, standardizati®thie key to realizing Grid
computing benefits, so that the diverse resources that npakemodern comput-
ing environment can be discovered, accessed, allocatedtored, and in general
managed as a single virtual system - even when provided fgrefitt vendors
and/or operated by different organizations. The GlobatlGarum (GGF [6]) acts
as a standardization body for the Grid, comparable in terfhphitosophy as the
IETF [7] for Internet related matters. The GGF is a commuiiitiated forum of
thousands of individuals from industry and research laatlie global standard-
ization effort for Grid computing. The GGF’s primary obj®ets are to promote
and support development, deployment, and implementafi@rid technologies
and applications through the creation and documentatitimest practices” - tech-
nical specifications, user experiences, and implementatiddelines. Some no-
table GGF groups are the Open Grid Services Architectur&inggroup (OGSA-
WG [8]), Grid High-Performance Networking research groupl@N-RG [9]), the
Grid Scheduling Architecture research group (GSA-RG [20f) the Job Submis-
sion Description Language working group (JSDL-WG [11]).

Today, organizations around the world are utilizing Gridnpauting in diverse
areas as collaborative scientific research, drug discpofieayncial risk analysis and
product design. Grid computing enables research-oriesrgahizations to solve
problems that were infeasible to solve due to computatiandldata-integration
constraints. Grids also reduce costs through automatidnraproved resource
utilization. Finally, Grid computing can increase an otigation’s agility enabling
more efficient business processes and greater responssvienehange.

Based on their main application area, Grid systems can hdedivin three
classes: computational Grids, data Grids and service G@idsmputational Grids
are tailored to provide huge amounts of processing power (BIEESgrid for
earthquake simulation studies [12]). Cycle scavengingl$aire special cases of
computational Grids: they allow desktop users to donate ttie CPU time to
help scientific research (mostly global interest projects SETI@home based
on the BOINC [13] Grid framework, Folding@home [14] for raseh regarding
protein folding which could in time lead to cures for disesabke Alzheimer and
Parkinson, fightAIDS@home [15]).

A second Grid system class is coined the term “data Grid”.s€lsynthesize
new information from distributed data repositories. ThedeaHadron Collider
Computing Grid (LCG [16]) project is a well-known examplethis type of Grids.
In the LCG project data generated by CERN’s Large Hadronidxsl[17] (which
is to be operational in 2007 and will roughly produce 15 Pgidbannually) will
be distributed around the globe, according to a four-tienediel. Thousands of
high energy physics scientists from around the world witless and analyse frag-
ments of this data.

Service Grids are Grids that do not focus on batch job praogskut instead

1-4 INTRODUCTION

cru 4
DATA

® TeraGrid

Computational
Grids

®1CG @ UD Grid
Cycle Scavenging
Grids

@ SETI@home

Data
Grids

@ SpaceGrid @ EGEE
Service

Grids
@ E-Health

USERS

Figure 1.2: Grid taxonomy

offer access to a wide variety of real-time services thahoabe provided by a
single machine. Services can range from collaborative ingrienabling interac-
tion between users and applications through a virtual wiaks), to multimedia
Grids and “on demand” Grids, enabling a user to dynamicaltydase the amount
of machines processing on its jobs. A thorough look at Griet@amy can be
found in [18].

Current Grid deployments include the Belgian BEgrid [19jyering 6 Grid
sites for a total of 259 computational resources and 3.4 T8arhge space inter-
connected by a 2.5 Gbps backbone. BEgrid in turn is conndotdéte Enabling
Grids for E-Science in Europe (EGEE [20]) Grid which hous48 2B of storage
space and 1846 KSI2K of computational power (kiloSpecINO®® the compu-
tational power rating based on the SpecINT2000 benchmadi ji2terconnected
by network links varying in bandwidth between 34Mbps and & Currently,
one of the most powerful computational Grid deploymenthes WS-based Ter-
aGrid [22], which interconnects 8 data and computing cenpr@viding a total
of 50 TeraFlops of processing power and 1046 TB of on-lineagt® space for
scientific purposes. The network connectivity of each TeidGite ranges from
10Gbps to 30Ghps.

We refer to appendix A for a more elaborate introduction tm@omputing.

1.2 Problem statement

Despite the current deployment of operational Grid systémportant research
challenges still exist. Whereas initial Grid research mafotused on tackling

INTRODUCTION 1-5

batches of computationally intense problems and paranseteep applications,
the rise of data and service based Grids (e.g. the aforeomexttiEGEE project) is
imposing new requirements in terms of responsivenessngdathaviour, Quality

of Service-support, network requirements and robustn®sse one of the main
characteristics of a Grid is its geographically distrilsuteature, the network in-
terconnecting the different computational, storage artd dasources should be
treated with the same importance as any other resourcecan pose a signifi-

cant bottleneck. With this in mind, and noting that the dgplent of various Grid

configurations for testing/research purposes is a timswoing (if not impossi-

ble) feat, accurate network aware Grid simulation becomescassity in order

to be able to easily experiment with new scheduling and megomanagement
algorithms on a variety of Grid topologies.

Furthermore, to cope with the advent of a new generation ficge based
Grids, research into novel Grid service management acthites (and accompa-
nying management algorithms) is required in order to betateeet the necessary
QoS requirements.

1.3 Main research contributions

In a first stadium, we develop a Grid resource monitoringfptat tuned to scal-
ability, performance and easy extendibility and compafwith positive results)
with notable existing Grid monitoring platforms. Inspecfimonitored Grid sta-
tus information, we notice that the state of the networkdiimterconnecting the
various Grid resources has a big impact on the overall Giidtjwoughput and
usage efficiency. In order to allow research into new managemand schedul-
ing algorithms that incorporate network resource stateriétion to produce bet-
ter management/scheduling decisions, we develop the MSBriulator (based
on the ns-2 network simulator [23]). NSGrid is capable ofumately simulating
the interconnecting Grid network links and offers advaneediels for the differ-
ent Grid resources (computational, storage, data and net@sources), jobs and
management components. While the work in this thesis foaus@fiowing accu-
rate and advanced Grid simulation, ir. Pieter Thysebaeléaneously developed
multiple novel network aware Grid scheduling and dimenisigralgorithms using
NSGrid.

As services are becoming more and more important in the xoot&rids, we
develop and (using NSGrid) evaluate a distributed Gridisermanagement archi-
tecture incorporating resource-to-service partitioroh@rid resources in multiple
“Virtual Private Grids” (VPGSs). Our results show that thirfitioning of Grid re-
sources in multiple service-dedicated resource poolsthay with the dynamic
deployment of VPG management components (automaticalhgd to the service
class they are responsible for, can improve Grid service Qgfport, resource

1-6 INTRODUCTION

efficiency and overall scalability.

A recent development is the incorporation of Grid technglimgthe audio/vi-
sual production industry (i.e. radio and television pratuccompanies). In this
thesis we present architecture, requirements and chagticte of these Media-
Grids. Furthermore, we incorporate our simulation, schiediand service man-
agement research into the MediaGrid-case and presentshiéste

1.4 Outline

This thesis continues as follows: in chapter 2 we discusdé¢heloped Grid mon-
itoring framework and compare its functionality and penfi@ance to notable exist-
ing Grid monitoring architectures. Chapter 3 covers NSGaidetwork-centered
Grid simulation environment built on top of ns-2, and pr@sdietails about Grid,
resource and job models that have been implemented alohgawibverview of

the various management components and their functionsi&ycontinue in chap-
ter 4 by presenting a distributed Grid service monitoringgiagement framework,
allowing for automated resource-to-service partitionibgfferent partitioning al-

gorithms (based on Genetic Algorithm heuristics) are tedaand their perfor-

mance is evaluated using NSGrid. We conclude this thesikapter 5 with the

introduction of Grid computing in the audio/visual prodoatindustry, studying

requirements, characteristics and architecture of MedisG

1.5 Publications

1.5.1 Publications in international journals

e F. De Turck, S. VanhastdB. Volckaert, P. Demeestef;eneric middleware-
based platform for scalable cluster computiri§jsevier Journal on Future
Generation Computer Systems, 18:549-560, 2002.

e P. ThysebaerB. Volckaert, F. De Turck, B. Dhoedt, P. DemeestEralu-
ation of Grid scheduling strategies through NSGrid: a natwaware Grid
simulator, published in Neural, Parallel & Scientific Computationpe8al
Issue on Grid Computing, Dynamic Publishers Atlanta, Editd.R. Arab-
nia, G.A. Gravvanis, M.P. Bekakos, 12:353-378, 2004.

e B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt,
P. DemeesterGrid computing: the next network challengg@ublished in
The Journal of The Communications Network, Proceedings EE 2004,
43rd European Telecommunications Congress, 3:159-168,. 20

INTRODUCTION 1-7

e B.Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. DemeeAgplication-
specific hints in reconfigurable Grid scheduling algortihmpsiblished in
Lecture Notes in Computer Science, Proceedings of ICCS,2Bpdnger-
Verlag Berlin Heidelberg, Krakow, LNCS 3038:149-157, 2004

e P. ThysebaertB. Volckaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterResource partitioning algorithms in a programmable segvic
Grid architecture published in Lecture Notes in Computer Science, Pro-
ceedings of the 5th Intern. Conf. on Computational Scie@@S 2005,
Atlanta, LNCS 3516:250-258, 2005.

e P. Thysebaert, M. De Leenhed, Volckaert, B. Dhoedt, P. Demeester,
Scalable Dimensioning of Optical Transport Networks foid&xcess Load
Handling accepted for publication in Photonic Network Communimadi
(PNC).

e M. De Leenheer, P. ThysebaeB, Volckaert, F. De Turck, B. Dhoedt,
P. Demeester, D. Simeonidou, R. Nejabati, G. Zervas, D. idisnM. J.
OMahony,A View on Enabling Consumer Oriented Grids through Optical
Burst Switchingaccepted for publication in IEEE Communications Maga-
zine, 2006.

e B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterFlexible Grid service management through resource paititi
ing, accepted for publication in the Journal of Supercomputing

e B. Volckaert, T. Wauters, J. Baert, M. De Leenheer, P. Thysebaert, F. De
Turck, B. Dhoedt, P. Demeest&esign of a MediaGrid framework and sim-
ulation of workflows for collaborative audiovisual orgaations submitted
to the Journal of Computer Communications.

1.5.2 Chapters in international publications

e B. VoIckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterNetwork and Service Aware Grid Resource Assignntenbe
published as a chapter in Grid Technologies: Emerging frastributed
Architectures to Virtual Organizations, Editors: M.P. B&ks, G.A. Grav-
vanis and H.R. Arabnia, WIT Press.

1.5.3 Publications in international conferences

e S. Vanhastel, P. Thysebaert, F. De TurBk,Volckaert, P. Demeester, B.
Dhoedt,Service brokering in an enhanced grid environmgnitblished in

1-8

INTRODUCTION

Proceedings of the International Conference on ParaléeDastributed Process-
ing Techniques and Applications (PDPTA02), Las Vegas12:718, 2002.

F. De Turck, S. Vanhastel, P. Thysebadt,Volckaert, P. Demeester, B.
Dhoedt,Design of a middleware-based cluster management platfotim w
task management and migratiqrublished in 2002 IEEE International Con-
ference on Cluster Computing and the Grid, Chicago, pagé«183, 2002.

B. Volckaert, P. Thysebaert, F. De Turck, P. Demeester, B. Dhdex)u-

ation of grid scheduling strategies through a network-agvarid simulator

published in Proceedings of the International Conferentdarallel and
Distributed Processing Techniques and Applications PDBBIA.as Vegas,
1:31-35, 2003.

P. ThysebaertB. Volckaert, M. De Leenheer, E. Van Breusegem, F. De
Turck, B. Dhoedt, D. Simeonidou, M.J. O’'Mahony, R. NejabatiTzanakali,

I. Tomk, Towards consumer-oriented photonic grigsublished and pre-
sented at Workshop on Optical Networking for Grid Servidds@0C2004,
Stockholm, 2004.

B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterOn the use of NSGrid for accurate grid schedule evaluation
published in Proceedings of the International Conferencéarallel and
Distributed Processing Techniques and Applications PDBIA as Vegas,
1:200-206, 2004.

B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesteNetwork aware scheduling in gridpublished in Proceedings of
NOC2004, 9th European Conference on Networks & Optical Carioa-
tions, Eindhoven, pages 311-318, 2004.

P. ThysebaertB. Volckaert, F. De Turck, B. Dhoedt, P. Demeestalet-
work aspects of grid scheduling algorithnpeiblished in Proceedings of the
ISCA 17th International Conference on Parallel and Disteld Computing
Systems, San Francisco, pages 91-97, 2004.

M. De Leenheer, P. ThysebaeR, Volckaert, F. De Turck, B. Dhoedt, P.
DemeesterEvaluation of a job admission algorithm for bandwidth con-
strained grids published in Proceedings of the International Conferemce
Parallel and Distributed Processing Techniques and Agiidics PDPTA04,
Las Vegas, 2:591-594, 2004.

M. De Leenheer, E. Van Breusegem, P. Thysebdgriyolckaert, F. De
Turck, B. Dhoedt, P. Demeester, D. Simeonidou, M.J. O'Mahéh Ne-
jabati, A. Tza,An OBS-based grid architectyrpublished in 2004 IEEE

INTRODUCTION 1-9

Globecom Telecommunications Conference Workshops, alkges 390-
394, 2004.

e S. De Smet, P. ThysebaeRB, Volckaert, M. De Leenheer, D. De Winter,
F. De Turck, B. Dhoedt, P. Demeestérperformance oriented grid mon-
itoring architecture published in Proceedings of the 2nd IEEE Workshop
on End-to-End Monitoring Technics and Sercives (E2EMONYnitbring
Emerging Network Services, San Diego, pages 23-28, 2004.

e B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterA Distributed Resource and Network Partitioning Architeet
for Service Gridspublished in Proceedings of (on CD-ROM) the 5th IEEE
International Symposium on Cluster Computing and the Gei@Grid05),
Cardiff, 2005.

e F. Farahmand, M. De Leenheer, P. Thysebd&riJolckaert, F. De Turck,
B. Dhoedt, P. Demeester, J.P. JAenulti-layered approach to optical burst-
switched based gridpublished in Proceedings (on CD-ROM) of Workshop
on Optical Burst/packet Switching (WOBS2005), 2nd Intéioreal Confer-
ence on Broadnet Net, Boston, pages 127-134, 2005.

e M. De Leenheer, F. Farahmand, P. Thysebd&riJolckaert, F. De Turck,
B. Dhoedt, P. Demeester, J. Jéaycast routing in optical burst switched
grid networks published in Proceedings of ECOC2005, 31st European Con-
ference on Optical Communications, Glasgow, 3:699-702520

e B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
DemeesterA scalable and performant grid monitoring and information
framework published in Proceedings of the International Conferemte
Parallel and Distributed Processing Techniques and Aaipdics, PDPTA
‘05, Las Vegas, 2005.

e P. Thysebaert, M. De Leenheds, Volckaert, F. De Turck, B. Dhoedt,
P. DemeesterJsing Divisible Load Theory to Dimension Optical Trans-
port Networks for Grid Excess Load Handlingublished in Proceedings of
the International Conference on Networking and Servicebl8), Papeete,
French Polynesia, 2005.

e J. Baert, M. De LeenheeB. Volckaert, T. Wauters, P. Thysebaert, F. De
Turck, B. Dhoedt, P. Demeestétybrid optical switching for data-intensive
media grid applicationspublished in Proceedings of the workshop on De-
sign of Next Generation Optical Networks: from the Physigato the Net-
work Level Perspective, Gent, 2006.

1-10 INTRODUCTION

e M. De Leenheer, F. Farahmand, K. Lu, T. Zhang, P. ThysebBert/ol-
ckaert, F. De Turck, B. Dhoedt, P. Demeester, J. Jugycast Algorithms
Supporting Optical Burst Switched Grid Networkscepted for publication
in the proceedings of the International Conference on Nediwg and Ser-
vices (ICNS), Silicon Valley, USA, 2006.

1.5.4 Publications in national conferences

e P. ThysebaerB. Volckaert, F. De Turck, S. Vanhastel, P. Demeeskéan-
agement of Network Resources in a Grid-Computing Enviromnmib-
lished in 2nd FTW PHD Symposium, Interactive poster sessirent, pa-
per nr. 72, 2001.

e B.\olIckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. DemeeAtggneric
grid simulator for evaluating network-aware grid schedgjialgorithms
published in 3rd FTW PHD Symposium, Interactive posterises&hent,
paper nr. 21, 2002.

e M. De Leenheer, E. Van Breusegem, J. Cheyns, P. ThyseBa&fd|ckaert,
F. De Turck, B. Dhoedt, P. Demeest®ptical burst switching for consumer
grids, published in 5th FTW PHD Symposium, Interactive postesises
Ghent, paper nr. 102, 2004.

e P. ThysebaertB. Volckaert, F. De Turck, B. Dhoedt, P. Demeest&rid
scheduling and dimensioning using divisible load the@ublished in 5th
FTW PHD Symposium, Interactive poster session, Ghent, rpapel23,
2004.

INTRODUCTION 1-11

References

[1] Distributed.Nethtt p: //www. di stri buted. net/.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Nerter.
SETI@home: An Experiment in Public-Resource Computi@mmuni-
cations of the ACM, 45:56-61, 2002.

[3] IBM ASCI White supercomputer http://ww+ 03.ibm com
servers/ eserver/ pseries/ hardware/l argescal e/
super conput ers/ asci white/.

[4] lan Foster and Carl Kesselman, editofsie Grid: Blueprint for a New Com-
puting Infrastructure Morgan Kaufmann, 1999.

[5] lan Foster and Carl Kesselman, editorsie Grid: Blueprint for a New Com-
puting Infrastructure 2nd EditionMorgan Kaufmann, 2003.

[6] Global Grid Forum http://ww. gri df orum org/.
[7] Internet Engineering Task Forcat t p: // ww. i et f. org/.

[8] Global Grid Forum Open Grid Services Architecture workingoup.
https://forge.gridforum org/ projects/ogsa-wg.

[9] Global Grid Forum: Grid High-Performance Networking resela group
https://forge. gridforum org/ projects/ghpn-rg.

[10] Global Grid Forum: Grid Scheduling Architecture researdiogp. ht t ps:
/1 forge.gridforumorg/projects/gsa-rg.

[11] Global Grid Forum: Job Submission Description Language kirmg group
https://forge.gridforumorg/projects/jsdl-wgy/.

[12] NEESgrid http://it.nees.org/.

[13] Berkeley Open Infrastructure for Network Compultirtgt t p: / / boi nc.
ber kel ey. edu/ .

[14] Stefan M. Larson, Christopher D. Snow, Michael R. $hidnd Vijay S.
Pande.Folding@Home and Genome@Home: Using distributed comgutin
to tackle previously intractable problems in computatioialogy. Compu-
tational Genomics, 2002.

[15] FightAIDS@homehtt p://fi ghtai dsat hone. scri pps. edu/ .

[16] LHC Computing Grid projecthtt p: / /1 cg. web. cern. ch/ LCG

1-12 INTRODUCTION

[17] CERN http://ww. cern. ch/.

[18] K. Krauter, R. Buyya, and M. Maheswaraf.Taxonomy and Survey of Grid
Resource Management Systerirgernational Journal of Software: Practice
and Experience (SPE), 32:135-164, 2002.

[19] Belnet Grid Initiative ht t p: / / www. begri d. be/ .

[20] Enabling Grids for E-Science in Europehtt p: // egee-i ntranet.
web. cern. ch.

[21] SpecInt2000 benchmarht t p: / / www. spec. or g/ cpu2000/ .
[22] The TeraGrid projectht t p: / / www. t er agri d. org/ .

[23] The Network Simulator - NSAt t p: / / www. i si . edu/ nsnani ns.

Grid Monitoring

2.1 Introduction

Grids provide a uniform interface to a collection of hetexogous, geographically
distributed resources. Each and every resource has its peaifis static proper-
ties (e.g. processor speed, total amount of memory, totauiatrof disk space,
networking capabilities) and dynamic status informatierg(processor usage,
available memory, available disk space, network usagejth&unore, these re-
sources are dynamic in nature: resources can join/part frenGrid, hardware
failures can occur, etc. In order to make intelligent Grisbierce management and
scheduling decisions, accurate resource property arelisfatmation is required.
In a distributed computing environment, one of the key congmds necessary to
be able to perform effective job scheduling, resource memagt, fault detection,
performance analysis and tuning is on one hand an informaé&pository stor-
ing static resource properties and on the other a monit@argice, capable of
measuring resource status and predicting future resotatse $/onitored compu-
tational, storage, data and network resource status carbalsised to construct
realistic Grid topologies for simulation purposes (see N&@ chapter 3). The
requirements for a framework delivering information andnitaring services are
in no specific order: efficiency, accuracy, non-intrusivenacalability, portability
and extensibility.
In this chapter, we present a Grid information and monitpservice facili-

tating a constraint-based resource selection mechanisoséby different Grid

2-2 GRID MONITORING

management components (scheduler, service managerceswoker, etc.). Sta-
tic resource properties are stored in a distributed dirgcervice, while resource
status information can be fetched from a highly extensilgeperformance ori-
ented Grid monitoring platform, developed according to@tebal Grid Forum’s
Grid Monitoring Architecture (GMA [1]) specifications. Imptant features in-
clude configurable caching mechanisms, non-intrusiveisegport for third party
sensor plugins and an intuitive Graphical User Interfacee di¢écuss the tech-
nology decisions that were made when developing this platfand compare its
performance with the widely deployed Globus [2] Toolkit sien 2 Monitoring
and Discovery Service (MDS [3]) and Globus Toolkit versiag 8Veb Services
Information Service (WS-IS [4]).

This chapter continues as follows: Section 2.2 gives anvisrof impor-
tant related work and highlights the differences with oanfework. A high-level
description of the constituent components is given in eact.3, while techni-
cal decisions made during implementation are discusseddtios 2.4. Our test
results are presented in section 2.5 followed by concludéngarks in section 2.6.

2.2 Related work

The Grid Monitoring Architecture, as defined by the GGF [S]aireference ar-
chitecture for feasible Grid monitoring systems and cdasi$ three important
components: producers, consumers and a directory sesgeefigure 2.1). The
directory service stores the location and type of infororafrovided by the dif-
ferent producers, while consumers typically query theat@ey to find out which
producers can provide their needed event data (after whih ¢ontact the pro-
ducers directly). Producers in turn can receive their edartd from a variety of
providers (software/hardware sensors, whole monitoystesns, databases, etc.).
The GMA does not specify the underlying data models or patothat have to
be used.

Multiple monitoring architectures for distributed comimgt systems have al-
ready been successfully deployed. Not all of them followghiglelines set by the
GMA (e.g. Condor’'s HawkEye [6, 7] does not support a decéin&a architec-
ture), and some are geared towards monitoring one singheimes type (e.g. Re-
mos [8, 9], focusing on network parameters). Below we presgme notable Grid
monitoring platforms with an architecture similar to ouarfrework, and point out
the differences with our implementation. For a completenagesy of Grid moni-
toring tools we refer to [10].

GMA-compliant Grid monitoring systems include the EurapBetaGrid’'s [11]
Relational Grid Monitoring Architecture R-GMA [12, 13] ar@&ridRM [14, 15].
R-GMA offers a combined monitoring and information systesmg a Relational
Database Management System as directory service and mingittata reposi-

CHAPTER?2 2-3

Consumer
A search producers
. Directory
events Service
A
search sensors
Producer register

search producers
register

Tmonitor data

\J

| sensors

Monitoring
System

Database ‘ ‘ Application ‘ ‘ ‘ ‘ Sensor ‘

Figure 2.1: Grid Monitoring Architecture overview

tory. The implementation is based on Java [16] servlet telciyy (using the Tom-
cat[17] servlet container), trading performance for paitity and limited software
dependencies. GridRM is an open source two-layer Grid raong framework,
the upper layer being structured according to the GMA. Thijsau layer connects
the per-site monitoring systems in a scalable way. Like RAGKridRM makes
use of Java and SQL to query data producers. Currently, GtislRirectory ser-
vice (containing info on the location of the different resmistatus providers) can
be a bottleneck and/or single point of failure, but work islenway to remedy this
problem.

Network Weather Service [18, 19] is an architecture for rogag the perfor-
mance of distributed systems in processing intense envieots. It can predict
network and processing load in the near future based on aredihistorical data.
Measured data includes cpu load, packet round trip time, d@Rect/disconnect
time and network bandwidth between two endpoints. The NetWdeather Ser-
vice is a robust and scalable system generating low conmpuogtand network
overhead, but does not measure some important parametrsofyusage, swap,
packets sent/received, etc.) and is hard to extend. Itéspddgform dependent as
it relies on UNIX/Linux system tools for measuring cpu loéds mostly used for
its network forecasting capabilities.

Java Agents for Monitoring and Management (JAMM [20]) is anitaring
architecture fully implemented in Java. JAMM is mainly bégen the GMA ar-
chitecture and offers automated deployment of sensor agerthosts from a cen-
tral HTTP server. These sensors are actually wrappers foulao UNIX/Linux
system utilities such as netstat, iostat and vmstat ancharefore badly deploy-
able on other operating systems. JAMM does not offer supiporapplication
monitoring and performance analysis/forecasting.

MDS2 is the Globus Toolkit (version 2) Monitoring and Diseoy Service [3],

2-4 GRID MONITORING

)

/!
D\

Information
Service

Information
Service

'

Monitoring
Service

\ y /
[L
Producer

\ =

Sensor Sensor

Archiving Visualisation

Consumers

Directory
Service

Producers

Sensors

Figure 2.2: Information & Monitoring Framework components

and although MDS development was started before the GMAitaathral refer-
ence appeared, it can still be seen as a GMA implementati@S2Abnly supports
latest-state queries, making it mandatory for the conssimocactively retrieve sta-
tus information from the GRIS (MDS2 component offering proer-like func-
tionality). In addition, MDS2 does not offer visualizatiéeatures. An extensive
comparison of MDS2 against other monitoring frameworksdiesady been car-
ried out in [21, 22]. It was shown that MDS2 outperforms (eghibits lower
response times and better scalability) the other framesworgntioned in most use
cases. Therefore, we have only compared our platform’sopegnce to that of
MDS?2 and its successor, the web services based Informagionicd (WS-IS [4])
from the Globus 3.2 Toolkit.

2.3 Information & Monitoring Framework compo-
nents

A sample setup of the developed framework is shown in figuze Rach compo-
nent’s function is detailed below.

2.3.1 Sensor

Every resource to be monitored has at least one sensoredtéelit. Each sensor
can monitor different load properties of a single resouscembans of plugins (e.g.
we have implemented a CPU plugin capable of monitoring CRidladle time

and time spent executing system/user processes). The axindored values are
communicated to one or more producers. This list of produ¢and conversely,

CHAPTER?2 2-5

the list of sensors that is allowed to communicate with eaokyxcer) is found in
the directory service (see figure 2.3(a)). The only configlerparameters of a sen-
sor (read from a configuration file) are the location and anttbation parameters
to query the directory service and the plugins that need fodmed.

As shown in figure 2.3(b), a sensor can register itself wita onmore pro-
ducers, by sending them &ELLO’ message. The producer will answer this with
an “OK producer readymessage to acknowledge that it is on-line and ready. The
sensor in turn will send its unique name to the producer, ghthén capable of
looking up the sensor's name in his configuration and candeetai either allow
the sensor to sign in (returntOK, don€) or to reject the sensor login (return
“-ERR), preventing illegitimate sensors from sending (possibimpered) moni-
toring data to the producer. Once this is done the registratbnnection is closed
and the sensor is registered with the producer.

When a producer decides it wants to start receiving monitdegd from one
of its registered sensors, the producer can open a TCP doomedth this partic-
ular sensor, sending the sensor a monitoring configuratessage detailing from
which plugins the producer would like to receive monitoratbdtogether with the
desired monitoring frequency of each plugin the producénterested in). Once
the configuration has been received by the sensor, it will steshing the required
monitoring values over the already open TCP connectionidaga connection
setup overhead on every update.

The currently implemented sensor plugins can provide lgetatatus informa-
tion on CPU, memory, swap and network usage. We give a bregf/igew of some
of the most important resource characteristics that candrétared:

1. CPU Monitor
e CPU Total: percentage of time CPU was active during last oreas

ment interval.

e CPU Sys: percentage of time CPU was processing system taskg d
last measurement interval.

e CPU User: percentage of time CPU was processing user tasiks du
last measurement interval.

e CPU Idle: percentage of time CPU was idle during last measen
interval.

2. MEM Monitor

e MEM Total: total amount of memory installed in the system.
e MEM Used: amount of memory in use.

e MEM Free: amount of free memory.

2-6

GRID MONITORING

Producer
Communication (ACE)

Sensor

Producer Configs

Directory Service Location
Credentials
Plugin handler

<)Z‘l> Directory Service

Directory Service
Communication (LDAP)

O

S

lul
\

(a) Sensor

HELLO
+OK Producer Ready
W

configuration
stats

fstats |
esas ————— |

Producer

Sensor

(b) Sensor-Producer protocol

Figure 2.3: Sensor

e MEM User: amount of memory used by user processes.

3. SWAP Monitor

e SWAP Total: total amount of swap space in the system.

e SWAP Used: amount of swap space in use.

e SWAP Free: amount of free swap space.

4. NET Monitor

e Bytes in/out: total amount of received/sent bytes sincesthg of the

network monitoring.

e Errors in/out: total amount of packets with errors recefsedt since
the start of the network monitoring.

e Bytes/s infout: amount of received/sent bytes per seconidgllast

measurement interval.

2.3.2 Producer

Producers (see figure 2.4(a)) register themselves with itleetdry service and
publish the type of information (aggregated from the sem#wat report to the pro-
ducer) they provide. This data can be queried by authoripedumers (using a
request/reply model) or can be pushed to authorized corrsumseg a subscrip-

tion/natification event-based model.

CHAPTER?2 2-7

Consumer Consumer

Push

Consumer
Producer | Communication (SOAP)

Request
/Reply

&

Access
Controll

Consumer

8

" - Directory Service Location >

Directory Service Location g
Crodentials Gredentials g <):{> Directory Service

8

(=)

<):> Directory
Service Producer data processing

Communication (LDAP)

Directory Service
Communication (LDAP)

Sensor Data Cache

OAP)
Sensor Access
Communication (ACE) | Controll request /

reply notification
(a) Producer (b) Consumer

Figure 2.4: Producer and consumer

Each producer has its own cache, storing a configurable nuafilstatus up-
dates from the different plugins of each registered ser@mnsumers can retrieve
either the last known status update from a specific sensgirplar historic data
from the producer’s cache. Furthermore, producers prozitimited number of
statistical operations (average, minimum, maximum, steshdeviation, etc.) on
cached data. Sensor failures (e.g. resources going effaibtuptly) can be de-
tected and a failure notification will be sent to consumers wiere interested in
this sensor’s data. Access control prevents unauthorizesleners from retrieving
data from a producer and prevents unauthorized sensorspiaghing monitored
data.

2.3.3 Directory service

The directory service (see figure 2.5) contains informatiorthe registered pro-
ducers (and their respective offered status informatitme) producer-sensor map-
pings and producer access control lists. It is queried byyrers and sensors to
retrieve these mappings, and by consumers and the mowgjteiwice to find a set
of providers matching a given criterium. On top of this, thectory service also

stores static resource properties (e.g. installed soévardware) to be used by
the information services.

2.3.4 Consumer

Consumers (see figure 2.4(b)) query the directory servidintbproducers ca-
pable of delivering the desired monitoring data. They thesceed by directly
contacting these producers, either to retrieve data usiegwest/reply pattern or

2-8 GRID MONITORING

Monitorin
Consumer otornd
Service
access Consumer
controll | Communication (LDAP)

[Producer monitored data_| access controll |

Directory Service

Information

&
Information

&

Producer

<&
<):> Producer
<

Producer

Producer-Sensor mapping

Grid Config
Producer Config

Static Resource
Properties

Producer
Gommunication (LDAP) | controll

Sensor Config

access | Sensor Communication
controll (LDAP)

Sensor Sensor

Figure 2.5: Directory service

to register themselves in order to retrieve future dataguaim event-based sub-
scription model. Several consumers have been implemetiteanost important

being an archiving consumer (storing data in a relationtdhse and offering a
GUI view of historical data), a real-time Java-based vigadibn agent (see fig-
ure 2.10) and a network status correlation agent suppoutsage prediction (by
passing monitored network status to the Network Weatheri@rand network

failure localization (by automated comparison of histakigtatus information).

2.3.5 Monitoring service

The monitoring service is in effect an optimizednsumer its primary role is to
retrieve dynamic status information (from the appropriateducers) pertaining to
the resources presented to it by the information serviceslURers capable of sup-
plying the requested status data can be located throughréwaty service. The
monitoring service only gathers the most recent value pbbtl by the producers,
and communicates with the producers using a request-rgpyttansaction.

2.3.6 Information service

The information service provides Grid management compisneith a resource
status/property match-making functionality: manageneentponents can contact
this service by submitting resource queries, containirgg@rmore(attribute, re-
lational operator, valuejriplets limiting the resulting resource set (e.g. avd#ab
memory>= 256 MB and architecture-= multiprocessor). The information ser-
vice will first query the directory service for resources audihg to the requested
static resource property demands (e.g. installed softharéware, installed mem-
ory). Once the resources complying to the static requirésnefnthis request are
known, the necessary dynamic status information for theseurces will be sup-

CHAPTER?2 2-9

Management
Component

Management
Component

Information Information
Service Service

Management
j E i ; C 1t Interface

Information (SOAP)
Service

Information Service
Communication (SOAP)

Monitoring
Service

‘ Directory Service Location ‘

<)::> Directory [Credentials |
Service

Monitoring Service
Communication (SOAP)

g

Directory
Service

‘ Directory Service Location

Directory Service
Communication (LDAP)

‘ Credentials

Directory Service
Communication (LDAP)

Producer Communication
(SOAP)

L g

Monitoring
(a) Monitoring service (b) Information service

Figure 2.6: Monitoring and information service

plied by the monitoring service. Finally, the resultingagesce set (to be sent back
to the management components) will be further reduced byvamg resources
that do not adhere to the requested dynamic resource denfeugds available
memory, remaining storage space).

Figure 2.7 shows the message passing order between thedift@mponents
when a management component submits a resource query.

1. A management component sends a query to the informatieitsdor re-
sources adhering to static resource properties (inst&led, total mem-
ory, installed software/hardware, etc.) and dynamic resostate (available
memory, available storage space, etc.).

2. The information service sends a query to the directoryicefor resources
adhering to the static resource property requirements.

3. The directory service supplies a subset of its registezsdurces adhering
to the requested static resource properties.

4. The information service queries the monitoring servimerhonitored re-
source state information of the resources supplied by treetdiry service
in step 3.

5. The monitoring service queries the directory servicepfmducers capable
of providing the required resource state info.

6. The directory service supplies a list of producers thaéik@ monitoring
data from sensors installed on the resources the monitsgngce is inter-
ested in.

2-10 GRID MONITORING

Informgtion 4@‘ Management Information [Management
‘®%®’ Service Component Service HE)™ Component
-(5—— Monitoring Monitoring
——®)»] Service Service
Directory Directory
Service o@ @® Service ® ee
©
Producer Producer
I T : T
Sensor S J Sensor Sensor J
(a) Message transition (non-cached) (b) Message transition (cached)

Figure 2.7: Resource query message passing order

7. The monitoring service asks the different producers fonitored resource
state information.

8. Producers provide monitored resource state info.

9. The monitoring service sends the information serviced¢geired dynamic
resource state information.

10. The information service answers the management compsmgiery with
the resources that adhere to both the static resource giespand the dy-
namic resource state information.

Note that steg2, 3, 5 and6 are not necessarily mandatory (as shown in figure 2.7(b)),
as both the information service and the monitoring serveeehbeen equipped
with a directory service caching mechanism (storing stasource properties and
producer offerings respectively). Producers do not needneact their sensors, as
they consult their sensor update cache (which is filled bpémsors’ status update
push).

2.4 Technology analysis and implementation

The Information & Monitoring Framework presented here wasighed to achieve
good performance while maintaining a high level of portipilOur performance
requirement has driven us to the use of the C++ language f2B8iel implemen-
tation of the different components. While C/C++ programmiagguages pro-
vide good performance and offer more control over memoigcation/dealloca-
tion (than for instance the Java programming language)Cthestandard library

CHAPTER?2 2-11

does not offer cross-platform solutions for various vitaplcation patterns such
as networked communication and multiple threads of executiTherefore, the
need arises to use a portable and well performing C++ miduiewwlatform for
implementations of these high-level features. In our fraor&, we have decided
to use the Adaptive Communication Environment (ACE [25) 28]offers cross-
platform multithreading, and iteactorconcept allows for easy implementation of
event-based (including network events) applications.tifeumore, we make use
of the Acceptor/Connectopattern offered by ACE to open networked communi-
cation channels between producers and sensors.

Whenever a sensor needs to send monitored data to the predbhegrare
registered with, the data is sent in CORBA Common Data Repiaton (CDR)
format [27], offering a portable, network optimized way @inemunicating. The
resource monitoring data gathered by the sensors is obtéimeugh the GTop
library [28], a portable C/C++ library offering access tafpemance values re-
lated to system resources. Each resource is monitored hysarsglug-in, which
is essentially a shared library. The plug-in approach ibkbby the fact that
ACE features cross-platform dynamic loading of sharedtiles. The methods of
the abstract MonitorPlugin class which every plugin mugtleament is shown in
listing 2.1.

Listing 2.1: abstract class MonitorPlugin

classMonitorPlugin:public ACE_Task< ACE_MT_SYNCH>{
public:
MonitorPlugin();
virtual "MonitorPlugin();
virtual int receiveconfigdata¢har+ data)=0;
virtual int convertToChaxgharx buffer)=0;
virtual int convertFromChaotharx data)=0;
virtual NameValVector getValues()=0;
virtual bool needActivate()=0;
virtual PluginCapabilities getCapabilities()=0;
virtual int WriteTOCDR(ACEOutputCDR &cdr)=0;
virtual int ReadFromCDR(ACHnputCDR &cdr)=0;

In what follows we briefly given an overview of the supportedthods in this
abstract class:

e int receiveconfigdata(char* data)enables the plugin to receive additional
configuration information from a producer or the directogypéce (e.g. fre-
guency of monitoring).

e int convert(To/From)Char(char* datajused mainly for debugging internal
plugin data.

2-12 GRID MONITORING

e NameValVector getValues(@onstructs a vector of (name,value) pairs with
name and value both string representations of the name ah#esured
item and the actual monitored data (this string representanables us
to generically store different data types: the actual dgpe tused by the
monitored value can be retrieved by querying the pluginfsatdities).

e bool needActivate()a sensor uses this function to check if it needs to start
a separate thread for the plugin. For small calculationsuch ¢hread is re-
quired, but if the plugin needs to perform heavy processimthie monitored
data, a separate thread can prevent the sensor from bloghiferetrieving
the plugin’s monitoring data.

e PluginCapabilities getCapabilities()in order to support generic plugins,
this function enables retrieval of metadata informatiogareing the items
that can be monitored using this plugin. It returns namecrmijeson and
data type for each item that the plugin is capable of meagurin

e int (ReadFrom/WriteTo)CDR(.:.)The Adaptive Communication Environ-
ment (ACE [25]) offers ACECDR classes for optimised (w.r.t. data size)
and machine independent storing of primitive data typed @@mays of the
aforementioned types), useful for transporting over a ngtw

Our directory service is essentially a decentralized LD2#] flirectory server.
While the expressive power of LDAP queries does not matchahatg. an SQL
query over a relational database [30], LDAP is performatuced for write-once,
read-many operations (which is ideal in our case since wirgservice queries
are much more frequent than static resource property ceamgeonitoring ar-
chitecture component deployment changes). Entries inlbi&sP directory ser-
vice are stored in a Directory Information Tree (DIT) basedteir Distinguished
Name (DN). Each entry is uniquely identifiable by its DN (cargble to a pri-
mary key in a relational database system). In figure 2.8 wevghe DIT for the
Grid monitoring framework (along with some sample attrdm)t One or more
Grid entries can be stored in the directory service, wittheaad entry consist-
ing of a set of producer entries. Each producer entry is paceone or more
sensor entries, which in turn are parenting one or more “MeasentModule”
entries. Host information is stored in a separate entry amdbe linked to by
producer and sensor entries, as we allow multiple produa@ifor sensors to be
deployed on a single host. An example of a unique DN in figugi2Sensor-
Name='Sensorl’,ProducerName='Producerl’,GridNamesstGrid1’,cn="test’

In order to ease directory service management, an easyet&Graphical User
Interface was developed (as seen in figure 2.9).

Producers provide a Web Service Description Language (WS nter-
face through which they are contacted by consumers usingPJR32]. SOAP is

CHAPTER 2 2-13
Directory Root
“cn=test”
Objectclass Grid Objectclass HostPool
“GridName=testGrid1” “Poolname=Pool1”
Y
Objectclass Producer Objectclass Producer Objectclass Host
“ProducerName=Producer2” “ProducerName=Producer1” “HostlP=192.168.0.1"
“Hostref=<dn of host>" “Hostref=<dn of host>" “CPU-type=Athlon”
“Port=4000" “Port=4000" “CPU-speed=1400"
“SoapPort=3000" “SoapPort=3000" “Memory-total=256"
Objectclass Sensor Objectclass Sensor
“SensorName=Sensor2” “SensorName=Sensor1”
“Hostref=<dn of host>" “Hostref=<dn of host>"
“Port=3001" “Port=3001" DN: SensorName=Sensor1,
ProducerName=Producer1,
GridName=testGrid1, cn=test
Objectclass Objectclass
MeasurementModule MeasurementModule
“ModuleName=NetModule” “ModuleName=CPUModule”
“MeasurementPeriod=100" “MeasurementPeriod=1000"

Figure 2.8: Sample LDAP directory service information tree

8 cen s 2loixg

Grid Q@ O de=grid
0 @ [Grid: grid
| ‘ ‘ Clear gridtext ‘ ﬁ @ [Producer. zeus155
2ustss I @ [Client venus193
| ndagria | | Removegria | | modtygria | | | [CPUMonitor
o, [is0 || B NETMonitor
7 MEMMonitor
Pool=f
orkd || | era Grick gried bt [} swaPMonitor

| / @ [Client venus195

[} cPuMonitor

| 4) MEMMonitor

[swaPMonitor
D NETMonitor

Clientport |40

Host info :zeus155 || | [Ccwear

Hostoccupation Occupied by 1 elements. |
Client

Client name |venus199 | [addcient | select moduie cpumonitor v

Remove client | Module name INETMonitor ©-] Client: zeus156
Modify client | Measurement Period |1 /

©- [Client venus198
©- [Client: venus197
©- [Client venus196

l
[N
Grid | Gria: gria - |
||

Producer | Producer: zeus155

Figure 2.9: Directory service management GUI

2-14 GRID MONITORING

| from/to | Sensor| Producer [Consumer | Dir. Service | Inf. Service |

Sensor / ACE / LDAP /

Producer ACE / SOAP LDAP /
Consumer / SOAP / LDAP SOAP
Dir. Service | LDAP LDAP LDAP / LDAP

Inf. Service / / SOAP LDAP /

Table 2.1: Communication technologies

an XML-based RPC protocol which can be transferred over HTlaBRsuch, the
use of SOAP allows for the easy integration of our monitor@mghitecture in a
web services-based Grid environment. In our implemeniatie used gSOAP as
reported on in [33].

The information service also provides a WSDL interface todifferent Grid
management components. In listing 2.2 we provide a sampmeygin which a
scheduler asks the information service for resources wltdtaat a 500Mhz proces-
sor (a static resource property) and 256MB of available nrgrspace (a dynamic
and monitored resource state), with query results ordesearding to the amount
of memory available. Listing 2.3 provides a sample answéhegrevious query,
with the information service providing the IP addresses msdurces adhering to
the scheduler’s requirements.

The information service contacts the directory servergiative LDAP com-
mands (to retrieve resource sets that comply to static resqaroperty demands)
and offers a WSDL interface towards the monitoring servicegonent.

An overview of the communication methods used between thieuscom-
ponents of our Grid Monitoring Architecture is given in tal#.1. It should be
noted that SSL encryption [34] is possible for both SOAPraNETP and LDAP
communication. This allows access control through the dsgser and server
certificates. The data updates between sensors and predizcebe secured by
enabling an SSL socket adapter in these components.

A realtime data visualization consumer was implementedaira.and offers
GUI visualization of select monitored data (see figure 2dt can print data to
HTML files in a presentable manner (see figure 2.11). An ansiconsumer was
also implemented in Java, capable of storing monitoredidadostgreSQL [35]
relational database (using a JDBC [36] connection) andioffeéGUl visualization
of archived data.

In order to provide network resource state forecastingtfanality, a “ping”
and “trace” sensor plugin was developed, capable of meapuound trip time
(RTT), packet loss and routing details between two hostses&lsensors send
monitored network data to interested producers, who in tam push this data
to a specialized network forecasting consumer, storingived data, along with

2-15

CHAPTER 2

.

HESTTIEW

T

0£85: 28

1801 ndd

AOUIBINGD

PO TR

180l ndd

et kel L IR = T8

Pas Wam

ACHUOA T

 Eanp

SUIEHEIEoN.

1

0£85: 2T

Pash Waw

AoUBIINI I

fut o = =Rt

1El0L NdD

AojuonndD

Pash Waw

Futogt= =Bttt

AUENAIN

AONUORKINS W

AU

‘

|

|

P p—p——y

| [a wowewna| [«

non | [B onag] |

ADJIUDL eIy

Figure 2.10: Realtime consumer GUI

2-16 GRID MONITORING

Listing 2.2: Scheduler-information service query example

<2ml version="1.0" encoding="UTF-8"?>

<SOAP—-ENV:Envelope xmIns:SOARENV="http://schemas.xmlsoap.org/soap/envelope/”
xmIns:SOAR-ENC="http://schemas.xmlsoap.org/soap/encoding/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchemanstance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:ms="urn:monitoringserversoap”
xmins:is="urn:informationserversoap”

<SOAP-ENV:Body id="_0">
<getRestrictedList xmIns="urn:informationserversoap”
<q xsiitype="is:Query>>
<numberOfMachines 3</numberOfMachines
<constraints xsi:type="SOAPENC:Array” SOAP-ENC:array Type="is:Constraint[2}>
<item xsi:type="is:Constraint>
<constraintltem-CPU_Speed:/constraintitem-
<constraintType-greater than or equal £&0constraintType-
<constraintValug-500</constraintValug-
<litem>
<item xsi:type="is:Constraint>
<constraintltem-MEM Free</constraintltem-
<constraintType-greater than or equal ¢&0constraintType-
<constraintValug-256</constraintValug-
<litem>
</constraints
<sortData xsi:type="SOARENC:Array” SOAP-ENC:array Type="xsd:string[2}>
<item>MEM Free</item>
<item>by greatest/item>
</sortData>
<lg>
</getRestrictedList
</SOAP—ENV:Body>
</SOAP—-ENV:Envelope>

timestamps, in a PostgreSQL database. The stored dataszaautomatically be
fed to the Network Weather Service’s forecasting prograenggating predictions
about RTT and packet loss between hosts.

2.5 Results

2.5.1 Testbed setup

The testbed used in our performance comparison is depiotédure 2.12 and
summarized in table 2.2. Six machines (AMD Duron 750Mhz, 84RAM) have
a sensor deployed on them (a single sensor can have mukips®isplugins in-
stalled), and four other machines (Intel P4 3GHz, 1GB RAMJycane producer
each; two producers have two sensors registered with theshthe other two have
one sensor registered. An OpenLDAP [37] directory serverdeployed on a sep-

CHAPTER?2 2-17

Listing 2.3: Information service answer example

<2ml version="1.0" encoding="UTF-8"?>

<SOAP—-ENV:Envelope xmIns:SOARENV="http://schemas.xmlsoap.org/soap/envelope/”
xmIns:SOAR-ENC="http://schemas.xmlsoap.org/soap/encoding/”
xmins:xsi="http://www.w3.0rg/2001/XMLSchemanstance”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:ms="urn:monitoringserversoap”
xmins:is="urn:informationserversoap”

<SOAP-ENV:Body id="_0">
<getRestrictedListResponse xmIns="urn:informationsesvap™
<Result xsi:type="SOAP-ENC:Array” SOAP-ENC:array Type="xsd:string[3]*>
<item>10.10.10.19%/item>
<item>10.10.10.198 /item>
<item>10.10.10.156/item>
</Result>
</getRestrictedListResponse
</SOAP—ENV:Body>
</SOAP—-ENV:Envelope>

Measurements of the Client venus199 , Producer zeus155 , Grid grid

CPU: 550 Mhz - Memory: 64 MB - HOST: venus 199 - HOSTPOOL: grid - HOSTIP: 10.10.10.199

Module: CPUMonitor - kem: CPU Total - Description. The total number of CPU cycles since bodt
Moduls: MEMMOniar - kem: WMEM Used - Description: The total Memary used

ModuteName Moduteiterm Measured Value Time

CPUManitor CPU Total 220 15:35:57
MEMManitar MEM Used 59.0 15:35:57
CPUManitor CPU Total 200 15:35:58
MENManitar MEM Used 59.0 15:35:58
CPUManitor CPU Total 470 15:35:59
WERhanitor MEM Used 59.0 15:35:59
CPUManitor CPU Tatal M0 15:36:01
MFERKanitar RAFRA ead gan 153 N1

Figure 2.11: HTML output for measurements

arate machine featuring dual Xeon processors (2.8Ghz, 1GR)RLastly, the
consumers (implemented as concurrent threads) used iagteedre located on a
second dual Xeon machine. All machines are interconnebtedigh a 100Mbps
switched Ethernet LAN (see figure 2.12); this setup allows$ousvaluate intru-
siveness and scalability of the different developed coreptswithout suffering
significant network bottlenecks.

Globus MDS2 was deployed as follows: a Grid Resource InftionaSer-
vice/Grid Information Index Server (GRIS/GIIS) pair rantbie Intel P4 machines
(instead of the producers), sensors were replaced with @Bi$onents whose
monitoring data was cached by the Intel P4 GIIS. Our LDAPaloey service was
replaced by a GIIS (on the dual Xeon machines) connecteckttother level Gl-
ISs. Consumers in our MDS2 tests were spawned from the sarci@meaas our

2-18 GRID MONITORING

dual Xeon 2.8Ghz
1GB ram

100 Mbps
ethernet

P4 1Ghz
1GB ram

Duron 750Mhz
64MB ram

Figure 2.12: Testbed topology

] | Sensor| Producer | Consumer | Dir. Service |

Monitoring Framework | Sensor| Producer | Consumer LDAP
MDS2 GRIS | GRIS/GIIS | Consumer GlIS
GT 3.2 WS-IS WS-IS Consumer /

Table 2.2: Testbed component setup

first tests.

The Globus Toolkit 3.2 Web Services based Information $es/i(GT 3.2
WS-IS) was deployed on the AMD Duron and Intel P4 using the uefup-
plied OGSI-compliant container [38]; on the AMD Duron maus, the WS-IS
was configured to submit its data to a Pentium 4 machine (whégd to run a
producer). Again, consumers were spawned from a dual Xeahima GT 3.2
WS-IS does not offer a component comparable to our direcemyice.

2.5.2 Metrics

Two metrics were used to evaluate component performaticeughputandre-
sponse timeDuring a 10 minute period, “users” submitted blocking deto the
component under investigation, while waiting for 1 secoertiveen the moment
an answer to the previous query has been received (the gitie is used to

CHAPTER?2 2-19

reinitialise the querying threads) and the time a new quesent. The through-
put was then taken to be the number of queries handled by tiawent per

time unit; the response time is the average amount of timentédk process 1 user
query. Note that, in practice, multiple components can takéhe “user” role: the

information service, monitoring service and producersaihmunicate with the

directory service, whereas a producer is always contagtezbbsumers (in this

context, the consumer is the monitoring service).

2.5.3 Information and Monitoring Service

From the previous section, it follows that the two most pkewacommunica-
tion patterns are the ones where either the directory sexvi¢he producers are
queried. We have therefore chosen to limit our performamckesgalability tests
to these patterns. SOAP communication between the Grid'mgement compo-
nents and the information service on the one hand, and bettheeinformation
service and the monitoring service on the other hand, ciensisimple data trans-
fers with no extra intelligence. Processing time spent artionitoring service
includes per-resource directory service lookups (if napoer location caching is
used) and producer queries.

2.5.4 Producer intrusiveness

The network and computational intrusiveness (i.e. ovethebour producer com-
ponents is shown in figure 2.13 and figure 2.14, and compated toad generated
by the Globus MDS GRIS. The network traffic generated was toog using the
SCAMPI [39] multi-gigabit monitoring framework. The CPUdd is the aver-
age (over the 600 second interval) one minute CPU load aggeesgmeasured by
uptime

The higher network load generated between our producerfendansumers
(i.e. users in this test) stems from the use of the SOAP-BNErP XML-based
communication mechanism (note that we did not enabke[40] compression).
The web services approach used by Globus Toolkit 3.2 Webicasnbased In-
formation Service (WS-IS) imposes a network load compartabthat of our ar-
chitecture for low £100) amounts of concurrent users. However, beyond 100
concurrent users, the GT3.2 WS-IS do not scale well (with 4imes and drop-
ping of user requests), which explains their apparent lawaoik intrusiveness. In
analogy, the CPU load generated by the WS-IS seems to degitdmeveasing
number of concurrent users, but this is slightly deceptasgthe WS-IS does not
scale beyond 100 users, it is no longer able to keep up wittppropriate pace
of query response generation from this point on. A produeenfour monitoring
architecture imposes a processor load of less than 6 pextemnt 600 consumers
are concurrently querying it, while the MDS GRIS needs 21'8get of processor

2-20 GRID MONITORING

1e+06

T T

Producer —f—
Globus MDS GRIS ---¢--- |
900000 Globus WS-IS ---2K---- 4

800000 -
700000 -
600000 -
500000

400000 [

Network Load (bytes/s)

300000

200000 |- ><>< e
RO N SO S
100000 BV Koo N
O >< Il Il Il Il Il
0 100 200 300 400 500 600

No. of Concurrent Users

Figure 2.13: Producer vs. MDS GRIS vs. WS-IS network intrusigenes

time under the same user load conditions (note that a loag Vagher thar in
figure 2.14 denotes insufficient processing power avait@blandle all jobs).

It should be noted that the WS-IS framework is the only momitpand infor-
mation framework in these tests which is completely webisesvbased, trading
performance for a standards based interface.

2.5.5 Producer scalability

In figure 2.15 and figure 2.16, we have compared producer stglavith in-
creasing number of concurrent users for both our framewgskdducers, MDS
GRIS and WS-IS components. Again, only cached data was reglfgem the
MDS GRIS; due to the use of a push-model our framework’s pretkialways
contain up-to-date information, while the GRIS would hawvéwoke information
providers to refresh its data. We measured only small diffees between MDS
GRIS and our producers (best visible on the response tinmghjraBeyond 550
concurrent users and using the given machines, MDS GlISpeédnce started
to degrade. We also compared our producer scalability tetaability of the
GT 3.2 information service. Again, it is clear that GT 3.2 W&edoes not scale
well beyond 100 concurrent users (the GT 3.2 WS-IS results fareed us to use
a logarithmic scale in figure 2.16, which shows that respdimses differ by as
much as a factor of 100).

CHAPTER?2 2-21

25

Producer —+—
Globus MDS GRIS ---><---
Globus WS-IS ---3---
2 I -
15 3 I
o K s ’
<1
3 H
2 .
1r ; |
¥
K N
05 - X .
Koweeee x
X
o — : : sy
0 100 200 300 400 500 600

No. of Concurrent Users

Figure 2.14: Producer vs. MDS GRIS vs. WS-IS cpu intrusiveness

600 T .
Producer ——
Globus MDS GRIS ---X<---
Globus WS-IS ---
500 B
400 - B

Throughput (queries/s)
w
o
o
T

200 -

0 Il Il Il Il Il

0 100 200 300 400 500 600
No. of Concurrent Users

Figure 2.15: Producer vs. MDS GRIS vs. WS-IS throughput

2-22 GRID MONITORING

100 . .
Producer —+—
Globus MDS GRIS ---¢---
Globus WS-IS -------
kR
L e]
10 %
v
= ¥
gty |
2
3
i3
01p |
e X
O AN ” i
"""" AR A A— AT
0.01 i ‘ : ‘ i 1 ‘ :
0 100 200 300 400 500 600

No. of Concurrent Users

Figure 2.16: Producer vs. MDS GRIS vs. WS-IS response times

2.5.6 Directory Service Scalability

The throughput and response times for directory serviceiegigiere compared
(figure 2.17 and figure 2.18) to those obtained for queriesagthe MDS GIIS

(operating on cached data). Average response times are foweur directory

service; however, both our directory service and the MDSSGIbn't scale well

beyond 450 concurrent users in this scenario on the givaiwae. It should be
noted however, that a GIIS typically contains more datal(itiog cached moni-
toring data) than our directory service, which only storesfiguration data, never
monitoring data (this should be requested straight fromaalycer or from an

archiving consumer). This led to a bigger result set when@GH& was queried.

In addition, our directory service is a plain OpenLDAP serweithout module

extensions. We chose not to show results for the GT 3.2 beazubke absence of
a dedicated component offering functionality which cope®ds to our directory
service or the MDS2.2 GIIS.

2.6 Conclusions

In this chapter a well-performing, scalable and portablermation and monitor-
ing framework was presented. Performance was obtainedghrthe use of C++
as base implementation language, together with cachingpamésms at key loca-
tions (e.g. producers caching sensor data, eliminatinghéeel for producers to
contact sensors directly); portability then dictated tee of appropriate middle-

CHAPTER?2

2-23

500

400

350

300

250

200

Throughput (queries/s)

150

100

50

0.9

0.8

0.7

0.6

0.5

0.4

Response Time (s)

0.3

0.2

0.1

T T
Directory Service ——
Globus MDS GIIS ---<---

100 200 300 400 500 600
No. of Concurrent Users

Figure 2.17: Directory Service vs. MDS GIIS throughput

T T
Directory Service ——
Globus MDS GIIS ---<--

100 200 300 400 500 600
No. of Concurrent Users

Figure 2.18: Directory Service vs. MDS GIIS response times

2-24 GRID MONITORING

ware for which we chose the Adaptive Communication Envirent(ACE) with
Corba CDR data exchange, the GTop libraries for monitorgspurce status and
Java based consumers. Scalability was achieved by usingfs€hpliant archi-
tecture consisting of sensors, producers, consumers aademilalized directory
service. Multiple ready-to-use consumers (e.g. netwodgesrediction/failure
detection, real-time visualization, archiving) have b&aplemented, and the in-
formation service offers a fast resource matchmaking péstause by manage-
ment components.

We compared our Information and Monitoring Framework ta tishe Globus
MDS2 system and its successor, the Globus Toolkit 3.2 webcasrbased infor-
mation service, in terms of performance and intrusivendgssod results were
measured in terms of query throughput and response tim#és fdroour produc-
ers and directory service. Network intrusiveness was coafpa to the GT 3.2
information service but worse than Globus MDS2, althougé ¢an be remedied
by applying a compression algorithm to the SOAP-over-HTTRRLXmessages
between producers and consumers. The computationalirgngss of our frame-
work was measured to be near negligible.

Monitored resource properties (e.g. typical processirmabiities, network
bandwidths) and state information data (e.g. failure pbdhi@s) can be used to
construct realistic Grid topology descriptions for sintida purposes.

CHAPTER?2 2-25

References

[1] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Tayl and R. Wol-
ski. A Grid Monitoring Architecture htt p://www di dc. | bl . gov/
GGF- PERF/ GVA- WE paper s/ GAD- GP- 16- 3. pdf, 2002.

[2] The Globus Allianceht t p: / / www. gl obus. org/ .

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesseaim@rid Information
Services for Distributed Resource Shatrirlg Proc. of the 10th IEEE Inter-
national Symposium on High-Performance Distributed Cotimgyi2001.

[4] WS Information Services websitat t p: / / www uni x. gl obus. or g/
t ool ki t/docs/ 3. 2/ i nfosvcs/ ws/ key/index. htni .

[5] Global Grid Forum http://ww. gri df orum org/.

[6] Douglas Thain, Todd Tannenbaum, and Miron Livigondor and the Grid
in Grid Computing: Making The Global Infrastructure a RésliJohn Wiley,
2003.

[7] HawkEye: A Monitoring and Management Tool for Distributegstems
http://ww. cs.w sc. edu/ condor / hanwkeye/ .

[8] Bruce Lowekamp, Nancy Miller, Thomas Gross, Peter Stest@, Jaspal
Subhlok, and Dean Sutherlardresource query interface for network-aware
applications Cluster Computing, 2(2):139-151, 1999.

[9] Bruce Lowekamp, Nancy Miller, Roger Karrer, Thomas Groand Peter
Steenkiste.Design Implementation and Evaluation of the Remos Network
Journal of Grid Computing, 1:75-93, 2003.

[10] M. Gerndt, R. Wismuller, Z. Balaton, G. Gombas, P. Kagstis. Nemeth,
N. Podhorszki, H. L.Truong, T. Fahringer, M. Bubak, E. Lawed T. Mar-
galef. Performance Tools for the Grid: State of the Art and FutlResearch
Report Series, 30, 2004.

[11] The DataGrid Project http://eu-datagrid.web.cern.ch/
eu- datagrid/.

[12] A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, Byrom,
L. Field, S. Hicks, and J. Leake et aR-GMA: An Information Integration
System for Grid Monitoring In Proc. of the 11th International Conference
on Cooperative Information Systems, 2003.

2-26

GRID MONITORING

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

Andrew W. Cooke, Alasdair J. G. Gray, Werner Nutt, Jaiegowan, Man-
fred Oevers, Paul Taylor, Roney Cordenonsi, Rob Byrom, &i@drnwall,

Abdeslem Djaoui, Laurence Field, Steve Fisher, Steve Higkson Leake,
Robin Middleton, Antony J. Wilson, Xiaomei Zhu, Norbert Padszki,

Brian A. Coghlan, Stuart Kenny, David O’Callaghan, and J&yan. The

Relational Grid Monitoring Architecture: Mediating Inforation about the
Grid. Journal of Grid Computing, 2:323-339, 2004.

M.A. Baker and G. SmithGridRM: A Resource Monitoring Architecture for
the Grid In Springer-Verlag, editor, Proc. of the 3rd Internation@rkshop
on Grid Computing, 2002.

M.A. Baker and G. Smith. GridRM: An Extensible Resource Monitoring
System|In proceedings of the IEEE Cluster Computing Conferen0832

Java http://java.sun.coni.
Apache Tomcatht t p: // t ontat . apache. or g/ .

R. Wolski, N. Spring, and Jim HayesThe Network Weather Service: A
Distributed Resource Performance Forecasting ServiceMetacomputing
Journal of Future Generation Computing Systems, 15(59991

Rich Wolski. Experiences with Predicting Resource Performance Oniine
Computational Grid SettingsACM SIGMETRICS Performance Evaluation
Review, 30:41-49, 2003.

Brian Tierney, Brian Crowley, Dan Gunter, Mason Holglidason Lee, and
Mary Thompson.A Monitoring Sensor Management System for Grid Envi-
ronments In Proc. of High Performance Distributed Computing’ 000@0

X. Zhang, J.L. Freschl, and J. SchopA Performance Study Of Monitor-
ing and Information Services for Distributed Systenhs Proc. of the 12th

IEEE International Symposium on High-Performance Distiglodl Comput-

ing, 2003.

X. Zhang and J. SchopfPerformance Analysis of the Globus Toolkit Mon-
itoring and Discovery Service, MDS2n Proceedings of the International
Workshop on Middleware Performance (MP 2004), part of thel 28ter-
national Performance Computing and Communications WaxgiPCCC),
2004.

B. Stroustrup.The C++ Programming Languagedddison-Wesley Publica-
tion Company, 2000.

CHAPTER?2 2-27

[24] Matthew Wilson. Does C# measure up: Comparison with C, C++, D
and Java Windows Developer Networht t p: / / www. wdj . con? wdn/
webext ra/ 2003/ 0313/, 2003.

[25] D.C. Schmidt and S.D. HustonC++ Network Programming: Mastering
Complexity Using ACE and Patternaddison-Wesley Longman, 2002.

[26] D.C. Schmidt and S.D. HustonC++ Network Programming: Systematic
Reuse with ACE and Framework&ddison-Wesley Longman, 2003.

[27] Common Object Request Broker Architecture: Core Spedditatersion
3.0.3 http://ww. ong. org/technol ogy/ docunent s/ cor ba_
spec_cat al og. ht m 2004.

[28] LibGTop website http://ww. gnu. org/directory/libs/
Li bGTop. htm .

[29] Wahl M., T. Howes, and S. Kille.Lightweight Directory Access Protocol
(v3). IETF RFC 2251, 1997.

[30] D. Lu, P. Dinda, and J. SkicewiczScoped and approximate queries in a
relational grid information service In Proceedings of the 4th International
Workshop on Grid Computing (Grid 2003), 2003.

[31] Web Service Definition Languaget t p: / / www. W3. or g/ TR/ wsdl .

[32] Simple Object Access Protocol (SOAPHtt p://ww. W3. or g/ TR/
soap/ .

[33] R.A. van Engelen and K.A. GallivanThe gSOAP Toolkit for Web Services
and Peer-To-Peer Computing Netwarkin CCGRID '02: Proceedings of
the 2nd IEEE/ACM International Symposium on Cluster Cormuuand the
Grid, page 128, 2002.

[34] A. O. Freier, P. Karlton, and P. C. Kochelthe SSL Protocol Version 3.0
http://wp. net scape. com eng/ ssl 3/ draft 302. t xt, 1996.

[35] PostgreSQLht t p: / / www. post gresql . org/ .

[36] Java DataBase Connectivity htt p://j ava. sun. coml product s/
j dbc.

[37] OpenLDAP websiteht t p: / / www. openl dap. or g.

[38] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Grah&n Kesselman,
T. Maguire, T. Sandholm, P. Vanderbilt, and D. Snelli@pen Grid Services
Infrastructure (OGSI) Version 1.0Global Grid Forum Draft Recommenda-
tion, 2003.

2-28 GRID MONITORING

[39] J. Coppens, S. Van den Berghe, H. Bos, E.P. Markatos, eF.TOrck,
A. Oslebo, and S. Ubik.SCAMPI: A Scalable and Programmable Archi-
tecture for Monitoring Gigabit NetworksIn Proc. of the 1st Workshop on
End-to-End Monitoring Techniques and Services, 2003.

[40] zlib compression libraryht t p: / / www. zl i b. net /.

Grid Simulation

3.1 Introduction

Due to the size and complexity of typical Grid topologies &mel large number
of resources involved, it is a cumbersome (if not impos$ibleleal to have to
build a real-life Grid testbed each time one wants to expeninwith different
Grid scheduling algorithms and resource management gieeaten a variety of
topologies. In order to facilitate research into Grid maragnt and allow for a
wider range of Grid configurations to be experimented witle aeeds to resort
to simulation. The Grid Information and Monitoring Framewalescribed in the
previous chapter can in this case be used to provide sirantatvith realistic com-
putational, data, storage and network resource properties

While a lot of Grid simulators are already in existence (seeréiated work
in section 3.2), none of them provide accurate and up-te-datwork resource
modelling. Indeed, since one of the main characteristies®fid is its distributed
nature, the interconnecting network should be treated thithsame importance
as any other resource (e.g. computational, storage), andhefocus of this dis-
sertation is to incorporate network status information itie scheduling decision
process. To cope with this hiatus, we have developed NS@r@lid simulator
based on Network Simulator 2 (ns-2 [1]). Ns-2 is an ongoirgpagch project
providing a discrete event network simulator with a muttéof accurate network
protocol models (TCP/IP, multicasting, routing) on a vigrigf wired and wireless
networks. NSGrid adds to ns-2 a layer modelling the Grid teidere as well

3-2 CHAPTER 3

as components for simulating the application layer and bebgaviour. It offers

advanced Grid job, computational, storage and data resenodels that can be
mapped on an underlying ns-2 network. On top of the resoumdetsa NSGrid

also provides a variety of management components such gdiearenanager,

monitoring and information service, scheduler, serviceaggr, service monitor,
etc.

The use of a Grid-specific simulation environment allowsouddpart from re-
strictive resource and job models often encountered in ma@nd cluster schedul-
ing [2]: over the years a lot of effort has been spent into igieg algorithms to
efficiently schedule jobs over a range of processing elesng@®t cluster nodes,
processors) [3, 4]. In order to obtain performance resjolts were typically mod-
elled as “work units” to be processed by (a set of tightlyqed) “processors” that
can perform work at a given rate, neglecting network and équirements of jobs.
As such, this model does not capture all ingredients esdeéota Grid, where jobs
process large amounts of data to be transferred betweenrcesacross networks
exposing largely differing characteristics (i.e. lesarthnfinite bandwidth, possi-
ble substantial delay, unpredictability, etc.) compared tocal area network/net-
work bus.

One of the main tasks of NSGrid is evaluating different scitiad algorithms,
most notably “network aware” heuristics: when choosingrajpotational resource
from the Grid resource pool on which to run a job, suboptinedisions can be
made when selection is solely based on that computatioraliree’s properties
and status. Taking into account the current status of theamktlinks intercon-
necting the Grid resources (such as computational resgusterage resources
and data resources) can lead to better job placement sést@gpecially when
dealing with highly data-intensive Grid applications) awbid cases where jobs
are scheduled on a remote computational resource whichnisected to the Grid
through a low-bandwidth or already saturated network link.such cases the
Grid network links become bottlenecks for computationalgpess, meaning that
a computational resource slot allocated to a job using suagtkaannot be ex-
ploited to its full potential. We therefore see a need to adagd scheduling
algorithms to deal with the issue of network connectiviigtss. NSGrid can be
used to accurately compare the performance of traditicetalork unaware versus
network aware Grid scheduling algorithms and to evaluaefficiency of differ-
ent scheduling strategies (i.e. batch scheduling, asagdstihg, etc.) on a vari-
ety of Grid topologies and resource configurations. Sendatg (either control
messages or job data) between resources/management amtgpmodelled as
two layers in NSGrid: the first layer supports controlling tactual data stream
between the distinct endpoints (i.e. point-to-point catios), while the second
layer models the sending of network packets (routing, palckadling, network
protocol simulation, etc.)

GRID SIMULATION 3-3

This chapter is structured as follows: section 3.2 dethisrelated Grid sim-
ulation projects and the differences with NSGrid. In sett8o3 an overview of
the simulation models is presented: the Grid, network nesgwromputational re-
source, storage resource, data resource and job modelsoaoaghly explained,
followed by a presentation of the different management ammepts (scheduler,
replica manager, connection manager, information serges/ice manager and
service monitor) and their functionality. Grid (re)schidg strategies (whether to
start a scheduling round upon arrival of a job, or delay a reveduling round un-
til multiple jobs are available) in NSGrid are discussedent®n 3.4. Section 3.5
elaborates on the network aware and network unaware Gratistihg algorithms,
while the evaluation of those scheduling heuristics (usiagNSGrid simulation
environment) for different job classes in a typical Griddtggy is detailed in sec-
tion 3.6. Section 3.8 summarizes this chapter and gives somauding remarks.

3.2 Related Grid simulators

Our Grid simulation environment (NSGrid) is based on thel\kebwn ns-2 [1]
network simulator. While not providing the most scalableldation kernel (more
scalable C++ simulation frameworks are available, sucha&®3¥F [5, 6] and OM-
NeT++[7, 8]), ns-2 is an up-to-date, discrete event netwariulator mostly used
in academic networking research, partly due to its easyndiéity (open-source
with a large support community). Ns-2 provides models foridewange of pro-
tocols for both wired and wireless networks.

Notable existing Grid simulators include Bricks, Micro@riSimGrid, Grid-
Sim, ChicSim and OptorSim.

The Bricks Simulator [9, 10] focuses on client/server iattion in global high
performance computing systems. It allows for a single edimed scheduling strat-
egy, which does not scale well to large Grid systems and doesupport the
notion of multiple (competing) schedulers.

MicroGrid [11, 12] is an emulator modelled after Globus [18]lowing for
the execution of Globus-enabled applications on a virtuad &ystem. Research
into the area of Grid scheduling algorithms can be cumbeeswith this kind of
approach, since it requires the construction of an actuath@ application to test.

SimGrid [14] is designed to simulate task scheduling (@gizied or distrib-
uted) on Grids. Version 1 of SimGrid can be regarded as aéwettoolkit (which
interfaces to the C programming language) from which dorspircific simula-
tors can be built. The second version of SimGrid is dubbedaBi@nGrid [15]
and is essentially a simulator built upon this toolkit to leleathe construction of
simulations with multiple schedulers (as C programs). Medear network links
as well as for TCP connections are present in SimGrid. THidated TCP imple-
mentation allows for smaller simulation times when comgdcethe packet-level

3-4 CHAPTER 3

TCP simulation performed by network simulators. Of coussmulations using
other transport protocols that are not readily availab®imGrid require that these
protocols are implemented first, whereas using a networklsior ensures easy
access to a wide range of protocols. The simulated apmitatnsists of several
tasks, organized into a Directed Acyclic Graph (DAG). MeétaGrid is focused
on scheduling this application type in a master-slave envirent.

GridSim [16, 17] is a discrete-event Grid simulator basedJavaSim [18]
(which has recently evolved to J-Sim [19] and has a simil&dJaga dual-language
simulation environment as ns-2). This simulator allows itautate distributed
schedulers, and is specifically aimed at simulating magkieen economic re-
source models. While its computational resource modelsighgyhconfigurable,
only a basic notion of network connectivity is supported anderlying network
dynamics are not simulated accurately.

The Chicago Simulator [20, 21] is a simulation frameworKtoan top of Par-
sec [22] for studying scheduling and replication stratedgre Grids. A Grid is
modelled as a collection of interconnected Grid sites wighvork connectivity
of each Grid site modelled as a single parameter (descrthmpandwidth of the
gateway connecting this Grid site to the other Grid sites$. sfich, it does not
provide the level of network resource detail that is modakeileNSGrid.

OptorSim [23, 24] is a Java [25] based Grid simulator foaugsin evaluating
the performance of data access optimization algorithnssarithitecture is based
on the EU DataGrid [26] architecture. OptorSim includes @n@mic model, us-
ing a peer-to-peer auction protocol that optimizes botts#iection of replicas for
running jobs and the dynamic creation of replicas in Gridssiising a file revenue
prediction function. OptorSim takes network bandwidtloiatcount when trans-
ferring job input/output data (although it does not actuaimulate any existing
network protocols) and currently has no notion of Grid segsi

Simulation of Grid scheduling strategies which take botmpatational re-
sources and data resources (more specifically, data paalib account have been
reported upon in[27]. In this work, however, the networkecting different sites
is not simulated, but it is assumed that the different sitescannected through a
VPN-like construction over which TCP communication occusgenarios where
files are pre-staged are considered, but data transfersaligbavith job execution
are not.

Table 3.1 summarizes the main differences between thesdisduGrid simu-
lators.

GRID SIMULATION 3-5

scheduler network packet level generic
model simulation

Bricks single basic no client-server
MicroGrid distributed | very advanced yes Globus emulator

SimGrid distributed advanced no generic Grid

GridSim distributed basic no generic Grid

ChicagoSim | distributed basic no generic Grid

OptorSim | distributed basic no generic Grid

NSGrid distributed | very advanced yes generic Grid

Table 3.1: Grid simulator characteristics

Figure 3.1: NSGrid Tcl/C++ dual layered architecture

3.3 NSGrid simulation framework

3.3.1 NSGrid architecture

We have designed and implemented a Grid simulation franethat takes into
account network resource parameters and that accuratalglsoetwork traffic
using a variety of protocols and applications (FTP traffieoVCP connections,
variable bitrate UDP traffic, wireless traffic, etc.). ToshEnd the simulator was
built on top of the widely used ns-2 network simulator. Thg Kéference with
other Grid simulation toolkits such as GridSim and SimGsithiat NSGrid makes
use of an existing network simulator, which provides forlisti@ and accurate

3-6 CHAPTER 3

models for network links and protocols (ns-2 is continuguming improved and
updated with new network models and protocols). Ns-2 use$¢h[28] scripting
language to drive the simulation, while C++ [29] is used far implementation of
the various Grid components in order to reduce simulatioe tiThis Tcl front-end
gives us the possibility to rapidly create new simulaticgrsrios and offers a high-
level abstraction of the simulator entities’ implemergati. NSGrid’s architectural
specification has been developed together with colleageterPihysebaert.

Major components of our simulator are management compsiiseciedulers,
information services, connection managers, service n&gagervice monitors,
etc.) and resources (computational, data, storage andretesources). Each
component (with the exception of network resources) is@atad with a single
ns-2 node. These nodes and the network links that intercoimem are regular
ns-2 entities and model the Grid’s physical topology (figBu®).

The simulator components can be seen as models for reaelfferare com-
ponents running on the nodes they are hosted by, as comrtianibatween com-
ponents is a source of network traffic in the simulation. Tkace nature of this
traffic can be modelled after e.g. the communication middlewsed by the soft-
ware components. Messages and RPC calls exchanged betareporents are
implemented as XML messages that can easily be transpoetacén the C++
and Tcl layers. Job I/O data is sent as raw data (e.g. moda#letCP or UDP
traffic) across ns-2 links and nodes from source to destinati

The NSGrid Grid simulation layer C++ source is composed ofldgses (not
including topology generation/GUI visualisation toolspmprising 19.000 lines
of code (19 KLOC). The most important classes are shown indig2. All el-
ements that can be assigned to an ns-2 node (resources,enmardggomponents
and clients) inherit from th&ridObjectclass, which connects the Grid simulation
layer with the ns-2 network simulation layer by providingtheeds for sending/re-
ceiving data and event control (see listing 3.1 for the mogidrtant methods
supported by the GridObject class). Ed&bsourcebject contains &esourcelnfo
object which stores resource properties/status infoonaind provides methods
for reading/writing from/to XML (for sending resource imfoation between man-
agement components). Tl@&idLoggerclass provides simulation logging func-
tionality with support for multiple log levels (NSGrid usecan select the logging
levels they want to see messages from) and error reporting.

In what follows we briefly given an overview of the methodsistihg 3.1:

e virtual int command(..:)events fired in the Tcl layer are delegated to the ap-
propriate C++ method through tkemmand(...subroutine. This basically
provides the glue between the Tcl and C++ layers.

e static void sendAndExecute(.spnds commands between components. The
command is sent over the simulated network links betweerceand des-

GRID SIMULATION 3-7

JAN
[[[[
lAutommedClient] lMuIliTaskCIienl] l Client] lRescurce]
T

l l | l | oaaresours]
[storag l | [c ! | [o : |
v
l JobGroup] lResourceInfo]

|

ost

i

o

[Gresordue] [Gommecontoraer [ormatorsecs] Weragmenovecory] [rotesiragr] [Saricotimaar [Soesionio]

Figure 3.2: NSGrid implementation architecture

Listing 3.1: GridObject interface

classGridObject :public TclObject{
public:
virtual int commandifit argc,const charx constx* argv) = 0;
static void sendAndExecuts(ring sourceNodestring destinationNodestring command);
static void sendDataAndExecutgtfing sourceNodestring destinationNodent size,string
command);
static double getSimulatedTime();
static string getNodes¢tring componentName);
static int getHopsétring source string destination);
static string setEvent§ouble time, string command);
static string setEventNowgtring command);
static void cancelEventtring eventld);
static string releaseReservatigsiting resourceNamestring reservationiD);
void log(string source string logMessageint logLevel);

tination, and, once all command data has been received aegtamation,
the Tcl command specified by argumeommands fired.

e static void sendDataAndExecute(. sgnds data between components. The
data (with size specified by parames#zg is sent between source and des-
tination, and, once all data has been received at the déstinthe Tcl com-
mand is fired.

e double getSimulatedTimefeturn simulated time.

e string getNode(..:)returns the network node associated with the given com-
ponent.

3-8 CHAPTER 3

e static int getHops(..:)returns the amount of network hops between source
and destination nodes.

e static string setEvent/setEventNow(.sgts event at given point in time and
returns event ID.

e static void cancelEvent(...rancels event with given event ID.

e static string releaseReservation(. r¢leases resource reservation with given
ID.

e void log(...) provides output logging functionality.

3.3.2 Grid model

We regard a Grid as a collection Gfrid sitesinterconnected by WAN and MAN
links (see figure 3.3). Each Grid site has its own resourcdsaaset of manage-
ment components, all of which are interconnected by meah#&nflinks. Man-
agement components includeannection manageicapable of offering network
QoS by providing bandwidth reservation support, and resibbs for monitoring
available link bandwidth and delay), arformation servicdstoring registered re-
sources’ properties and monitoring their status3cheduley a service manager
service monitorandreplica manager The explicit treatment of the network as a
“resource” allows management components to take decisiased on observed
and expected future load of the network.

Each Grid site can have one or more Grid portals, through lwblients can
submit jobs. These jobs are then scheduled on a collectim@sofirces by a sched-
uler. To this end, the scheduler makes reservations withetb@urce managers; in
our environment, a connection manager manages a collectioetwork links,
while the computational, storage and data resources dastilesir own manager.
To ensure connectivity with the outside world (and in partac with other Grid
sites), each Grid site designates one or more of its unaegriys-2 network nodes
as a gateway to the WAN/MAN.

3.3.3 Job model

The basic unit of work in our model isjab, which can roughly be characterized
by its length (time it takes to execute on a reference pracgssomputational
requirements (memory, operating system, temporary diakespinstalled appli-
cations, etc.), maximum cost of processing, deadline, degled input data, the
output data size, thieurstinesswith which these data streams are read or written,
and the service class to which it belongs (note that someesktiob parameters
are optional). It will be shown in chapter 4 that it can be fiefad to assign jobs

GRID SIMULATION 39

S 4 Grid Resources Grid Management components

s \
{ Grid Site) { Grid Site)
NCE / N € / @

Stofage N
Resojirces Grid Portal

> & IS

’ . N
\ Crid Site)
N /

Gateway

I . N

\ Grid Site) . 2N
I <

AN 7 \ Grid Site

~——- \ , Ccmputanona\ Data
Sl Resources _Resources

(a) Grid (b) Grid site

Scheduler Information Gonnection
Senvice Manager

Figure 3.3: Grid model

from different Grid applications to one and the same serfigss in order to group
jobs with similar resource/QoS requirements, but for nosvdérvice class of a job
denotes the application type it spawned from. Knowing thesjtotal length and
the frequency at which each input/output stream is reattémr{when executed on
a reference processor), the total execution length of a gobbe seen as a con-
catenation of instruction “blocks”. The block of input débebe processed in such
an instruction block is to be present before the start of tis&ruiction block; that
data is therefore transferred from the input source (indhge a data resource of-
fering the necessary input) at the start of the previousungbn block. Similarly,
the output data produced by each instruction block is setaioilne beginning of
the next instruction block. We assume these input and odtpasfers occur in
parallel with the execution of an instruction block. Only evhinput data is not
available at the beginning of an instruction block or pregi@utput data has not
been completely transferred yet, a job is suspended utibtbcking operation
completes.

A typical job execution cycle (with one input stream and oogat stream) is
shown in figure 3.4 and figure 3.5. The presented model all@is mimic both
streamingdata (high read or write frequency e.g. a low/high resotuticowse
job from the domain of audio/visual production Grids; sdaed.1 for more in-
formation) anddata stagingapproaches (read frequency sefite.g. a rendering
job where graphical data and scene rendering informatiprefetched to a com-
putational resource, the scene is then rendered and, whderieg is complete,
output is stored onto a storage resource). Note that jobsemaive input data /
store output data from multiple data / storage resourcdgeadme time.

An overview of all job parameters is given by:

e Job arrival time at Grid portal

e Grid site from which the job originated

3-10 CHAPTER 3

concurrent

tasks processtime;o, processtimejos
[#reads J#writes
input 1| input 2 input 3

processing | processing | processing

output 1 output 2

executiontime;op referenceproc / (SPE€€proc*fractionproc)
Figure 3.4: Non-blocking job, simultaneous transfer and execution

concurrent
tasks

executiontime;op referenceproc / (SPE€€proc*fractionyroc)

input processing output

Figure 3.5: Non-blocking job, pre-staged input data

e Start time: time at which job may begin processing
e Amount of processing time needed on reference processor

e Duration: minimum duration of job (to ensure that job preieg occurs at
a defined rate e.g. video viewing jobs)

e Minimum processor speed asked for by job
e Temporary disk space required on processing element
e Software installation (operating system/programs) neglior job to run

e Input data: access type (FTP, secure copy, etc.), minimguoined retrieval
speed, ID of input sets required, number of reads

e Output data: access type (FTP, secure copy, etc.), minireqoined storage
speed, number of writes, time output data needs to be kejalalea

e Budget: maximum cost of executing job
e Deadline

e Service class

GRID SIMULATION 3-11

3.3.4 Client model

In our simulation environment, a client is a component wladktomatically sub-
mits jobs from a particular service class to a Grid portali¢htin turn delivers
these jobs to a scheduler). The “home site” of these jobseigathd site where
the client is located. All job characteristics, togethethwdb submission start/end
times and job interarrival times are specified statistjcétiormal, uniform, zipf
and exponential distributions are supported) accordinhgelient’s configuration
(specified in the Tcl startup script) or, alternatively, szad from trace files con-
taining previously recorded job submission behaviour. [Bitter approach allows
for identical job load reproduction under different Grigptdogies / resource se-
tups. Note that clients are not required to wait for a presipsubmitted job to
finish before launching another job.

Multi-service class clients, capable of constructing ambingitting jobs from
different service classes (with job parameters generateaddistinct service class’
configurations) can be instantiated in NSGrid. Each meltisse client can have a
service class workflow assigned to them. These workflows el&fieprobability:
of constructing and submitting a job from service clasghen a job from service
classz was last submitted by this client (see figure 3.6).

65%

Job
class
B

35%

Figure 3.6: Sample multi-service client workflow

Clients are specified by:

A list of job/service classes with job parameters speciftatisically

Workflow between the different job/service classes

e Grid portal location

Job generation start time

Job generation end time

3-12 CHAPTER 3

3.3.5 Resource models
3.3.5.1 Computational resource model

Each computational resource is viewed as a monolithicyantth a certain process-
ing power. Its main capabilities are defined by the followgagameters:

e The number of processors and their respective processimgroelative to
a reference processor)

e Memory available to jobs

e Disk space available for storing temporary job output

¢ Installed operating system and applications/software

e Load: job load (processing, memory, disk space) and resensa

e Dynamic resource model: resource failure probabilitypatility to go off-
line and average time before the resource restarts

e Cost: price when using this computational resource (deipgruh user class
of client that submitted job to be processed)

e Service class ID: either “0”, meaning the computationabuese can be
used by any job from any service class, or a non-“0" serviasxID mean-
ing the resource can only be used by jobs from service clanséshing
that ID. The service class ID can be dynamically assignechbyservice
manager components

This model can be used to represent both multiprocessorslastérs, pro-
vided that, in the latter case, the internal network coringdhe various cluster
nodes performs sufficiently (in a well balanced multipreoessystem, the net-
work bus interconnecting the processors will only rarelalperformance-limiting
bottleneck). If the network interconnecting the differendbcessing elements can
be the source of bottlenecks, one should instantiate a ciatipual resource for
each processing element and interconnect these resoyroesans of bandwidth
limited network resources (see 3.3.5.4).

Before accepting a job for processing, a computationalnesowill check the
requirements of the computational reservation (sent byradider) to see if these
do not conflict with existing and/or future computationadeevations. If there is
a conflict, the computational resource will reject the reséon and inform the
requesting scheduler. Once a job is accepted for proceshmgpb description is
parsed for information regarding (optional) data and gfene&sources that are to
be used for retrieving/storing input/output data. In ourdelpthe computational

GRID SIMULATION 3-13

A

processor
allocation [

Job b
Job e

Joba Jobd
Jobc

o

time

Figure 3.7: Computational resource processor allocation

resource is responsible for starting the retrieval of eagluti block and sending
output blocks to the necessary storage resources.

As can be seen in figure 3.7, a computational reservationats a fixed frac-
tion of the computational resource’s processing power aveertain amount of
time (so it can ensure that deadlines will be observed). rigutihe lifespan of
the reservation, the allocated fraction itself will neverrbodified, but, due to job
blocking, the time this processor fraction is allocated jokacan be enlarged if it
does not infringe other computational reservations.

When a job has finished sending its last output block (or, if ngpot had to
be sent, once the job has no further processing to do) thanaswill inform the
responsible scheduler that the job is finished, and willastethe job’s computa-
tional reservation.

3.3.5.2 Storage resource model

Storage resources provide disk space to store job outpaut ledur model, storage
resources are described by

e The total available storage space
e Load: storage space allocated to jobs and reservations
e Dynamic resource model

e Cost: price when using the storage resource (depending emcless of
client that submitted job)

e Service class ID: either “0”, meaning the storage resouatebe used by
any job from any service class, or a non-“0" service class I&aning the
resource can only be used by jobs from service classes mgttitat ID

When a storage resource receives a storage reservatiorstgtjoBecks to see
if this reservation does not conflict with the already grdmeservations (in terms

3-14 CHAPTER 3

of disk space) and, if possible, grants the reservation. bAcgn choose to keep
its output data stored until the job finishes processing (athkvtime the storage
resource will release the job’s storage reservation),aaritopt to keep output data
stored for a specified time (at the possible expense of egtif).c

While a storage resource does not perform computationakpsirtg of jobs,
it can be attached to the same network node as some compialatiod/or data
resource.

3.3.5.3 Data resource model

Data resources serve the purpose of providing input datpplier In our model,
data resources are described by

e Available data sets (by ID), their respective sizes and @ishgracteristics
(the latter is for replication purposes)

e Available storage space for datasets
e Load: content being read by jobs and reservations
e Dynamic resource model

e Cost: price when using the data resource (depending on lassr af client
that submitted job)

e Service class ID: either “0”, meaning the data resource eansed by any
job from any service class, or a hon-“0" service class ID nreaithe re-
source can only be used by jobs from service classes mattifahgd

Each time a job retrieves an input data set, the data resopadages its inter-
nal data set usage properties (time accessed, number sfttimeata set has been
accessed in last time frame). These usage characteriatickrd¢urn be used to
decide which data sets no longer will be supported in favduresv (replicated)
datasets (i.e. storage space will be made available fangtoften utilized, repli-
cated data sets by freeing disk space taken up by less friygjusad data sets; for
more information see section 3.3.6.2).

While a data resource does not perform computational primcess$ jobs, it
can be attached to the same network node as some computatnoiiar storage
resource.

3.3.5.4 Network resource model

Interconnections between resources (i.e. between twortwerk resources) are
modelled as a set of network links, providing a route betwdg®nsource and
destination resource. Connection reservations, eachirgff@ guaranteed total

GRID SIMULATION 3-15

bandwidth available to a particular Grid job or service sJasn be set up by the
connection manager. Of course, these connections can ersgthup if, in the un-
derlying ns-2 network topology, a route (with sufficient Beundth capacity) exists
between the nodes to which these resources are attachedreGources can also
be interconnected by means of capacitated VPNSs: in this aageN tunnel (with
guaranteed bandwidth availability) is set up between Gegburces for a partic-
ular Grid job service type. This VPN tunnel carries all coctiens matching the
VPN'’s endpoints and service class. Such connections caethgss long as the
VPN’s residual bandwidth can satisfy the connection dermandPNs allow for
the upfront reservation of bandwidth for a particular seswiype (see figure 3.8).

|

1.5 Mbit unallocated service type 0

(7 VbR service type 0 connection _0

(2.5 Mbit service type j VPN tunnel ())

l 10 Mbit Network Link l

Figure 3.8: Network model
Connections in our model are a set if network links, with eaetwork link
described by:
e Endpoints
e Total bandwidth capacity

¢ Residual bandwidth of non-VPN connections over time (adeametwork
reservations are supported)

e Residual bandwidth for each pre-assigned VPN over timeg(acky network
reservations are supported)

e Delay

e Connection manager responsible for network link (see @e&i3.6.3)

3.3.6 Management components
3.3.6.1 Information service

An information service offers a computational, storage dath resources’ prop-
erty and status repository. Each time a resource is inatadtin the Grid, it will

register its static properties and dynamic status info attleast one information
service. An information service can be queried by any othed &anagement

3-16 CHAPTER 3

components (e.g. scheduler, service manager) for resouneeting certain re-
quirements (e.g. available memory, installed softwarejlable datasets). The
information services perform matchmaking on this quegy, ihey select a set of
resources (from their registered resource repository) rifeet the requirements
of the resource query. The resulting resource set is sekttbadbe management
component requesting resource information. Typicallycsia single central in-
formation service for a Grid would not be scalable, each Gitiel offers one (or
more) information service component storing (a subsethef)acal resources.

Each time a resource’s state changes (e.g. because ofiagcaptew job for
processing) it contacts the information services it isstged with and sends up-
to-date status information (note that these status updassages, as any control
message in NSGrid, can suffer from network delays, temppnandering the
status information contained within the information seevoutdated).

The information service also monitors the liveliness ofre@gistered resource
(in order to detect resources failures). At configurablerivdls it sends a heartbeat
message to these resources and expects to receive thesespoadequate time
(see section 3.3.7). If these responses do not arrive iniche the resource is
unregistered from the repository.

Listing 3.2: Information service interface

classInformationServicepublic ManagementComponent

public:
void getCRs$tring XMLQuery, string tcIName,string requestlid);
void getSRsgtring XMLQuery, string tclName,string requestld);
void getDRsétring XMLQuery, string tcIName,string requestld);

void registerSchedulesfring schedulerTclName);

void registerResourcs{ring resourceTypestring XMLdescription,string resourceTclName);
void updateResourcsifing resourceTypestring XMLdescription,string resourceTcIName);
void updateServiceClassiting resourceTypestring resourceTclNament serviceClass);
void unRegisterResourcgt(ing resourceTypestring resourceTcIName);

void pingRegisteredResources();
void pingAnswerstring resourceTypestring resourceTclName);
void checkPingAnswers();

Listing 3.2 shows the most important public methods (noltidieg construc-
tors/destructors/getters/setters etc.) supported binfoemation service. In what
follows we briefly give an overview of these methods. Note gllemethods return
avoid value, as method return values are not communicated betvggeponents
on a C++ level, but instead act as a source of network traféc ifiethods that need
to send return values do so by invoking gendAndExecuteethod of GridObject,
as seenin listing 3.1).

GRID SIMULATION 3-17

¢ void getCRs/getSRs/getDRs{ retrieves the computational/storage/data re-
sources complying with the requirements stated in paramé Query
Results (along with request ID) will be sent back to the congm specified
by parametetcIName

¢ void registerScheduler(.:.Jegisters a scheduler with an information service.
The information service keeps registered schedulersrirédrof sudden re-
source unavailability.

¢ void registerResource(...Jegisters a resource with an information service.
Resource properties and current state are specified by psgaXMLde-
scription, while the resource’s Tcl name is specified by paranretssurce-
TcIName

e void updateResource(:..when resource state changes (e.g. new job ac-
cepted for processing on CR), the resource calls this methaive the
information service up-to-date status information.

e void updateServiceClass(:.3s will be explained in chapter 4, service man-
agers can assign a resource to a service class in ordentoaally jobs from
that particular service class to use that resource.

e void unRegisterResource(...)emoves the resource from the information
service resource repository (e.g. when resource goesneffar when it
fails).

¢ void pingRegisteredResourcesd) regular intervals, the information service
sends out heartbeat messages to each registered resource.

e void pingAnswer(..:)resources that answer the heartbeat message do so by
calling this method.

e void checkPingAnswers(pt a configurable time after heartbeat messages
have been sent out, the information service checks to seshwesources
have answered the heartbeat message. The resources that ditswer the
message in due time, are assumed to be failing and unregisterm the
information service.

3.3.6.2 Replica manager

A replica manager monitors job input data retrieval behawio such a way that
when a job is in need of a dataset that is not present at the gashputational
processing site (which is not necessarily the job’s oritjimggasite), a replica note
is sent to that Grid site’s local data resources, asking tifiémey are interested in
replicating that dataset locally (the job’s needed datavdebe transferred from

3-18 CHAPTER 3

a remote data resource to the computational resource wiejeli is processing,
so it will be available for replication). The data resources then choose to
either ignore this replication request (based on the ushgeacteristics of their
offered datasets) or they can store the new data set locHllg. data resource
decides to replicate the data locally, it can simple stoeedataset along with
the existing datasets (if there is enough free storage ypadé can choose to
replace an existing dataset using a Least Recently Usedthlgdin this case the
least recently used dataset(s) will no longer be supported that particular data
resource).

Listing 3.3: Replica manager interface

classReplicaManagemublic ManagementComponeft
public:
void registerinformationService{ring ISTcIName);
void getDRInformationgtring requestld);
void queryDRResulttring requestldstring DRListXML, string ISTcIName);
void jobUsedDatases(ring jobld, int datalD,double size,int service string CR);

Listing 3.3 shows the most important public methods (nolidieg construc-
tors/destructors/getters/setters etc.) supported byehieca managers. In what
follows we briefly describe these methods:

e void registerInformationService(...adds information service (with name
ISTcIName to the known replica manager’s information services. €hes
information services will be queried for data resource linfation.

¢ void getDRInformation(...)queries information services for data resource
information (supported data sets, data set storage spacde, e

¢ void queryDRResult(.:.)receives list of data resources registered with in-
formation service (with namkSTcINamé

¢ void jobUsedDataset(.:.5end replication note to data resource, informing
this data resource that a recently used data set is avaitabeplication at
a local computational resource.

3.3.6.3 Connection manager

A connection manager monitors properties (e.g. total baditivand status in-
formation (e.g. available bandwidth, delay) of the differ&rid network links.

It can be queried by any other management component (e.gicesenanagers,
schedulers) to retrieve connection information (avaéatdndwidth, delay, rout-
ing information, total bandwidth, etc.) between a source @estination network

GRID SIMULATION 3-19

node. If a connection query is received, the connection gemaill ask ns-2 for
the route from source to destination and, once routing mé&ion has been re-
ceived, will inspect the status of all network links alongstioute. The connection
manager will then construct a connection information ohjeantaining info about
all links along this route and available bandwidth/delaywgen source and des-
tination. This connection information will be sent back X¥ML) to the querying
management component.

Next to an informative function, a connection manager is a¢sponsible for
setting up network resource reservations. Both end-tocendections and service
class’ VPN reservations are supported (see network modwdtion 3.3.5.4). To
this end, management components can ask the connectiorgeraoareserve a
certain amount of bandwidth between a source and destinatide. The con-
nection manager will inspect all network links on the rougdvieen source and
destination, and, if bandwidth requirements are met on &akhwill reserve the
requested amount of bandwidth, grant the connection ragenvand inform the
requesting management component.

Note that reservations are not physically set up by the adioremanager:
if the bandwidth requirements of the requested connectsarration are not in-
fringing previously guaranteed connection reservatiomsimum bandwidth, the
request is granted. If however this is not the case (due taghef stale resource
state information when assigning resources to jobs in thediding round), the
connection reservation request is rejected and the jolbeiiut back in the sched-
uler queue until the next scheduling round. The connectianager thus operates
by bookkeeping all granted connection reservations anglidgmew reservations
that would infringe on those previously granted reservetio

Listing 3.4: Connection manager interface

classConnectionManagepublic ManagementComponeft

public:
void getConnectionsfring XMLQuery, string tcIName,string requestld);
void getLinksForJolgtring tcIName,string requestld);

void testAndAllocategtring reservationldstring XMLConnectionReservation);

bool setupVPNpair <string,string> endpointsdouble capacity double delay,int service);

bool setupConnectiosfring ID, pair <string,string > endpointsdouble bandwidth double
delay,int service double starttime double timespan);

void releaseReservatist(ing reservationld);

void autoSetupServices();
void addServiceClass(t service double bandwidthPercentage);
void removeServiceClassf service);

Listing 3.4 shows the most important public methods (nolidieng construc-

3-20 CHAPTER 3

tors/destructors/getters/setters etc.) supported bydheection managers. In
what follows we give a brief description of these methods:

e void getConnections(...yetrieves end-to-end interconnection information
(available bandwidth, delay, etc.), with endpoints andiressments described
by the XML connection query. ThieINameparameter denotes the compo-
nent to which the answer for this query has to be sent.

e void getLinksForJob(... yetrieves information regarding network links mon-
itored by this connection manager.

¢ void testAndAllocate(.:.xonnection manager checks if connection reserva-
tion request can be granted and sets up the connection ibpmss

e bool setupVPN/Connection(:.3ets up VPN/connection with specified ca-
pacity/bandwidth between two endpoints.

e void releaseReservation(:..yeleases previously granted connection/VPN
reservation.

e void autoSetupServicesgutomatically partitions network resources amongst
service classes based on service classes’ average bamdedgtirements
(see chapter 4).

e void add/removeServiceClass(.ajlds/removes service class average band-
width requirements as calculated by the service managectsmpter 4).

3.3.6.4 Service manager

Service managers receive information regarding servassatharacteristics from
the service monitoring components. At regular intervaig service manager
queries the information services for all Grid resources.cétine answer to this
qguery has been received, one of the service manager’s pespartitioning algo-
rithms is applied to the resource set, assigning each Gsilree to a particular
service class. The resulting resource-to-service pantitg solution gets sent back
to the information services, who in turn change the serviasscproperty of their
registered resources. Resources that have a service Blassigned to them will
from then on only be returned by resource queries for jobs ftieat particular
service class. If the service manager’s partitioning aigor also works in on net-
work resources, the connection manager will be contactedatce service band-
width reservations. Detailed information about the serwi@nager and associated
interface can be found in chapter 4.

GRID SIMULATION 3-21

3.3.6.5 Service monitor

Service monitors inspect job submission behaviour at the @ortals (recall that
a Grid portal acts as a job submission gateway for Grid usea}h time a job
is submitted, job requirements (service class, prioriggded input data sets and
sizes, output storage sizes, computational requiremetag, are extracted and
overall service class properties (e.g. average job infeahtime, average 1/0
data sizes, average processing requirements) are adjugteoh a service monitor
has gathered adequate service class characteristicads s collected service
class’ information to its known service managers, so asltwahem to have up-
to-date service class characteristics for use by the resduorservice partitioning
algorithms. For detailed information about the service itworand associated
interface we also refer to chapter 4.

3.3.6.6 Grid scheduler

As described in section 3.3.4, multiple clients submit,cading to their job sub-
mission configuration, jobs to Grid portals who in turn selneinh to a scheduler.
Each time a job is received by a scheduler, it will query it®wn information
services for resources that can be allocated to this unatdgee{bb. The result-
ing resource set is sent back to the scheduler, and, if tredstdr also wishes to
receive resource interconnection information, it will geed by contacting its con-
nection manager and query the status (available bandvddtay, reservations) of
the network links interconnecting the resources receivedhat particular job by
the information services.

Once resource query results have been received for an whdeldgob, the
scheduler applies one of its scheduling algorithms to theived set of resources
(either instantly when the scheduling strategy is “as soopassible” or, when
scheduling in batch, at the time of a new scheduling roundd, selects those
that will be allocated to each job. Parameters that can lentaito account when
scheduling a job include scheduling objective (minimiaatbf job response times,
priorisation of certain service classes, minimize cost,)gjob deadlines, budget
constraints, etc..

When a scheduling decision has been made, the schedulectsathi&compu-
tational, data and storage resources (and if bandwidthvasens are necessary
the connection manager) to request the necessary res@sewations. If all re-
source reservation requests are granted (note that, du@léaaesource status in-
formation, or due to scheduler competition, reservati@arslme rejected), the job
is put into the scheduled state and is sent to the selectedutational resource,
which in turn will manage the job’s input from the selectedadi@esources and/or
output to the selected storage resources (recall that mlpatational, storage and
data resources will send up-to-date status informatiohedriformation services

3-22 CHAPTER 3

with which they are registered once a reservation has besamegt). If network re-
source reservations have been set up, job I/O data will heaseoss the reserved
connections.

The moment a job is finished, the computational resourceresiple for process-
ing this job notifies the scheduler, releases its computatieservation and sends
up-to-date status information to its registered infororatservices. The sched-
uler proceeds by notifying the client that its job has fintshend releases storage,
data and (if necessary) network resources. Note that XMltrobmessages and
raw 1/O data arrival times depend on the bandwidth / protéagplication that
is used across each network link over which this data is sansi(ulated by the
underlying ns-2 network layer).

In case insufficient resources are available at the time lédding or if re-
source reservation requests are rejected, jobs that dehotgpurces assigned to
them are requeued for scheduling at a later time or (in cadgpheuschedulers
exist) can be forwarded to a different scheduler. NSGrichsus advance reser-
vation of all resource types.

Listing 3.5 shows the most important methods (not includiogstructors/de-
structors and most getters/setters) supported by the Ghiedsilers. In what fol-
lows we give a brief description of these methods:

¢ void setQueuePolicy/Schedulelnterval/Schedule Algoria SAPReschedule-
Delay(...) allow selection and configuration of the scheduling altoni to
be used by the Grid scheduler. Additionally, the time betwseheduling
rounds, queue policy (FIFO, priority rearranged, etc.) Hrelreschedul-
ing delay (in case scheduling is impossible) when schegd AiBAP can be
changed with these methods.

¢ void addInformationService/ConnectionManager/Repliaaager(...) adds
management components so they can be queried by the Gridudehe

e void submitJob(..:)submits a job to the Grid scheduler.

¢ void submitJobWithEndingCallback(:.gubmits a job to the Grid scheduler.
Once the job has ended, the scheduler will inform the cliéttie event.

e void endJob(..:) ends job, cancelling all existing reservations for this jo
and removes it from the scheduling queue.

e void getResources/Connections/LinksForJob(.qderies information ser-
vice and connection manager components for computatida#d, storage
and network resource property and status information.

¢ void queryCRsResult/querySRsResult/queryDRsResulgceives answers
to information service queries.

GRID SIMULATION 3-23

Listing 3.5: Grid scheduler interface

classGridScheduler public ManagementComponefit
public:

void setQueuePolicgfring policy);

void setSchedulelntervalpuble interval);
void setScheduleAlgorithnsfring algorithm);
void setASAPRescheduleDelalduble delay);

void addInformationServicefring informationServiceTcIName);
void addConnectionManagst(ing connectionManagerTcIName);
void addReplicaManagestring gridsite,string replicaManager);

void submitJobgtring jobXML);
void submitJobWithEndingCallbacifing jobXML, string client);
void endJob(Jobld jobld);

void getResourcesForJaignstJobld& jobld);

void getConnectionsForJatifnstJobld& jobld);

void getLinksForJolgonstJobld& jobld);

void queryCRsResubring requestldstring XMLCRList, string informationService);

void querySRsResubring requestldstring XMLSRList, string informationService);

void queryDRsResulgfring requestldstring XMLDRList, string informationService);

void queryConnectionsResut(ing requestldstring XMLConnectionList,string
connectionManager);

void queryLinksForJobResuti{ring requestldstring XMLLinkList, string connectionManager);

void CRFailureétring CRTcIName);

void SRFailuregtring SRTcIName);

void DRFailuregtring DRTcIName);

void CRAllocationFailedgtring CRTcIName);
void SRAllocationFailedgtring SRTcIName);
void DRAllocationFailed$tring DRTcIName);
void ConnAllocationFailedstring connectionld);

e void queryLinksForJobResult(...)eceives answers to connection manager
gueries.

¢ void CRFailure/SRFailure/DRFailure(.:.Jnethods called by an information
service when it detects a resource failure.

e void CRAllocationFailed/SRAllocationFailed/DRAllotatFailed(...) resources

call this method when a job reservation request is not gdante

¢ void ConnAllocationFailed(...)a connection manager calls this method when

a connection reservation request is not granted.

3-24 CHAPTER 3

3.3.7 Dynamic resource model

Sudden failure of Grid resources (computational, data tordge resources) is de-
tected by the information service components and the apiptegctions are taken
to ensure that the jobs that were relying on the failing resmget rescheduled.
Our dynamic model supports two notions of unavailability:

3.3.7.1 Resource failures

Unexpected Grid resource unavailability. These failurdslve detected by the
information service (who periodically sends a heartbeatsage to each resource
registered with it). If a resource does not reply to this rageswithin a specified
time-interval, failure is assumed. The information sesvroceeds to unregis-
ter the resource from its repository, and sends a notificatiessage to the Grid
scheduler(s) that had jobs running on the crashed resoilitoe.affected sched-
ulers then revert jobs that were utilizing the failing res@uto the unscheduled
state and put them back in the scheduling queue (see figure Belource fail-
ures can be specified by means of two distribution-type perars: “time before
resource failure” and “time before resource restart”.

3.3.7.2 Resource unavailability

Each Grid resource may unregister itself at any time by sgndimessage to the
information services it is registered with. The resourck then proceed by con-
tacting the Grid schedulers that have jobs utilizing iti{eitfor job processing or
for retrieval/storage of I/O data). If checkpointing is blead, the last checkpoint
of jobs running on that particular resource will be sent ®gbheduler responsible
for allocating the job’s resources. When a scheduler is edtifif the unavailabil-
ity of a resource, it looks up which jobs were scheduled onhrsource, cancels
all resource reservations of those jobs, reverts the stdteose jobs to their ini-
tial state (the “unscheduled” state with no work done) aratlies the jobs for
rescheduling. If a checkpoint is available, the job will ione processing from
that checkpoint on.

3.3.8 NSGrid operation

At startup the simulator reads a Tcl script defining the Gojablogy and location
of the various resources, management components andsc{tig script can be
constructed manually (through a dedicated GUI as seen irefijd 1) or generated
by automatic topology generator tools based on GridG [3]), 31

During simulation, each event can be logged (logging suppuultiple log-
levels, providing a filtering function for messages of lowaportance) and either
written to the screen or stored in an output file. A GUI pardimg output (see

GRID SIMULATION 3-25

—— Information Computational Data Storage
= _Service Resource Resource Resource

send job to CR

input block

output block

proceésing job
I

output block

I
I
I
i
timeout !
I
I

Figure 3.9: Computational resource failure

Information Computational Data Storage
Schedule Service Resource Resource || Resource

send job to CR

processing job

outputI block

job [opt: checkpoint]
T

T

I

I

]

I

I

]

]

I

i

. 1
output block !
:]
I

]

I

I

]

|

I

]

I

I

T
|
|
r
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
! |
|
! I
! 1
! 1
[|
N |
| | |

Figure 3.10: Computational resource unavailability

figure 3.12) allows for extensive filtering and sorting fuoos (e.g. in case one is
only interested in the behaviour of a particular resource).

When a simulation has ended, NSGrid provides file output dégaijob life-
time (arrival time, launch time, end time, execution speedources utilized, net-
work usage, etc.) and management component performarted{de computing
time, resource-to-service partitioning times, etc.). I$dwave been provided to
parse this XML output to “comma separated value” files folyaase in spread-
sheet programs.

3.4 Scheduling strategies

Grid scheduling algorithms attempt to allocate resourcgstts in such a way that
a given criterium (e.g. average job response time, resaigage efficiency, cost)

3-26 CHAPTER 3

NS Gridinput.tcl

site1 |site2 [site3 | sited | sies [Sies |
CR [SR [DR [Client |

wers [o[- -
(A (47]
Processor amount |2 DiskSpace [15000 |

—_—
Processor speed |10000

Software |LHC3.1

Mean time before failure 3600000 |

Senvice class |0
Maximurm processor allocation 5000

| Meantimebefore offine 12300000

Maximum parallel johs

Memory 1024 Mean time before restart M

Cost User group : |default Price: |1

[Restlyto write the e [Restart]

Figure 3.11: NSGrid Tcl input file generation

is optimized. In the optimal off-line case (i.e. the job regts that will arrive at

the scheduler over time are known in advance), the schedumléncsome cases
(e.g. when job arrival times and job lengths are integer)rbdyced by solving an

Integer Linear Program (we refer to [32] for an overview ois thpic). In such an

ILP, the scheduling constraints are formulated as linegegualities.

Of course, in any operational Grid, only on-line scheduirgtegies (meaning
that at any timet, nothing is known about requests arriving at a tithevhere
t'" > t) can be used. We distinguish between strategies that attersphedule a
job as soon as it becomes available (ASAP), and strategies¢hedule a batch of
jobs at certain points in time (a batch then consists of presly unscheduled jobs
and jobs that have arrived since the last batch was schedu&IP strategies
attempt to impose a minimal queue waiting time on each joligvdatch strategies
attempt to avoid suboptimal resource-to-job assignmepntscheduling a set of
jobs (instead of a single job) at the cost of extra waitinggtiior each job (at most
equal to the interval between two scheduling rounds). Heweshen scheduling
in batch, one hopes to overcome this time loss by the posgé#itecreated by an
overall “better” scheduling decision.

In realistic scenarios, bursty job arrivals (e.g. highwattiduring office hours)
will occur. We expect the quality of batch scheduling sigaes, when compared
to the schedule produced by strategies that schedule upealato rise when

3-27

GRID SIMULATION

[ITx

P8 i ol e k=1 U Rl 8 T O b (8 N S| Lo 0 YO et L P) = P e e i ot L L el e g) i) LR
=LS=dyi=0ady== L5002 L0= W00 707 0= <Al (0= L0-89=Al0= <HEDf= L0148 | «HB D= <7 R[= 750 <2 = = M= G50 = L= =4Ul= Ul pajepdn W2 LEUTGE'ET
[lg=advfelady==l8i=0=15=<WOf= 00 <D= <AlOf> L0-8G =M= <UED/= L0+8 LalED= <F M= 50 =Zhl== LMi=GE0 = Lhl= =AUl = AUl Bulepdn [ls] LE0GE'ET
LS==dyi=0edy== [5=0=18==WDf=4 70" aiI==AlQi= L 0-8F<did=<de D= 048 | <0E D=2 TN/=G50" <IN LMEBF0 = |N==qUlT= Ul pajepdn W 1E07|GE'RE
S adyf=0=dy==18i=0218== 0= 00 W= <M 0= 2 0-8p=A|0> <0ed/= A0+8 | =080= <EM=G50 g M == LMi= G0 = LM <iur= 3ull Buyepdn W2 L0 [GE'eE
BredWiz=di= =1 Si=0=15==WDi= 2207 <D ==A 002087 <N 0= =B =B0+8 L= 00 <7 Ni=RF0 =T == LN/=F G0 = LN ==AUI= Hull pajepdn W LT0T(GE'RT
=adiiz0adyz=LS0=0=15>= WML 20 =WD==h0i= L0BT =A0==0ED/=E0+8 | 20E D= =T N=BF0 =TM== Lhl=F LG0T = Lh= =AU = Hull Bugepdn W LP0|GE'EE
Duedsalug g | BLUIHERS Q0+8E L0 LT BAAE YA 61307 PUE 1507 UaBAaY NAMODEYS LMNODMNA-NON| - 0andulmiEzo W 1E07|GE'RE
ungeussal 3893734 0anduliiEze W 20 [GE'eE
Bredif=l=di= <1 5i=0=15=<W= 70 <M O=<A0i=20-8E<A0==0BD/=F0+8 L<UED= <TRi=FEG0 <FN=<h=g50 = LN =<1UlT= Hull pajepdn Wo LE0GE'ET
=adiiz0ady==L00=0=15>= WML 70 =WD==h0i= L0BE =A0==0ED/=B0+8 | 20E D= =T N FEQ0 =7 N== LNIZZ50 = Lh= =AU = Hull Bugepdn W LP0|GE'EE
Bredyi=Oady= 1502152l /=00 <D= hdi=2 0-B8E =A0=2dBDr=F0+8 L2U0E D= e T Mi=L G0 =T =< LI/=F LO0~ = | N==qUlT= Ul pajepdn W 1E07|GE'RE
=== 02 dy= < L0002 L5 = <WDi= 270 <D ==AlQf= L0-8E =A== 0B D= G0+ |20 D=« TN=T50 27 M= < L= A0 = Lhj= <Ul= AUl Bulepdn W2 LEUTGE'ET
(MBS EUI G LIEWIHELS B0+36 FAME WA FEG0 PUE 190 Uaasmad NAMOOEYI LNNOIN JA-MNON] INdnominiGzo W A0 |GE'RT
uogeasal 3593734 T IndinoioEze W 1Z0[GE'RE
QFHEINEZ oYL EZD” 80 (BEOTIGERE
S L0AnduIANGEE ST NOILDINNODHIZSY3 13 OffEED 59 B0 |GE'AT
S LINOMNIBZ0 - HI35%373 OiGZD 59 670 [GE'RT
S LOANGINGYO/IVEEDT MOILDINNODHSI ST TIY OifEED | =] 620 [GE'RE
S LOMM0KEL 0 45383134 OirGE0 | =] B0 [GE'RE
4ol GIHSIMIA OifEE0 59 B0 |GE'AT
MBE =815 == 8)I5= <BUWENFLIN0SaH[-58R0 <alUENEMN0S8 H- <0 0IN05a IEUDNEINdWDS - 208 Sialalleied mal [5850 10) 315040 50 El CERD R AT
Q3HEINIA OG0 oD 8860 |FYE'ET
EOFE A7 SEa [EALIE JNAINO (B8P 5P #2014 0 INANG J0) ST TAN0DLNALND Q0T 5] 805028067
SOFETET 1B PUS PINOYS GOl GF 13010 0 LHVLSLALING OiBZD | Ha 3860 [GA0'ET
GFE0°EET SEM (AR INdU| (B3PI 'D5 %201 0 Indul 10} ILITdWO LN Bz) 2860 |E80'BT
GRG0 BE S ZALE a0 [gap) B #2000 0NN 10y 313 12W00LNdLN0 W0iEED) 560 (97847
£OPE A7 18 PUB pINGUYS GO[C 05 430/9 0 NdULI0) 15 LN dH] 0T) 80E0 |EZ0 T
SOFETET 1B PUB PINOYS GOl 8F H3010 0 LYVLSLNALING WOMEE0 =1 9860 |[EFET
GEZE AT S EALLIE INdU| (B3PI G %01 0 Indul 10 ILITdWOILNdNI Bz) 2860 |128'T
BZz8 Lf Sea [ZallE Indino [gapl 2 #9000 0 Ndno 1) 313 12W00LNdLN0 W0iEED) 5860 |FO5 T
COVETAT 18 pUA PINOUS GO0 GF H3000 0 INdULI0) T LS AN OiEZ0 j=lo] 8RB0 [LA5'AE
COFETAT 1B pUB PINOYS o[4 F 13010 0 LHYLSINdLND [=] 8850 [195'/7
T1OG AT S |EALIE Indul |BAPL '8 %3010 0 Induliol 3137dWOILNdN 0BT =i [T
L 2195 /7 s |eallie nding |E8R1 "9y #2019 0IN0iN0 40) 31 3 1dW00LNHLN0 0Bz =] 8850”70
= COVETATIE BUa PINOYS goll B HA0)0 0 Induo) TS 104N OiRZD Ha S8R0 |67
piaal acliy usuoduing [EERETT
Aopndino
voncisap] pwol[] ad@ 7] jusuodwod[T] SANHONY
AIAHIAD 09 _>_ gaaNau_ 7 _ TIv| _>
_ AANea5 alor .y adAf Japd JuBuodWE) 1A = =

11151 - A9sied ndno prsjsy.

NSGrid output GUI

Figure 3.12

3-28 CHAPTER 3

the average job arrival rate is higher than the rate at wiésburce status update
information is disseminated through the Grid, while theesktliing rate is lower. If
these assumptions hold, ASAP scheduling strategies cas miang scheduling
decisions for sequential jobs based on stale resourcenéaafriation, resulting in
an attempt to schedule a job on an already loaded resource.

In case batch scheduling is used, the (unscheduled) jobegeauoptionally
be reordered prior to employing a scheduling algorithm.(éhg job queue can
be sorted based on service class priorities). Also, sintzhiszheduling can allo-
cate resources to multiple jobs in one scheduling round {esolurce reservation
requests are only sent out once all jobs in the queue havefdreeassed by the
scheduling algorithm), the scheduler must keep track atdead” resource loads
(i.e. the scheduler needs to modify resources’ virtuakstgbrmation each time
a job gets resources allocated to it).

In [33], multi-site execution of divisible jobs is discusiseJobs can be split
into (communicating) subjobs which are then executed sanebusly on different
computational resources. The network over which the sgijommunicate is not
modelled directly; rather, it is assumed that the netwoirkfiience (bandwidth,
delay) on the job’s run time can be modelled by a single “ogadi parameter.

A similar job model is used in [34] and [35]. Here, the allocatof proces-
sors to rigid parallel applications on a purely space-shérailti)cluster system is
studied. Applications consist of a number of possibly comitating jobs, to be
executed in parallel. Each job requires exactly one pracesggich it occupies
exclusively during its execution (i.e. no time-shared pssors). Figures for the
fraction of idle processors at a given point in time are dedugsing statistical
techniques, while the influence of a slow intercluster comication network is
incorporated entirely in a slowdown facter This contrasts with our approach, as
we study applications consisting of non-intercommunigajobs, each of which
can be executed on a sindlene-sharedorocessor. In addition to computational
resources, our work also treats other resources such aamhttorage resources
explicitly.

Scheduling work packets for collaborative computing e¢ffde.g. SETI [36],
MCell [37]) to computational elements is discussed in [d3cause of the appli-
cation’s particular nature, the Grid can be modelled ase wéh all work packets
originating from the root node, which differs from our apach as we focus on
generic Grids.

3.5 Scheduling algorithms

The scheduling algorithm used for assigning resourceshs fj@s a big impact
on Grid performance, and influences overall job throughmsgource usage effi-
ciency, average job response times, etc.. If the schedulerable to allocate the

GRID SIMULATION 3-29

concurrent

tasks processtime;o, processtime;o

/#reads f#writes + timepiocked
timepjocked
; —
input1 | input2 input 3
processing | processing processing
output 1 output 2

- . . t
executiontimejop referenceproc / (SP€€proc fractionprec) + tiMmepiocked

Figure 3.13: Job blocking on last input block

resources needed by a job, the job is queued for reschediuling next scheduling
round (if an ASAP scheduling strategy is used, a rescheglal@gay is imposed).
The time between two scheduling rounds can be fixed, but is@s@ossible to set
a threshold (e.g. maximum number of jobs in the scheduliregigltriggering the
next scheduling round. In what follows we will explain thdfelient scheduling
algorithms available in NSGrid. During each schedulingnahuevery algorithm
processes submitted yet unscheduled jobs from the job dueurst-Come First
Serve (FCFS) fashion (job reordering may have occurred tslelk in the pre-

vious section). Once a resource assignment has been madsstmduler does
not attempt to pre-empt jobs. All jobs run on a single prooesghich can be
time-shared (i.e. serve multiple jobs simultaneously bgcalting portions of its
processing power to each such job). Intelligent allocatibtihese portions to jobs
is necessary to prevent jobs from blocking when they deparfaodwidth-limited

remote data access.

3.5.1 Network unaware

Network unaware scheduling will compute Grid job schedbkesed on the status
of the computational, storage and data resources. Algositinat use this kind of
approach will not take into account information concerning status of the net-
work interconnecting these resources. The decision oflw@sources to use for
a job will be based on the information acquired from the défe information ser-
vices (i.e. job execution speed and end time will be caledl@#tased on the status
of CR /DR / SR retrievedor that jobfrom the different information services). In
this case, our network unaware algorithm attempts to opérekecution time by
minimizing the time a job spends on processing:

exGCUtiontimejob,referenceproc

3.1
speedproc * fractionproc (3.1)

3-30 CHAPTER 3

In this equatiorezecutiontime ;o re ferenceproc 1S the execution time of a job on
a reference processofpeed,, .. iS the relative speed of a processor compared to
the reference processor arfdaction,,,. denotes the fraction of that processor
that can be assigned to the job.

Because network unaware algorithms assume that residodWidth on net-
work links is sufficient, job processing can block on inputifput operations (see
figure 3.13); their computational progress is no longermeiteed by the compu-
tational resource’s processor fraction that has beena#ddo it (which, together
with the job’s length and the computational resource’stiadaspeed determines
its earliest end timéf all 1/0 transfers complete on time i.e. before the start of
the appropriate instruction blogk but rather by the limited bandwidth available
to its 1/0 streams. Note that the fact that network inforimaiis discarded during
the scheduling, implies no connection reservations (pliogi guaranteed avail-
able bandwidths) are made with the connection manager e thesld allow to
accurately predict the job’s running time (see figure 3.14).

The time it takes for a job to complete since it has been subdnity the client
can be broken up into:

e Sending the job to the scheduler

e Time spent in the scheduler’'s queue

Time needed for the co-allocation of resources allocatelabjob
e Transfer time for the first input data block(s)

e Time needed to process the job at its maximal execution speed
e Transfer time for the last output data block(s)

e Time during which the job is blocked on 1/O operations

Pseudocode for the network unaware scheduling algorithshas/n in algo-
rithm 3.5.1. For each job in the scheduling queue for whiampatational, stor-
age and data resource queries have been answered by tmadtior services, the
scheduling algorithm inspects all possible resourceetip{CR,SR,DR) to see if
they meet the job’s requirements (this step is necessaguiseavhen scheduling
in batch, virtual resource load changes - by already sckddobs in the same
scheduling round - can make resources returned by the iatoymservices for a
job, no longer meet the job’s requirements; see sectiondd.ckhbre information).
If the job can be scheduled on the resource triplet, the @gorcalculates the
time the job would spend processing on the selected conipughtresource and,
if that time is less than the previously encountered optimtims resource triplet
is assigned the best resource triplet. Once the algoritterchecked all resource

GRID SIMULATION 3-31

hedul Information Computational Storage ata
L Service Resource Resource Resource
]
i
I
queue time

query CR,SR,DRE

query result :
reserve CR

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|

reserve SR

I

I

1 reserve DR
L i N
I

I

I

I

|
CR status update!
O ——

©

} |
: DR status update
send jo'b to CR

I
I
L
]
:
I
SR status update |
1
I
|
;
I

I
first input block —

I
I
first output blocki

T

|

|
2

|

|

|

|

|

W

|

| |

|

|
|
|
|
|
i
|
processing job \ !
|

last input block__—
I

o
@
<}
=3
B
=
=)
o
Q
=

L job complete

:CR status update}
bi

V_ W 2

|]
release SR reservation
I I

T
release DR reservation
|
|

SR status update

|
DR status update

|

|

|

|

|

|

|

|
| |
I |
I |
I |
| |
| |
r |
I |
I |
L N
T |
I |
I |
I |
| |
| |
I |
I |
I |

Figure 3.14: Network unaware scheduling

triplets, it selects the resource triplet that offered tkstlprocessing time (if one
was found), schedules the job on those resources and uptiates resources’
virtual load information.

3.5.2 Network aware

Network aware scheduling algorithms will not only contdw information ser-
vices for resources that adhere to the job’s requirementsyiil also query the
connection manager for information about the status of éteork links intercon-
necting these resources. In its turn, the connection manefiesend the sched-
uler information about connections that can be set up betaata / computational
resource couples (necessary for job input retrieval) angpeational / storage re-

3-32 CHAPTER 3

Algorithm 3.5.1: NETWORK UNAWARE(Jobs)

for eachj € Jobs
BestResources « [|
LeastTime «— +o0
foreachc € CRs(j),s € SRs(j),d € DRs(j)
Resources < [c, s, d|
if canSchedule(j, Resources)
Time «— getTimeSpan(j, Resources)
if Time < LeastTime
then ; ;
then {Leasthme — Time
BestResources < Resources

do do

if BestResources # |]
th {schedule(j, BestResources, LeastTime)

update ResourceLoads(j, Best Resources)

source couples (needed for job output storing)). Based eratiswers from the
information services and connection manager, the schreglalgorithm is able to
calculate job execution speed and end time more accurbietgking the speed at
which I/O can be delivered to each available computatioesdurce into account.
For jobs with a single input stream and a single output strélaenbest DR/CR/SR
triplet is the one that minimizes the expected completiametiof the job. This
value is determined by the available processing power tojtfeon the compu-
tational resource (and its relative speed), the job’s lgnidiie job’s total I/O data
sizes and the residual bandwidth on the observed links fréttdCR and from
CR to SR. Thus we are searching for the maximum speed at wiécjolb can be
processed, which (if we do not want blocking to occur) is theimum of:

Ver € CR,Vproc € proccessorse,, Vdr € DR, Vsr € SR calculatespeed,;.o.*
fractionpec With speed,roc * fractiony,. the minimum of:

speedproc X fractionproc 3.2

executiontimejob re ferenceproc X bandwidthgy or (3.3)
8 X blocksizenput '

executiontime;ob, re ferenceproc X bandwidthe, s (3.4)
8 X blocksizeoutput .

In these equation$andwidthg, ., is the bandwidth available between data and
computational resourcégndwidth., s» denotes the bandwidth available between
computational and storage resourtkcksize;np,: i the block size of an input
block andblock sizeoytpy: denotes the block size of an output block. Equation 3.2
describes the rate at which computational processing gbthean occur (based

GRID SIMULATION 3-33

on CR properties returned by the information services andaking into account
I/O bandwidth restrictions), while equation 3.3 and equaB.4 denote the speed
at which processing can occur when limited by bandwidth fdata resource to
computational resource and from computational resourctai@mge resource re-
spectively.

As explained, for some (DR/CR/SR) triplets, due to bandwadinstraints, this
duration may be significantly higher than the value cal@additom the job’s length
and the CR’s relative speed, even if job execution and datester occur simul-
taneously. The scheduler selects the optimal DR/CR/SRetrgnd contacts the
connection manager to perform the necessary connectiopssethe job then gets
transferred to the selected CR for processing and 1/O isfsemt/'to the DR/SR
over the reserved connections. If neither local nor remedeurces satisfying the
job’s requirements can be found, or if no connections witicant bandwidth
are available, the job will be queued and prepared for rehkdime.

The time it takes for a job to complete since it has been subdity the client
can be broken up into:

e Sending the job to the scheduler
e Time spent in the scheduler’s queue

e Time needed for the co-allocation of resources (includigigvork resources)
allocated to that job

Network transfer time for the first input data block(s)

Time needed to process the job at its allocated executicedspe

executiontime;op re ferenceproc

speedproc X fractionprec

e Network transfer time for the last output data block(s)

Each of these can be found in figure 3.15. Note that no job caarbe blocked
because of bandwidth reservations with the connection ganaxcluding the
network from becoming an unexpected bottleneck.

The pseudocode for the network aware scheduling algorithehown in al-
gorithm 3.5.2. For each job in the scheduling queue for whichputational,
storage, data and network resource queries have been aalduyethe information
services and connection managers, the scheduling algoiitspects all possible
resource triplets (CR,SR,DR) and associated intercoiomstio see if the resource
triplet/connection combination meets the job’s requiretadas already noted, this
step is necessary because when scheduling in batch, vies@irce load changes
can make resources returned by the information servicesémtion manager for

3-34 CHAPTER 3

DR status update

send job to CR !

Information Connection | | Computational Storage Data
Scheduler ’ Service ‘ ’ Manager ‘ ’ Resource Resource Resource
| i i | i i
I I I I I
I] I I I
| queue time : } : :
|

lquery CR SR,DR! ! 1 | i
‘ ! i i i i
! queryresult ! ! ! ! |
| connection query i | | i
‘ : > i i i
| .] 1] I
i connection query result | i i I
I I I
reserve DR-CR and CR-SR connections ! ! |
; 1 1 | | |
I reserve CR | ' ! |
! L N I !
! reserve SR ' 1 |
! I N} |
! | reserve DR | f |
i T i T >

1 CR status update ! !

K« - !]

) T 1]

L | SR status update! |

|

|

|

|

|

I

I

first input block_—

i
I
I
I
I
I
i :
I I
Lfirst output block:

i

I

!

processipg job !
! last input block_—
I

i

q

I

I

I

I

i

I

I

i

i

|
last output block |

job complete

CR status update

release connections 1

. N

release SR reservation
! L

release DR reservation
1 !

T T
| SR status update!

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|

NN

1
i

i

i

1
P i
h T T

L 1 DR status update
b T T

. i

Figure 3.15: Network aware scheduling

a job, no longer meet the job’s requirements). If the job cateed be scheduled
on the selected resources, the algorithm calculates theedimng which the job

can be processed (taking into account the speed at which amglioutput data
blocks can be retrieved over the connections and the priogegswer available

on the computational resource) and, if that time is less thapreviously encoun-
tered optimum, temporarily stores this resource/conaratbmbination as best
scheduling solution. Once the algorithm has checked afluree triplets, it se-

lects the resource triplet that offered the best procedsimg (if one was found),

schedules the job on those resources and updates thosecess@und their inter-

connections’ virtual load information.

GRID SIMULATION 3-35

Algorithm 3.5.2: NETWORK AWARE(.Jobs)

for eachj € Jobs
BestResources « [|
LeastTime «— +00
for eachc € CRs(j),s € SRs(j),d € DRs(j)
Conn «— getConn(e, s,d)
Resources — [c, s,d, Conn)
if canSchedule(j, Resources)
do do Time «— getTimeSpan(j, Resources)
if Time < LeastTime
then . .
th {LeastT@me «— Time
BestResources < Resources

if BestResources # []
th schedule(j, Best Resources, LeastTime)
update ResourceLoads(j, Best Resources)

3.5.3 Resource locality preference

The “Local” scheduling heuristic is used solely for perfamse comparison. “Lo-
cal” scheduling implies that a job submitted at a site’s Gadtal, also needs to be
processed on that site’s computational, storage and dsdanaes. Basically this
means that each site executes its own jobs (the scheduleqoaties the origi-
nating site’s information services and thereby solely ikexelocal resource infor-
mation), and that no Grid functionality (hamely remote @exing and remote /O
retrieval/storage) is used in an attempt to overcome tleesgiéstrictions. Both
network aware and network unaware local scheduling héesiate supported in
NSGrid.

“PreferLocal” scheduling algorithms attempt to place agola site’s local re-
sources for processing, as we believe that, from an econapwgoint, it can be
assumed that remote resources are only used when necé¥sarylocal process-
ing is impossible (either because the job’s requirementsiaabe met locally,
because the maximum computational load has been reachéedcause 1/O re-
quirements are not met), the scheduler looks at the statilieaEmote resources
and, if possible, selects a DR/CR/SR triplet (not necelgsalii residing at one
particular Grid site) meeting the job’s requirements arefgrs the triplet which
allows for the earliest job end time (this job end time can élewated in both a
network aware or a network unaware fashion). The job is themsterred to the
selected computational resource for processing and I/énisfeom/to the selected
data and storage resource. If neither local nor remote ressgatisfying the job’s
requirements can be found, the job gets queued for resdhgdiuring the next

3-36 CHAPTER 3

scheduling round.
“Spread” algorithms do not prefer resources local to thésjohiginating site,
but instead treat each Grid resource as equal.

3.5.4 Minimum hopcount

The “minimum hopcount” scheduling heuristic attempts tmimize the amount
of network links (hops) input/output data needs to be seet for a job in order to
sparingly use available network resources. It chooses RI€R/SR triplet meet-
ing the job’s requirements and minimizihgpcount(DR, CR) + hopcount(CR, SR)
and does not take into account available network bandwidtie links intercon-
necting the selected resource triplet.

Algorithm 3.5.3: MINIMUM HOPCOUNT(Jobs)

for eachj € Jobs

BestResources « ||

MinHopCount «— +0o0

Time «— 400

for eachc € CRs(j),s € SRs(j),d € DRs(j)

Resources «— [c, s, d]

if canSchedule(j, Resources)
HopCount — get HopCount(j, Resources)

do if HopCount < MinHopCount

then MinHopCount < HopCount
then < Time «— getTimeSpan(j, Resources)

BestResources < Resources

do

if BestResources # ||
then schedule(j, BestResources)
update ResourceLoads(j, Best Resources)

3.5.5 Service aware

A service aware heuristic dynamically classifies jobs iwiserclass pools and at-
tempts to schedule these service classes using an appeaaieeduling heuristic.
Computationally intensive service classes are better &f wischeduling algo-
rithm that focusses on allocating large and fast computatiprocessor fractions
than with a scheduling heuristic intent on optimizing natku@source usage. Data
intensive service classes on the other hand are bettertbfevgicheduling heuristic
that takes into account computational resource blockimggidue to input/output

GRID SIMULATION 3-37

network delays. We refer to appendix B and appendix C for niiemation
regarding service aware scheduling in Grids.

3.6 Simulation results

3.6.1 Simulation environment

All simulations performed in this section were run on a Md89] cluster consist-
ing of 14 AMD Athlon XP1700+ nodes with 1 GB RAM and Debian Wgdd0]
as operating system. NSGrid simulations were able to nmegmatlifferent cluster
nodes depending on the load.

3.6.2 Simulated topology

A fixed Grid topology was used for the simulations presentem lftopology and
resources are depicted in figure 3.16). First, a Wide-Areavbig (WAN) topol-
ogy (containingd core routers with an average out-degreg)oivas instantiated
using theGridG tool. Amongst the edge LANs of this topology, we have chosen
12 of them to represent a Grid site (each having its own comjmuialt, storage and
data resource). Furthermore, we have homogenized theitaepadf each WAN
link, which we then treated as a parameter in our simulatiBash site has its own
information servicgstoring resource properties and status) and IGeal portal
(through which users can submit jobs). Local resources anaacted through
1Gbps LAN links.

3.6.2.1 Job parameters

Two different job types were used in our simulations; one emdata-intensive
(i.e. higher data sizes involved), while the other is moréJaRtensive. At each
Grid site, two clients have been instantiated, one for eabhtype. Each client
submits mutually independent jobs to its Grid portal. Albgoneed a single data
set stored on one of the data resources and write to a sirggkegstresource. In
the simulations where data is retrieved/stored in paraligi job processing, the
number of blocks equalled 50. The ranges (uniformly disted) between which
the relevant job parameters vary have been summarized@3ah Both job types
make ups0 percent of the total job load; in each simulation, the joldloansisted
of 1200 jobs.

For each scheduling algorithm, we have chosen to use a fixed/ah of 505
between consecutive scheduling rounds. From the arrited iia table 3.2 (IAT)
and the fact that multiple sites submit job simultaneousligllows that we are
likely to find multiple jobs in the queue at the start of eachestuling round.

3-38

CHAPTER 3

Storage
Resource

Grid Portal

65“* §

Computatidpal MO Malion ghnnection

Regource
Resource Manager

//Grid 6

Figure 3.16: Simulated Grid topology

Input (GB)

Output (GB)

IAT (s)

Ref. run time (s)

Table 3.2: Relevant job properties

3.6.2.2 Resource dimensions

We have assigned one computational resource to each Ged Eit reflect the

use of different tiers in existing operational Grids, ndtcaimputational resources
are equivalent. The least powerful CR has two processorshadperate at the
reference speed. A second class of CRs has four procesedreaah processor
operates at twice the reference speed. The third - and laBt ty@e contains 6

processors, each of which operates at three times the megespeed. Conversely,
the least powerful type of CR is three times as common as ttst pooverful CR,

and twice as common as the middle one.

Since our focus is on determining the influence of the use wiork resource
status information on the optimality of the job schedule,agssumed that storage

GRID SIMULATION 3-39

NoNemork [
| Network ===
PreferLocal
3000 |- B

2500 - b

2000 - b

1500 - b

Average Job Response Time (s)

1000 - b

500 B

L ol

1 2 5 10 25 50 100 155
Wan Link Capacity (Mbps)

Figure 3.17: Job response time: parallel I/O

resources offer ‘unlimited’ disk space. Each site has atligposal exactly one
such storage resource.

Each site’s data resource contains 6 out of 12 possible é#&ta $hese data
sets are distributed in such a way thatpercent of the jobs submitted to a site can
have local access to their needed data set.

3.6.3 Average job response time

We define theesponse timef a job as the difference between its end time and the
time it is submitted to the scheduler.

In figure 3.17 we present this average job response timedorighms we dis-
cussed earlier (network unaware spread scheduling, nleaware spread schedul-
ing and network aware preferlocal scheduling). In thisipalar simulation, si-
multaneous execution and data transfer were allowed (wastretrieved in 50
consecutive input blocks and output was stored in 50 cotisecoutput blocks);
data connections were set up on a FCFS basis without upfi@Ntdimensioning.
Clearly, for low bandwidths, not taking the network statu®iaccount for sched-
ule computation, incurs a severe penalty. When bandwidtivgrthe importance
of this network information degrades (for a constant jold)oas the network no
longer creates a bottleneck. In fact, for high bandwidthis, possible for the net-
work unaware algorithm to perform slightly better than thieeo algorithms; this
is due to the conservative nature of our network-aware #kgos. For instance,
these take for granted that the maximum data transfer ratdy95 percent of the

3-40 CHAPTER 3

55

" ‘ ‘ ‘ ‘ ‘ ‘ NoNetW(‘)rk —
50 1 R

45 | -

40 | E

35 E

30 + |

s L i

20l i
N

sl . i

Average Fraction of CR Allocation left idle (%)

ol N] |

| | | | | |
0 20 40 60 80 100 120 140 160
WAN Link Capacity (Mbps)

Figure 3.18: CR allocations: idle time

available bandwidth (i.eh percent protocol overhead) and adjust their allocations

accordingly.

In our simulations, no improvement is obtained by givingference to lo-
cal resources over remote ones. Intuitively, we expecebstthedules using this
strategy for data-intensive jobs as intra-site networkdihave high capacities.
However, this improvement is neutralized by the asymmeftthe@ computational
resources; jobs submitted at a site containing a slower eR@v less likely to be
executed on a faster one (which is of course the case if thedmsirce collection
is selected for a job).

3.6.4 Computational resource idle time

If job execution and data transfer occur simultaneouslys joan block, thereby
inducing idle time on their time-shared CR within the prateg power fraction
allocated to that job. This happens if the job needs to waiirfjout data to arrive
or output data to be written. Such a scenario is plausibleweheetwork unaware
scheduling algorithm is used; while available network heidth (in particular,
between the job’s CR and the DR providing it with input datdluences the mini-
mum duration of a job on that CR, these algorithms do not taiseandwidth into
account. This results in possible overallocation of thestshared computational
resource; a fraction of the resource is reserved uniquelyhie job, but the job
is unable to exploit its allocated computing power to itd &xdtent. This means
that - within its allocated fraction - a job induces idle timie the CR. Again, the

GRID SIMULATION 3-41

NoNemork [
Network ===

PreferLocal

3000 |- B

2500 - b

2000 - b

1500 - b

Average Job Response Time (s)

1000 - b

500 B

LM

1 2 5 10 25 50 100 155
Wan Link Capacity (Mbps)

Figure 3.19: Job response time: pre-staged input

incurred penalty grows with lower bandwidths. Figure 3.l8vgs the amount of
idle time created by the network unaware algorithm in sucesa

In contrast, the network aware scheduling algorithms weusised will be able
to ‘tune’ their CR allocations with network bandwidth in mdirnto ensure that no
CR remains unnecessarily idle.

3.6.5 Influence of sequential data processing

In figure 3.19, we have plotted the average job response tiyaim dor the same
job load. In this case however, jobs were not able to startudian while still
downloading data, thus forcing the pre-staging of the eritiput to the execu-
tion site. As the execution/transfer parallelism is losgrage response times for
network aware algorithms increase (see also figure 3.17yweMer, this loss of
parallelism does not influence the relative behaviour ofdifferent algorithms
(network aware or not) as discussed before. For low bantwjdihe network un-
aware algorithm produces better average response times preestaging data,
as jobs cannot block their computational resource duringgssing in this case
(rendering the computational resource utilisation mofectif/e).

3.6.6 Influence of capacitated VPNs

If data connections are set up on demand using a pure FCF8eciids likely
that data-intensive jobs will quickly use up all of the asale bandwidth, causing
CPU-intensive jobs to remain queued for a longer periodnoéti

3-42 CHAPTER 3

T T
Network - VPN —=
Network e
450 - PreferLocal - VPN messses |
PreferLocal s

400 1
350 [,

300

200 [

Average Job Response Time (s)

150 |

100

50

1 2 5 10 25 50
WAN Link Capacity (Mbps)

Figure 3.20: Job response time: upfront VPN reservations

The upfront reservation of bandwidth to each job type ersstirat these CPU-
intensive jobs will never be excluded from remote executiom process them
on a faster CR). We have simulated the same job load, alththiglime VPNs
were set up in advance for the two job classes (data-intensivCPU-intensive).
We reserved more bandwidth for the data-intensive jobsgus20 — 80 percent
ratio. The job response time for the different algorithmghiis scenario is shown
in figure 3.20. This approach visibly improves the respoime;t CPU-intensive
jobs do not remain queued for an extraordinary long periotiheé, and as these
jobs have long processing times, this has a significant ilmpathe average job
response time.

Further improvement is possible if bandwidth is distrilsliteore intelligently
across the different job classes in a way that takes intowstdbeir respective
processed data sizes and run times (see chapter 4).

3.7 Other simulations

We refer to appendix B for simulations concerning the useppfieation-specific
hints in reconfigurable Grid scheduling algorithms. Using@¥id we compare
schedules that were produced by taking application-spekifits into account
to schedules produced by applying the same strategy fooladl (for both net-
work aware as for network unaware scheduling). It is shovat When using
application-specific hints in the scheduling process, ayeljob response times
in our simulated scenario improved by up 30 percent, as some jobs are now

GRID SIMULATION 3-43

processed at a rate which is slightly lower than their preféexecution rate (as
allowed by the hints), but finish sooner than if they were ergpd for scheduling
at a later time.

In appendix C we compare the performance of “network awdimgfwork
unaware”, “service” and “minhopcount” scheduling alganits when scheduling
cpu intensive and data intensive job classes (with datézet between 15.6GB
and 156GB per job - which can be expected of Grid jobs in ther&)ton a Grid
topology in which sites are interconnected by means of hagidiwvidth 2.5Gb/ s
- 5Gb/s) optical links. It is shown that even when high-capacitywak links are
available, network unaware scheduling heuristics areestdpmed by network
aware scheduling algorithms in terms of average job respbimes and resource
efficiency. Furthermore, if multiple application types arxecuted on the Grid, fur-
ther improvements can be obtained by utilising serviceraad scheduling heuris-
tics.

3.8 Conclusions

In this chapter we have presented NSGrid, a Grid simulatittrdrutop of the ns-2
network simulator and capable of accurately modelling oetviraffic between
different Grid resources. Computational, storage and detaurce models were
discussed, along with job (processing and 1/0) models aaduhctionality &
interoperation of the different management componentheder, connection
manager, service manager, service monitor, informatiovicee and replication
manager.

In order to demonstrate the usefulness of NSGrid, diffeand scheduling
algorithms (some network aware while others network unejwsere detailed and
their performance was evaluated on a sample Grid topolodye résults show
that whether data is pre-staged or accessed in parallelthéthob’s execution
(i.e. streamed), accurate network status informatiomalitm create significantly
better schedules in terms of both job response time and catigmal resource
efficiency. From our simulations, it follows that upfronsesvation of bandwidth
(between Grid resources) for different job types can imerthe response time by
avoiding that data-intensive jobs monopolize availabledvadth.

3-44

CHAPTER 3

References

[1]
[2]

[3]

(5]

[6]

(8]

[9]

[10]

[11]

The Network Simulator - NSAt t p: / / ww. i si . edu/ nsnam ns.

L. Hall, A. Schulz, D. Shmoys, and J. WeiScheduling To Minimize Average
Completion Time: Off-line and On-line Algorithme SODA: ACM-SIAM
Symposium on Discrete Algorithms (Conference on Theaaktiod Experi-
mental Analysis of Discrete Algorithms), 1996.

Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshoheniieth C. Sevcik,
and Parkson Wong.Theory and Practice in Parallel Job Schedulindn
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduitrategies for
Parallel Processing, pages 1-34. Springer Verlag, 1997.

Andrea Carol Arpaci-Dussealmplicit coscheduling: coordinated schedul-
ing with implicit information in distributed system&CM Transactions on
Computer Systems, 19:283-331, 2001.

J. Liu, D.M. Nicol, B.J. Premore, and A.L.Poplawskerformance Predic-
tion of a Parallel Simulator In Proc. of the Parallel and Distributed Simula-
tion Conference (PADS’99), 1999.

Jason Liu, L. Felipe Perrone, David M. Nicol, Michael jeihstam, Chip El-
liott, and David PearsorSimulation Modeling of Large-Scale Ad-hoc Sensor
Networks In European Simulation Interoperability Workshop, 2001.

A. Varga. OMNeT++. IEEE Network Interactive, 16(4), 2002.

Andras Varga. The OMNeT++ Discrete Event Simulation System Pro-
ceedings of the European Simulation Multiconference (E8M1), 2001.

Atsuko Takefusa, Satoshi Matsuoka, Henri CasanovaFaadcine Berman.
A Study of Deadline Scheduling for Client-Server Systente@@omputa-
tional Grid. In HPDC '01: Proceedings of the 10th IEEE International Sym
posium on High Performance Distributed Computing (HPD@1)) 2001.

A. Takefusa, O. Tatebe, S. Matsuoka, and Y. MorRarformance Analysis
of Scheduling and Replication Algorithms on Grid Datafarrahitecture for
High-Energy Physics Applicationin Proceedings of the 12th IEEE Interna-
tional Symposium on High Performance Distributed Compu¢taPDC-12),
2003.

H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,jikeTaura, and
Andrew A. Chien.The MicroGrid: a Scientific Tool for Modeling Computa-
tional Grids. In Proc. of Supercomputing '00, 2000.

GRID SIMULATION 3-45

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Xin Liu, Huaxia Xia, and Andrew ChienVvalidating and Scaling the Micro-
Grid: A Scientific Instrument for Grid Dynamic3ournal of Grid Computing,
2:141-161, 2004.

The Globus Allianceht t p: / / www. gl obus. org/.

Arnaud Legrand, Loris Marchal, and Henri Casano%theduling Distrib-
uted Applications: the SimGrid Simulation Frameworkn CCGRID '03:
Proceedings of the 3st International Symposium on Clustenfiliting and
the Grid, 2003.

J. Lerouge and A. LegrandMetaSimGrid : Towards realistic scheduling
simulation of distributed applicationsENS-LIP Research Report 2002-28,
2002.

R. Buyya and M. MurshedsridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Schedulingfa Comput-
ing. The Journal of Concurrency and Computation: Practice ampeiience
(CCPE), May 2002.

Anthony Sulistio, Gokul Poduvaly, Rajkumar Buyya, a@ihen-Khong
Tham. Constructing A Grid Simulation with Differentiated NetwadBer-
vice Using GridSimIn Proc. of the 6th International Conference on Internet
Computing (ICOMP’05), 2005.

Hung-Ying Tyan and Chao-Ju HodavaSim: A component-based composi-
tional network simulation environmenrh Proc. of Western Simulation Mul-
ticonference - Communication Networks And Distributedt8yss Modeling
And Simulation, 2001.

John A. Miller, Andrew F. Seila, and Xuewei Xianghe JSIM Web-Based
Simulation Environment Future Generation Computer Systems (FGCS),
Special Issue on Web-Based Modeling and Simulation, 14133, 2000.

K. Ranganathan and I. Fostédentifying Dynamic Replication Strategies for
a High Performance Data Gridn Proc. of the International Grid Computing
Workshop, 2001.

K. Ranganathan and |. FostdDecoupling Computation and Data Schedul-
ing in Distributed Data-Intensive Applicationsn Int. Symposium of High
Performance Distributed Computing, 2002.

Parsec : Parallel Simulation Environment for Complex Syste ht t p:
/I pcl.cs.ucl a. edu/ proj ect s/ par sec.

3-46 CHAPTER 3

[23] William H. Bell, David G. Cameron, Luigi Capozza, A. Radillar, Kurt
Stockinger, and Floriano Zini. Simulation of Dynamic Grid Replication
Strategies in OptorSimn GRID '02: Proceedings of the Third International
Workshop on Grid Computing, pages 46-57, 2002.

[24] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paullaj Caitriana
Nicholson, Kurt Stockinger, and Floriano Zinkvaluating Scheduling and
Replica Optimisation Strategies in OptorSiin 4th International Workshop
on Grid Computing (Grid2003), 2003.

[25] Java http://java. sun. cont .

[26] The DataGrid Project http://eu-datagrid.web.cern.ch/
eu- datagrid/.

[27] I. Foster K. RanganathanSimulation Studies of Computation and Data
Scheduling Algorithms for Data GridsJournal of Grid Computing, 1:53—
62, 2003.

[28] Tcl/Tk http://www. tcl . tk.

[29] B. Stroustrup.The C++ Programming Languagedddison-Wesley Publica-
tion Company, 2000.

[30] D. Lu and P. Dinda.Synthesizing Realistic Computational Grids Pro-
ceedings of ACM/IEEE Supercomputing 2003 (SC 2003), 2003.

[31] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids
ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003

[32] L. Hall, A. Schulz, D. Shmoys, and J. WeiBicheduling To Minimize Average
Completion Time: Off-line and On-line Algorithmk SODA: ACM-SIAM
Symposium on Discrete Algorithms (A Conference on Theoadtand Ex-
perimental Analysis of Discrete Algorithms), 1996.

[33] C. Ernemann, V. Hamscher, A. Streit, and R.Yahyapdtnhanced Algo-
rithms for Multi-Site Schedulingln Proceedings of Grid2002, LNCS 2536,
2002.

[34] A.1.D. Bucur and D.H.J. Epema&n Evaluation of Processor Co-Allocation
for Different System Configurations and Job StruxctutesProceedings of
SBAC-PAD, 2002.

[35] A.I.D. Bucur and D.H.J. Epemalhe Influence of the Structure and Sizes of
Jobs on the Performance of Co-Allocatidn Proceedings of JSSPP6, 2000.

GRID SIMULATION 3-47

[36] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. ihener.
SETI@home: An Experiment in Public-Resource Computi@mmuni-
cations of the ACM, 45:56—-61, 2002.

[37] H. Casanova, T. Bartol, J. Stiles, and F. Bermistributing MCell Simula-
tions on the Grid The International Journal of High Performance Computing
Applications, 14:243-257, 2001.

[38] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, andobdrt. Bandwidth-
centric allocation of independent tasks on heterogenetatfopms Techni-
cal report, Technical Report 4210, INRIA, 2001.

[39] MOSIX Cluster and Grid managemett t p: / / www. nosi X. or g/ .

[40] Debian http://ww. debi an. org/.

Grid Service Management

4.1 Introduction

In chapter 2 we discussed the importance of accurately wramit Grid state and
presented a scalable Grid monitoring architecture capafbtaitperforming the
current leading Grid monitoring platforms. We continuedcimpter 3 by de-
scribing NSGrid, a Grid simulator capable of modelling agawariety of Grid

topologies and resource configurations (providing netwodmputational, data
and storage resource models along with models for variousgement compo-
nents and jobs). The work presented in this chapter combire=e efforts and
discusses how monitored job, application and resourceacteistics can be put
to use by a Grid service management architecture to impnmang others Grid
management scalability and resource efficiency. NSGrahallus to easily evalu-
ate the effectiveness of different service managementidtigtzs on a wide range
of Grid configurations.

As more and more application types are ported to Grid enwients, an evo-
lution is noticed from purely computational and/or datadGoiferings to full-
scale service Grids [1] (e.g. the Enabling Grids for E-Soéeim Europe (EGEE)
project [2]). A ‘service Grid’ denotes a Grid infrastructucapable of supporting
a multitude ofapplication typeswith varying QoS levels (i.e. our definition of
service Grid is not limited to web-service enabled Gridsk ¥ge the term ‘ser-
vice class’ as a classifier for user-submitted Grid jobs ¢ixatbit similar resource
requirements (processing requirements, 1/O data reqeingmpriority, etc.). The

4-2 CHAPTER4

architectural standards for service Grids are providechbyGlobal Grid Forum’s
Open Grid Service Architecture (OGSA) [3], and (to a less¢ermrt) the Web Ser-
vice Resource Framework [4], building on concepts of botid @nd Web Service
communities.

Widespread Grid adoption also increases the need for atednaistributed
management of Grids, as the number of resources offeredese Brids rises
dramatically (hence the scalability of these Grids becoweeg important). Auto-
mated self-configuration and self-optimization of Gridaese usage can greatly
reduce the cost of managing a large-scale Grid system, atlteatame time
achieve better resource efficiency, scalability and Qopaeups, 6].

The distributed service management architecture propiostis chapter can
be described as a distinct implementation of the OGSA ‘Serlzevel Manager’
concept. Service Level Managers are, according to the OGfaification, re-
sponsible for setting and adjusting policies, and chandiegoehaviour of man-
aged resources in response to observed conditions.

Our main goal is to automatically and intelligently assigmd@esources (both
network, computing and data/storage resources) to a pkatiservice class for
exclusive use during a specified time frame (i.e. partitigrthe pool of Grid re-
sources into distinct service class-assigned resourcespbsets). The decision
to assign a resource to one particular service will be basdgteresources avail-
able to the Grid and monitored service class resource udamaateristics and
requirements. Once resource partitioning has been pegfirdedicated manage-
ment components (i.e. scheduler, information service) atitl be associated to a
service class’s assigned resources, effectively cortstgumultiple self-managing
‘Virtual Private Grids’. These Virtual Private Grids in tuimprove Grid manage-
ment scalability, as their management components only tetke into account
the state of their partition-assigned resources alongtélstate and requirements
of jobs from the service class they are responsible for.

In order to compare the performance of a service managedvéridis a non-
service managed Grid we use NSGrid (detailed in chapter 8)elpecifically, we
evaluated Grid performance (in terms of average job regptime and resource
efficiency) when different partitioning strategies are éwypd, and this both in
case network aware as when network unaware schedulingds use

This chapter is structured as follows: section 4.2 sumrearielated work in
this area, while section 4.3 continues with an overview efgbrvice management
architecture and its interaction with other Grid composeBection 4.4 elaborates
on the different resource partitioning strategies, whike ¢valuation of those par-
titioning strategies in a typical Grid topology is compate@ non-resource parti-
tioned situation for varying job loads in section 4.5. Fipadection 4.6 presents
some concluding remarks.

GRID SERVICE MANAGEMENT 4-3

4.2 Related work

Considerable work has already been done in the area ofdistd scheduling for
Grids [7]. Grid scheduling taking into account service sfiecequirements has
been dubbedpplication-level schedulingviost notable application-level research
projects include AppLeS [8] and GrADS [9].

In AppLeS, service-class scheduling agents interoperafile existing re-
source management systems have been implemented. Elbgeotia separate
scheduler needs to be constructed per application type s€uice management
architecture differs from this approach in that it operatempletely separated
from the Grid scheduling components, working in on senggelusivity proper-
ties located at the information services (responsibletfmirgg resource properties
and answering resource queries from e.g. the differentsdbies).

GrADS on the other hand is a project to provide an end-to-emdi@pplication
preparation and execution environment. Application liametspecific resource in-
formation comes from the Network Weather Service [10] and32011]. For
each application; a performance (i.e. computational, nmgraod communica-
tion) model needs to be provided by the user. This differmfour service mon-
itor approach, which actively monitors application beloaviand deduces service
characteristics at run-time (see section 4.3.2).

The General purpose Architecture for Reservation and Ation (GARA)
project [12] provides Globus with end-to-end Quality of Bee guarantees for
applications. Both advance and immediate resource resmrsaare supported.
GARA does not offer dynamic automated resource-to-sepacétioning but can
instead be seen as a technology enabling the work proposkid ichapter.

IBM’s Tivoli Intelligent Orchestrator (T1O) and Provisiarg Manager (TPM)
[13] can improve service response times by monitoring teggsl resources and
requirements for anticipated peak workloads and, if neggssan automatically
re-allocate resources in accordance with business pe®rit 10 and TPM are fo-
cused on automated data center resource-to-service tidlogaand require users
to predefine ‘optimal resource utilization’ plans for eacipsorted service class.
Our service management architecture focuses on the neegefic computa-
tional / data / service Grids, and tries to automaticallg. (iwithout user inter-
action) deduce optimal resource utilization from monitb@rid job submission
behaviour.

Optimally assigning resources to services has been theaubf research
in [14]. In this study however, resource selection occuhdane a job is sub-
mitted to a Grid portal (i.e. service aware scheduling).sTdiffers from the work
proposed in this chapter in which resources are pre-agbignservice classes
based on service class characteristics (i.e. prior to thegheduling process).

In contrast to the above mentioned research projects, atrilootion focuses

4-4 CHAPTER4

on distributed, automated and intelligent resource-toise partitioning in a Grid
environment (based on monitored service class charaatsfiequirements) along
with the dynamic deployment of service class exclusive rgamgent components
(effectively constructing multiple Virtual Private Grids

4.3 Service management concept

Recall that we regard a Grid as a collection of Grid sitesrauenected by WAN
links. Each Grid site has its own resources (computatistatage and data re-
sources) and a set of management components, all of whiéhtareonnected by
means of LAN links. Every Grid resource in our model is giveseavice class
ID property (stored in the information service with whictetresource is regis-
tered) which denotes the service class the resource isiassbwith. If no service
management components are instantiated in the Grid, alliress’ service class
ID equals ‘0’, meaning these resources can be useahlgyob (i.e. belonging to
anyservice class). If however a resource’s service class IBtitosthe ID of one
particular service class, only jobs from that particulawme class will be able
to start utilising that resource (note that we sstart since jobs already assigned
to a resource the moment a change in that resource’s setag®l® occurs, can
continue utilising that resource).

4.3.1 Resource-to-service partitioning

Our goal is to intelligently and automatically assign seevtclass IDs to each re-
source so they can be used exclusively for jobs spawned fnatrservice class.
This classification of Grid resources in a per-service resopool with its own
dedicated scheduler and information service has multiphefts:

e resource efficiency and average job response times impasweill be shown
in section 4.5)

e allows for faster scheduling decisions and resource inéion lookups

e service class priorities can be given by assigning moreuress to high-
priority service classes

e locally offered service classes can be prioritized oveeifpr Grid site ser-
vice classes

e reduced infrastructure costs: by allocating job loads soueces more effi-
ciently, the number of resources can be reduced

e improved scalability with dynamic deployment of dedicatéeiG manage-
ment components

GRID SERVICE MANAGEMENT 4-5

e support for new business models

e service class dedicated management components can benédet the
needs of their particular service

e security can be enforced on a service class’s resource ps b

As we will see in section 4.5, resource efficiency (and aweljad response
times) can be improved by limiting resource availabilityservice classes that
can make efficient use of that particular resource (e.gngpikito account service
class data locality). Note that resource efficiency dessrihe amount of time a
resource is reserveahd this reservation is fully utilised - as opposed to resource
reservations where reservation time is spent on idling ewiting for job I/O
data to arrive. In addition, the number of job resource quesylts returned by the
information services to the scheduler will be less than wthere is one common
resource pool, allowing for faster scheduling decisiorsswa are in fact utilising
the resources’ service class ID assignation as an advases/ation mechanism).

Of course, one has to be very careful when automaticallgasg] resources to
service classes, as it creates the risk that certain sesldsses are (involuntarily)
left starving for resources on which to run, while other reses are assigned to
a service class for which there are no job submissions atithat(and are thus
unnecessarily left idle). One also has to take into accoemvice class necessities
when making resource partitioning decisions, in order tidexcluding a service
class from access to a critical resource (e.g. prohibitisgraice class access to
mandatory data resources).

The same way computational, storage and data resourcesegaartitioned
amongst different service class resource pools, netwadurees can also be split
up by performing per-service bandwidth reservations (RN technology). This
can prevent data-intensive service classes from monapglgetwork bandwidth
usage and thereby hampering the performance of jobs froer stvice classes.
Instead, each service class should automatically recedegtain bandwidth and
be able to use this bandwidth without having to worry aboatrtbtwork usage of
other services’ jobs.

With combined network and resource partitioning, a Gridlsamodelled as a
dynamic collection of overlay Grids &firtual Private Grids(VPG), with one VPG
for each service class offered in the Grid (see figure 4.2¢s€lVPGs are not static
structures in that they do not have resources assignedrtoithe permanent way,
but react to monitored changes in service characteristics (@additional service
offerings can lead to the construction of new VPGs and reatlon of resources
across existing VPGs). Resource reallocation can stem iingmortant changes
in monitored service class characteristics (e.g. highersjdomission rates for a
service class), a change in service class priorities orJraady mentioned, the
addition of new service classes.

4-6 CHAPTER4

Information Grid ' Connection
Service Scheduler Manager

SRR ,‘!
‘ S «’
computational
resources

Figure 4.1: Standard Grid

4.3.2 NSGrid implementation

In NSGrid, a distributed service management architecta®implemented in or-
der to evaluate the effectiveness of different resouregetwice partitioning strate-
gies and Virtual Private Grid deployments. Each Grid site ltave a locaservice
manager which interacts with the local information service (IS)noection man-
ager (CM) andservice monitor

4.3.2.1 Service monitor

The service monitor inspects job submission behaviourea@hd portals (recall
that a Grid portal acts as a job submission gateway for Gralg)s each time a
job is submitted, job requirements (service class, psiorieeded input data sets
and sizes, output storage sizes, computational requirsietn.) are extracted and
overall service class properties (e.g. average job inieahtime, average I/O data
sizes, average job computational needs, needed inpuetigtase adjusted. When
the service monitor has gathered adequate service clasgtdristics (either when
service class properties remain relatively stable over edfperiod of time, or
when an information dissemination timer has run out), thgise monitor sends
the collected service class’ characteristics to its kndaee(| and foreign Grid site)
service managers, so as to allow them to have up-to-datesetass information
for use by the resource-to-service partitioning algorghnThe service monitor
keeps a record of the info that was submitted to the serviceagexs, and, if
substantial changes (w.r.t. a configurable threshold) ivic® class properties
are monitored (e.g. detection of new service classes,dserkservice class job

GRID SERVICE MANAGEMENT 4-7

‘ Grid Service Monitoring l
3 1
‘ Grid Service Management |

3|

4
VPG VPG
Is scheduler [wg]

PG service class k
gsource pool
VPG service class i
resource pool

ELITNER
uopeuwlou|

J19|npayos
puD

Y
MAN/WAN "
network b
-

SIS 3
N >
oF— —~
A eetmputational
o resources

computal

tional
resources

1abeuepy
uonoauuo)

Figure 4.2: VPG partitioned Grid

interarrival times, change in priority, higher job respetisnes, etc.), sends up-to-
date service class information to the service managerdi(gae 4.3).

Each service monitor has a moving time window (of configugddahgth), such
that the properties of a job that was submitted at a time bdfur time window’s
beginning are no longer taken into account when calcula@ergice class’ char-
acteristics. In doing so, service classes that spawn nodjotisg a period of time
equal to the time window’s length are discarded: the semioeitor will inform
the service manager of this occurrence, which in turn wéléfresources allocated
to that particular service class and (if necessary) rejanrti

Listing 4.1 shows the most important public methods (noltidieg construc-
tors/destructors and most getters/setters) supportetidogdrvice monitors. In
what follows we give a brief description of these methods:

e void setBeginPartitionTime(.:.)sets time at which collected service class
information needs to be sent to the service managers thamtarested in
it (i.e. information dissemination timer). Note that theviee monitor can
choose to distribute service class characteristics at dieretime if these
characteristics remain relatively stable over a periodnoét

¢ void setNewServiceJobNr(:.9ets number of jobs (belonging to a new ser-
vice class) that need to be monitored before the servicetordanforms the
service managers of the existence of a new service class.

e void setProcDifflAT(..:) sets percentual service class’ interarrival time dif-

4-8 CHAPTER4
Grid Service Service Information Connection el
Portal Monitor Manager Service Manager
:rnonitor job submission; | ' i i
it job subrisson ; ;
:r:;)-n-lt-c;r-fél;-s-u-b;\;s-s-loq collect s:ervice class characteri:slics i i
:L ------------------- ! service class info E i i i
i : : query resources i i i
1 i ! query network resources i i
! : , ‘ * !
' ! | resource query result | ! !
i E E/ network resource:query result i i
I 1 1
a e i | a a
i ! E resource—to‘—service partitionir]g !
' E E assign service class i i i
i E ' service class bandwic:hh reservations i i mponen
i E i constructio:n of VPG management componen{s i
i i : Notify VPG constructioni \i /i
i i E | job passing i
| | | | :

Figure 4.3: VPG partitioning messages

ferentiation that can be monitored before the service moimiforms the
service managers of this change in service class’ chaistiter

void setProcDiffReq(...)sets percentual service class’ processing require-
ments differentiation that can be monitored before theisemonitor in-
forms the service managers of this change in service classacteristics.

void setServiceMonitorWindow(:. 3ets length of service monitoring win-
dow.

void setProcDifflnput/Output(...)sets percentual service class’ input/out-
put requirements differentiation that can be monitorecbtthe service
monitor informs the service managers of this change in serdlass’ char-
acteristics.

void monitorJob(..:)job submission monitored by the service monitor. The
service monitor extracts information from the job’s XML dégtion and
updates the job’s service class’ characteristics.

void addlInitialServiceClass(.:.utilised in case one wants to seed the ser-
vice monitor with initial service class’ characteristics.

void addServiceManager(..ddds a service manager that will be contacted
by the service monitor when distributing service classrahteristics.

GRID SERVICE MANAGEMENT 4-9

Listing 4.1: Service monitor interface

classServiceMonitor public ManagementComponeft
public:
void setBeginPartitionTimelfouble beginPartitionTime);
void setNewServiceJobNrt newServiceJobNr);
void setProcDifflAT double procDifflAT);
void setProcDiffReqdouble procDiffReq);
void setServiceMonitorWindovdouble serviceMonitorWindow);
void setProcDiffinputfiouble procDiffinput);
void setProcDiffOutputfouble procDiffOutput);

void monitorJobgtring jobXML);

void addInitialServiceClass{t serviceClassjouble MIReq, double inputReq,double outputReq
, int priority, double IAT);

void addServiceManagesifing serviceManager);

4.3.2.2 Service manager

The service manager thus periodically receives informategarding local and
foreign Grid site service class characteristics from thfedint service monitors.
When the received information does not differ (with regardatoertain thresh-
old) from the one used to partition the Grid resources in &ipus partitioning
run, no resource-to-service repartitioning will occumdiwever the difference be-
tween the previous values and currently monitored senfieeacteristics (average
job IAT, processing length, 1/0 bandwidth necessities,)ei® too large, or if no
resource partitioning has yet been done, the service mandljejuery the in-
formation services for the characteristics of the resa@ineeheir local Grid site
resource pool. Once the answer to this query has been rdceive of the resource
partitioning algorithms (detailed in section 4.4) is apglio the resource set, and
the resulting resource partitioning solution is sent badké information services,
who in turn change the service class property of their reggst resources. If the
partitioning algorithm also works in on network resourci& connection man-
ager will be contacted to make service bandwidth resemsitfbased on assigned
computational resources, necessary input datasets anionednservice class’
bandwidth requirements).

Once the partitioning algorithm has finished, resourcelbeibssigned to ser-
vice class resource pools, and (if this was not already dded)cated Virtual
Private Grid management components will be dynamicallystrocted and asso-
ciated with the different Virtual Private Grids (in NSGritetse VPG management
components are deployed at the Grid site where jobs from Bf@'¥service class
are most common). A VPG information service will gather rgse property and
status information from all resources assigned to the VRGs ihformation ser-
vice will in turn be queried by a dedicated VPG scheduler wthenlatter seeks

4-10 CHAPTER4

information on resources adhering to a job’s requiremeNtste that the global

(central or distributed) Grid scheduling system continteeseceive all jobs sub-

mitted to the different Grid portals, but, upon inspectibéthe service class of each
arriving job, either tries to schedule the job itself, or,emha VPG is constructed
for the job’s service class, immediately sends it to the citdid VPG scheduler.

Listing 4.2: Service manager interface

classServiceManagerpublic ManagementComponeft
public:

void addLocalServiceCladsf serviceClassnt submissionSitegjouble CPUReqggdouble
inputReq,double outputReqjnt priority, double IAT);

void removeLocalServiceClass{ serviceClass);

void addForeignServiceClassfing foreignServicelnfo);

void removeForeignServiceClag#(serviceClass);

void addLocalServiceClassIDNeeul{ serviceClassnt ID);

void addForeignServiceClassIDNead(serviceClassnt ID);

void addInformationServicefring informationService);
void addServiceManagesifing serviceManager);

void addGridSchedulesfring gridScheduler);

void addConnectionManagsit(ing connectionManager);

void setPartitioningStrategg(ring partitionStrategy);
void setForeignPolicydouble foreignPolicy);

void retrieveResources();
void retrieveConnections();

void boostPriority{nt serviceClassnt boost);

void submitServicelnfdgtring servicelnfo);
void deployVPGS();

Listing 4.2 shows the most important public methods (nolidieng construc-

tors/destructors and most getters/setters) supporteldebgervice manager com-
ponents. In what follows we give a brief description of thesthods:

¢ void add/removelLocalServiceClass(.ajlds/removes local service class char-
acteristics.

¢ void add/removeForeignServiceClass{adds/removes foreign service class
characteristics.

¢ void addLocal/ForeignServiceClassIDNeed{adds data set ID frequently
needed by a local/foreign Grid site service class.

¢ void addInformationService/ServiceManager/GridSchemd@onnectionMana-
ger(...y adds management component for querying/updating.

GRID SERVICE MANAGEMENT 4-11

¢ void setPartitioningStrategy(.:. pllows initialising/changing the employed
resource-to-service partitioning strategy.

e void setForeignPolicy(...)allows changing foreign service class policy
(PSC;oreryn @S €Xplained in section 4.4.1.2)

¢ void retrieveResources(Queries the information services for resource prop-
erties.

¢ void retrieveConnections(Jetrieves network resource information from the
connection managers.

e void boostPriority(...) boosts the priority of a particular service class.

e void submitServicelnfo(.:.)submits service class information (i.e. when
service monitors have monitored a change in service classibour).

e void deployVPGS()deploys Virtual Private Grid management components
and configures them accordingly.

4.3.2.3 Information service

Much in the same way as the service monitors can trigger atigpaing of re-
sources to services when substantial changes in servisge claracteristics are
monitored, the information services are responsible fgnaling changes in re-
source availability. Every time an existing Grid resoureedmes unavailable (ei-
ther because of failure or by policy), or conversely, whew nesources become
available to the Grid, the information services report tttignge to the service
manager. The latter then decides if a resource-to-serejgartitioning is neces-
sary.

It is important to note that, while resources are assigne@xolusive use by
a particular service, not one job using a service class igras resource will be
interrupted (preventing jobs from being pre-empted whenGR it is running on
is assigned to a different service class). The service ms> will thus only be
effective fornewjobs or jobs currently in the scheduler queue. At the time of
scheduling, queries will be sent to the information servifme resources adhering
to the job’s requirements, and these information serviciisreturn only those
resources that are assigned to that particular job’s senlass.

On another note, we have limited our research to discreteires-to-service
allocations (i.e. a single service class assigned to a respaote that in sec-
tion 4.4.1.4 we allow network resources to be partitionedgst multiple service
classes, to prevent parts of the Grid topology of becomiakgisd when network
partitioning is performed). More advanced resource-twise partitioning algo-
rithms could allow resources to be reserved for a subseteftailable service

4-12 CHAPTER4

classes (i.e. multiple service class IDs can be assigneditmie resource). This
way, resources (or resource fractions) could be membersiiifxhe Virtual Private
Grids, allowing for stacked VPGs.

4.4 Partitioning strategies

Recall that we are trying to partition resources into sendlass resource pools.
A solution in this case is a mapping from resource to a pdeticservice class
ID, and this for all resources returned from the service rgana information
service queries. A resource can also be assigned servieg I8a0’, meaning
it can be used by jobs from every service class. Exhaustsesyching for an
optimal partitioning (by evaluating the fitness of a solatisy means of a cost
function) quickly becomes infeasible, as the amount oftgmhs that needs to be
evaluated i§#serviceclasses + 1)#reseurees n our attempts to find a suitable
solution in reasonable time, we have used Genetic Algortased heuristics to
obtain a resource-to-service mapping. Note that Pietesdlbgert has developed a
heuristic based on Divisible Load Theory (DLT [15]) for t¢ick the resource-to-
service partitioning problem. For a thorough discussiothis heuristic we refer
to [16].

In order to provide a better understanding of the resultsmfleying one of the
different resource-to-service partitioning heuristicscdssed in the next sections,
we introduce a sample Grid with 3 Grid sites in figure 4.4. Weoiduce two ser-
vice classes: the first (SC 1) is cpu-intensive, needs atodks data set with 1D
1 and can run at four times the reference processing speetmabeiving/sending
I/O 100Mbps. The second service class (SC 2) is data-iMenseeds access to
the data set with ID 2 and can run at twice the reference psotgspeed when
receiving/sending I/O at 1Gbps. Both service classes atdous0 percent of the
job load and have equal priority. As shown in table 4.1, the ind second Grid
site launch jobs from service class 1 and 2, while the third Gite only launches
jobs from service class 2. We have provided site 1 with 2 fastputational re-
sources (who can run jobs at 4 times the reference speed)sod tomputational
resource (running at the reference speed), while site 2 dr@d8&a single fast CR
and 2 slow CRs. Each Grid site has a client portal, infornmegiervice, connection
manager, service monitor and service management compavigig a singlenet-
work awareGrid scheduling component is instantiated (the differeahagement
components are not shown to avoid cluttering the figure).

If no resource-to-service partitioning occurs (see figudg,4he scheduler will
assign both service class 1 and 2 jobs to the fastest corgnahtesources, as
these resources provide for both service classes the tfgstesessing speeds.
However, once these fast CRs are fully loaded (with both S@1L $C2 jobs),
the scheduling algorithm will have to assign computatiniatensive SC1 jobs

GRID SERVICE MANAGEMENT 4-13

site 1 | site 2 | site3
fast CRs (4x ref.speed)| 2 1 1
slow CRs (ref.speed) 1 2 2
Service classes 1-2 1-2 2
Data sets 1 2 2

Table 4.1: Sample Grid site properties

aridsite -~ 8C1] [sc2] [sei][scet " Gigsien
/// \\\\

1
e >
. N
7z \

7 R \
/ S
o

/

|

/

Figure 4.4: Grid example - no resource-to-service partitioning

to CRs with low processing speeds (processing of these Sixlgo the slow
CRs will be four times slower than on a fast CR). A better apphowould have
been to assign the data-intensive SC2 jobs to those slowgrdational resources
that have local access to dataset 2, keeping the fast cotigmataresources fully
available for processing jobs from the computationallginsive service class. The
latter behaviour is exactly what the resource-to-servaréitipning heuristics will
try to enforce.

Note that due to the use of a Genetic Algorithm different 8ohs can be
found when employing one of our resource-to-service pamiitg algorithms on
the described problem. Our example will only highlight orfettise possible
solutions.

4.4.1 Genetic Algorithm heuristics

The resource class assignment can easily be encoded intetugie of service
class IDs, where: equals the number of resources. Thelsmmosomesan then
be fed to a Genetic Algorithm (GA) which evaluates the fitnelssach chromo-
some (i.e. possible service class assignment) w.r.t. &@ostion f(z) (see algo-

4-14 CHAPTER4

rithm 4.4.1). Different cost functions will be describedsection 4.4.1.1, 4.4.1.2
and 4.4.1.3.

Algorithm 4.4.1 starts with an initial population size of randomly gener-
ated tuples (each tupteconsisting ofn service class ID slots). While the stop-
condition is not fulfilled, the GA applies a proportional egtion, after which a
two-point crossover and a mutation step occur. The prapuatiselection selects
tuples based on their fitness (with fitter solutions morelyike be selected and
carried over to the next generation). In the next step, afwiat crossover op-
eration is applied (for each two consecutive tuples thestnasr probabilitypo
determines if all service class IDs between the randomigcsetiposl andpos2
are switched). Finally, the mutation operation is perfainfier each tuple, with
mutation probabilityp,, determining which of the, service class ID slots needs
to be mutated to a random service class ID.

Depending on how much time is available between partitigmims (which in
turn depends on the stability of the different service ctiaristics), parameters of
this GA can be tuned in such a way that feasible search timebeattained (i.e.
search time< < time between partitioning runs).

In the next sections we provide details on some implemerdedipning strate-
gies (and accompanying cost functiofisr)): section 4.4.1.1 and section 4.4.1.2
describe computational resource partitioning based opribeessing requirements
of respectively local and global service classes. Takibtgatcount the site local-
ity of much needed service class’ input datasets is disdusssection 4.4.1.3.
Finally, partitioning of network resources based on datpiirements of the dif-
ferent service classes is discussed in section 4.4.1.4. s¢leree that the service
manager has received both up-to-date local and foreign sedservice charac-
teristics from the service monitors and resource propeftiem the information
services.

4.4.1.1 Local Service CR partitioning

The first (and simplest) partitioning strategy only take® iaccount the compu-
tational processing needs and priority of the differecil service classes. The
service manager queries the information services for allllcomputational re-
sources and calculates average service class’ requesteelsping power as the
average processing time of that service class (as measai@@R running at ref-
erence speed) divided by the average interarrival time atf 3C (the higher job
interarrival times, the less processing power will be negdad multiplied with
the number of sites that submit jobs from this SC.

plimerefge

VSC - ppoweryeqs, = Sitesgo % TATse

GRID SERVICE MANAGEMENT 4-15

Algorithm 4.4.1: GENETIC ALGORITHM(resources)

pOpuzationinitial — (b(1,0)7 () b(’rn,O))a t—0
while stopcondition false
comment: proportional selection

for i« 1tom
x «— rand|0, 1]

k<1
do < while k < mandz < Z?Zl%
dok —k+1

bi,t+1 — bk,t
comment: tWO-pOint crossover

for i < 1tom — 1 stepi + 2
if rand[0, 1] < pc
do posl «— rand[l,n]
pos2 — rand[1,n]
do if posl > pos2
then then switch(posl, pos2)

for k < posl to pos2

do switch(bhHl [k], bi+1,t+1 [k])

comment: mutation

fori— 1ltom
for k< 1ton
do do {if rand[0, 1] < pam
then b; ;41[k] < rand[0, #SC]

t—t+1

In this equationptime, .. is the average processing time of a service class SC
job on a reference computational resouregessc denotes the amount of Grid
portals launching service class SC's jobs dotdl’s is the average service class
SC'’s job interarrival time. The relative processing powssigned to a service
class (sum of processing power of computational resourssigreed to that SC)
can be found from

speedcr .
VSC - ppowerqsgse = Z v — X ptimere fo
voResc “PECUCR ey

In this equationspeedcr is the processing speed of the selected computational
resource (as stored in the information services) white:dcr, , is the processing
speed of a reference computational resource. Once CR quswess have been
received, the GA (as shown in algorithm 4.4.1) will be stmeéth cost function

4-16 CHAPTER4

f(x) described in algorithm 4.4.2.

Algorithm 4.4.2 forpart,.., ()

result « 2220 aza0

maxAllocoyer — 0

mazAllocynger < 0

for ¢ S Sclocal

QUE +— PPOWET req, — PPOWET g5q,

if aux <0
if —aur > marAllocyyer

then then maz Allocyye, +— —aux

AUT — PPOWeET s,

do
i auxr
PPOWETreq;

else { thenmazAllocy,ger — —24L

PPOWET req,;
QUT < PPOWET q5g, — AUT

> maxAllocynder

priority;
JESCloeal priority;)

X aux

X +
result <« >

result «— maxAllocoye, + mazAllocynder
return (result)

In this cost function (which is to be maximized), the objeetis to donate
to eachlocal service class the same amount of processing posvetive to their
requested processing power (giving a higher cost functigmact factor to ser-
vice classes that have a high priority). Right at the starpesalize assigning all
processing power to service class ID ‘0’ (i.e. we only taki® iaccount half of
the processing power when a resource can be usexhygervice class), as the
objective of our algorithm is exactly to assign resourceseiclusive use by a
single service class, so service ID ‘0’ assignations shoulgd be used when con-
flicting service class requirements are found (e.g. twoisertlasses need jobs to
run on a single computational resource). Thex Allocy,e, andmax Alloc,,ger
parameters assure an even spread of processing power toesefivoth in case
insufficient processing power is available as when suffigieacessing power is
available), as they keep track of the maximum amount of deeated/underal-
located processing power (compared to that service clasgiested processing
power) and penalize the cost function result accordingly.

If we take a look at our example (see figure 4.5) we notice that §ite 1 has
reserved one of the fast CRs for the computationally intensérvice class (SC1),
while Grid site 2 has reserved its only fast CR for procesSi@d jobs. The third
Grid site only takes into account its local service classir@gnents, and assigns

GRID SERVICE MANAGEMENT 4-17

Grid sitej/,rf—\

e da

sets1+27
Gl

Figure 4.5: Grid example - local service CR partitioning

all of its resources to the data intensive service class.stheduler can now only
assign SC1 resources to SC1 jobs, preventing data integjosisérom running on
most fast computational resources (these data intendigesjsend half of thefiast
computational reservation idling while I/O data is beingtéetrieved).

4.4.1.2 Global Service CR partitioning

The second partitioning strategy adds support for senatfesed at foreign Grid
sites. The cost function impact factor of assigning resesito foreign service
classes can be adjusted by the local service manager byttir@rforeign service
policy psc;,,....- Support for foreign service classes can range from no itrgtac
all on the cost functiondsc;,,,..,, = 0) to animpact equal to that of local service
classesfscy,,..,, = 1) orany value in between. The resulting cost function is
stated in algorithn®.3. In this algorithm we include both local and global services
in the processing power allocation loop and, if we assigrcgssing power to

a foreign service class, multiply the assigned processavgep with the foreign
service policypscy,.,,..,. effectively manipulating the cost function impact factor
of assigning processing power to foreign service classesrding to the local

policy.
Returning to our example (see figure 4.6), we notice thattine Grid site has

taken into account the global need for computational powesdbvice class 1 jobs
and has assigned its fast computational resource to thiceeailass.

4-18 CHAPTER4

Algorithm 4.4.3: £ rpart 100, ()

result « PP2Teso0

mazAllocoyer < 0

maxAllocynder < 0

for i € Sclocal U SCforeign

QUT < PPOWETyeq, — PPOWET g5g,

if auz < 0
if —aux > maxAlloc,yer

then then max Alloc,yer +— —aux

UL +— PPOWET 45g,

P auzx
do if m > maxAllocunder

else { thenmaxAllocynder —

__aux
PPOWET req,
AUT < PPOWETq5g, — AUT
ifi e Scforeign
then auz «— aux X psc;,,.ign
priority;

S X aux
jesc priority;)

result <& T

result «— maxAllocoye, + mazAllocynder
return (result)

4.4.1.3 Input Data Locality Penalization

Resource partitioning based solely on the processing nefette different ser-
vices can lead to bad performance. In case of data-inteasivéces in particular,
one wants these services to be processed on computatisnatces located near
input data that is generally requested by those serviceasdasn order to provide
this functionality, the service manager queries the infation services for both
computational and data resources and constructs a list ishw®Rs have local
access (i.e. accessible from the local Grid site) to whiguirsets. We adjust
the cost function to include this notion and penalize assgya computational re-
source that haso local access to an input dataset much-needed by the a&skign
service The actual penalty depends on the input data intensivesfetbe ser-

vice class i {24154y when compared to the total input data requirements of all

. I .
service classeS{,;csc T hanl):
J

InputReq;
TAT; Pcost

X
InputReq; .
Yviesc —ram, - #CRassigned,

costcresci =

GRID SERVICE MANAGEMENT 4-19

Grid sitej,,—»—\
/// \\\

a

Figure 4.6: Grid example - global service CR partitioning

In this equation/nput Req is the average service class’s input size requirement,
#C Rssigneq denotes the amount of computational resources assignbd set-
vice class ang.,,; describes the data non-locality penalty factor. An addélo
(yet larger) penalty is given when, amongst all computaioasources assigned
to a particular servicenot one of thenhas access to a needed dataset, as it can
be considered best practice that at least one computaties@lirce can access a
needed input set locally. This cost is only charged oncedoheervice class.
InputReq;

TAT;

InputReq; X Peost
vjesc TAT;

cost =

Both costs can be used as a penalty for the cost function oritlign 4.4.2 and
4.4.3. Algorithm 4.4.4 shows the cost function for globaléze CR partitioning
with input data locality penalisation.

Our example in figure 4.7 shows that all computational reseiat the first
Grid site have been assigned to service class 1. This islgxsstause the first
Grid site is the only site with local access to data set 1. iBerslass 2 is in turn
assigned a fast computational resource at Grid site 3, whéshlocal access to
data set 2.

4.4.1.4 Network partitioning

Since the service monitor keeps track of I/O data charatiesiof each service,
data intensiveness relative to the other services can loelatd. This in turn
can be used to perform per-service network bandwidth raiens. We have im-
plemented a proof-of-concept network partitioning sggtén which the service

4-20 CHAPTER4

Algorithm 4.4.4: forpartyioparps e (T)
result « P20 a0
mazAllocoyer < 0
maxAllocynder < 0
for i € Sclocal U SCforeign
QUL +— PPOWET req; — PPOWET ¢,
if aux <0
if —auxr > mazrAllocyyer
then then max Alloc,yer — —aux
QUL +— PPOWeET g5g,

H auxr
if Dpower e > maxAllocynder

else { thenmaxAllocynger —

aur
PPOWET req,

AUT “— PPOWET q5q, — AUT
do {if i € SCroreign
then auz « aux X psc;,,.iyn
for ¢ € CRussigned,
if noLocal AccesToDataN eeded(c, 1)

InputReq;
do —TaT, -

then auz — IAIQ;ipMRqu X z& Peost

vjesc T TAT;

if noC' RsAssignedWithLocal AccessToDataN eeded(i)

InputReq;
TAT;
TnputReq; X Pcost

vjesc T IAT;
priority;
jesc priority;)

Rassignedi

then auz —

+
result «— T X auT

result «— maxAllocoyer + mazAllocynder
return (result)

manager calculates average data requirement percentagesch service class i:

AT,
b’wmputj +bwoutputj
vjesc TAT,

bwreq, =

In this equatiorw;,,.: is the average service class’s input bandwidth need i.e.
specdon o InputBeq \whjle fyyp,,,.,,.; denotes the average service class’s output

speedCRmf ptime,cy

bandwidth need:. ;e”:;ggif X Op’;ffjfetp“jq The service manager sends the calcu-
lated information to the connection manager, who in turr méke service class
bandwidth reservations on all network links for which it ésponsible. Network
partitioning can be applied to all previously mentioneditianing algorithms.

If we employ network partitioning on our example (see figui®) 4ve notice

GRID SERVICE MANAGEMENT 4-21

Grid sitej,,—»—\
/// \\\

a

Figure 4.7: Grid example - global service CR partitioning IDLP

that all network links have been partitioned amongst sereiass 1 (which has 10
percent of the 1/0 needs of the data-intensive service &pasd service class 2.
This way, computationally intensive jobs assigned to tlie@R at Grid site 2 will
not suffer from fully congested network links due to I/O fraervice class 2 jobs
travelling over network links on their I/O retrieval/stgeroute, but instead will
always have a minimum of 10 percent of the total network liagacity assigned
to them. As our network partitioning algorithm only acts agraof-of-concept
heuristic, a variety of improvements still exist, most rtadyanon-global percentual
network link partitioning. More advanced network partiiog heuristics could
take into account the computational resource-to-sergsigaations, Grid network
topology and the location of different needed data setsdwipe service classes
with point-to-point advance connection reservation®tail to their needs.

4.5 Performance evaluation

4.5.1 Resource setup

A fixed Grid topology (see figure 4.9) was used for all simalasi (run on an
LCG-2.6.0 Grid [17] comprised of dual Opteron 242 1.6Ghz kmades with 2
GB RAM per cpu, and operating under Scientific Linux 3). FiestWVAN topology
(containing9 core routers with an average out-degreg)ofvas instantiated using
the GridG tool [18]. Amongst the edge LANs of this topology, we have s#o
12 of them to represent a Grid site. Each site has its own resspuncanagement
components and Grid portal interconnected through 1Gbgs lidks, with Grid
site interconnections consisting of dedicated 10Mbps WikiKsl. A single ser-

4-22 CHAPTER4

aridste1 __---[8C1][sc2] mm “arid site 2 ‘\\\\

I @ ‘
| y I
1 !
\
o ‘ data set 2 /
4.5Mbit SC2:) /

‘ 0.5Moit SC1 900Mblt SC 2 /!
! ——900Mbit SC 2m— Y0 %s, \ W .
| ——100Mbit SC 1—— | ‘%ﬁf@,@ &5 ~ —100Mbit SC 1— .-

0 data /
'sets 1 +2 /

—900Mb|t802— da‘a -
SC2 ——100Mbit SC t—— set2 -~

d

Figure 4.8: Grid example - Global service CR partitioning IDLP with netwpaktitioning

vice manager was instantiated, and was given access toffeeedt Grid sites’
information services.

We have assignesl computational resources to each Grid site (for a total of
36 CRs). To reflect the use of different tiers in existing operal Grids, not
all CRs are equivalent: the least powerful CR has two prazss&vhich oper-
ate at the reference speed - note that speed in our commaktmdel refers to
the actual speed at which computational resources cangwgals i.e. compu-
tational resource performance). A second class of CRs hagpfocessors, and
each processor operates at twice the reference speed. ifthe #md last - CR
type contains 6 processors, each of which operates at times the reference
speed. Conversely, the least powerful type of CR is threedias common as
the most powerful CR, and twice as common as the middle omea(fotal of 18
reference CRs, 12 four-processor CRs and 6 of the most poWweRs deployed
in our simulated topology).

We have assumed that storage resources offer “unlimitesk fpace, but are
limited in terms of access/write speed by the bandwidth efitik connecting the
resource to the Grid site. Each site has at its disposal lgx@we such SR. Each
site’s data resource contains 6 out of 12 possible data Jé¢tsse data sets are
distributed in such a way that 50 percent of the jobs subdhittea site can have
local access to their needed data set.

4.5.2 Job parameters

We have used two different, equal-priority service clageesh accounting for
half of the total job load) in our simulations; one is moreadattensive (i.e. higher

GRID SERVICE MANAGEMENT

4-23

egte

Storage
Resource

Information
i \ Service
Grid Portal
TN = P,
/" Grid ' ¢~ Grid ™)
‘. Site 'Y : ‘s y Site /
- - i waN O \ Z-
- - ! Lot 3
PSS ' Pl ’ [}
¢ Grid @\ —). ,.—" s)
\ S|te _ l’ - P N
S— - ___.. o Grid)
_.,-"‘ ‘\‘ R Site
D < __7
¢ Gri Lo~
\ i - i
Ste 2% 7 G Grid -y
/ 7 AN Site
_ Site ¢ Gri) S22~
~——~7 \ Site
~N 7

—_ -

Figure 4.9: Simulated multi-site Grid topology

4-24 CHAPTER4

data sizes involved), while the other is more cpu-intensiteeachGrid site, two
“clients” have been instantiated, one for each job type hEdient submits mutu-
ally independent jobs to its Grid portal. All jobs need a &ndata resource and
a single storage resource. The ranges between which tivamejeb parameters
vary have been summarized in table 4.2. In each simulatierjob load consisted
of 2784 jobs. For each scheduling algorithm, we chose to use a fixedvad of
20s between consecutive scheduling rounds. From the arrited ia table 4.2 and

CPU-Job | Data-Job
Input(GB) 0.01-0.02 1-2
Output(GB) 0.01-0.02 1-2
IAT(S) 30-40 30-40
Ref. run time(s) | 100-200 40-60

Table 4.2: Relevant service class properties

the fact that multiple sites submit job simultaneously, welékely to find multiple
jobs in the queue at the start of each scheduling round.

4.5.3 GA-partitioning performance

The main drawback of GA-based partitioning is the time ndedeomplete a GA
run (with reasonable results); on our sample scenario, \&rsiop condition of
100 generations takes on averal§d2s (26.32s per generation but it should be
noted that this time is not exclusive for GA solution cal¢igia, but is also spent
on all other simulation tasks during partitioning) as cansben in figure 4.10.
More reasonable GA calculation times (with an averagel 88.4s can however be
obtained when using a more intelligent stop condition §tep when over a period
of 15 generations the cost function optimum changes by lems 0.5 percent).
For the GA approach, we used Grefenstette’s settings [1i#), avpopulation of
30 per generationpe = 0.9 andpy; = 0.01. In case faster partitioning times
need to be attained, one can either tune GA parameters &rmpajpulation sizes,
faster stopping condition, etc.) or deploy a service maofg&rvice manager at
every Grid site, who are then responsible for communicatiitig the foreign site’s
service monitor components and partitioning the resowatd®ir assigned site (as
described in section 4.3.2).

Figure 4.11 shows the trend of the cost function optimum fffeiknt GA
generations (partitioning occurred on the topology disedsn section 4.5.1). The
cost function used is the one discussed in section 4.4.bda(lService CR parti-
tioning with Input Data Locality penalization). It is impgant to note that during
the calculation of a resource-to-service partitioningd@peration does not stall

GRID SERVICE MANAGEMENT 4-25

but continues as normal, as the service management conpafeenot block any
other management components.

3000 T T
100 generations ——+—
intelligent stop ---x---

2500

2000

1500

GA partitioning time (s)

1000

Computational Resources

Figure 4.10: GA solution calculation time

790000

780000 -

770000 |-

760000 - +

(x)

750000 - |

740000 -

730000
0 20 40 60 80 100

GA generation

Figure 4.11: GA optimal fitness trend

4.5.4 Job response time

We define theesponse timef a job as the difference between its end time (time
at which the job’s final output block has been sent to the sdeedssigned stor-

4-26 CHAPTER4

age resource) and the time it is submitted to the schedufexe Icompare the
performance of the different GA-based partitioning heigss(see figure 4.12 - in
this figure IDLP is short for Input Data Locality Penalizat)pthe results show
that average job response times can be improved signifjodoytR9 percent when
network unaware scheduling is used and30y5 percent when network aware
scheduling is employed) by employing a resource partitigralgorithm prior to
scheduling. This behaviour can be explained because @=oare reserved for
exclusive use by a service class. It is this service-exdlyghat forces the sched-
uler to not assign jobs to less-optimal resources (e.g. local-access to needed
input data, low processing power available), but to keepjdbein the schedul-
ing queue until a service-assigned resource becomes laeaildlote that when
network unaware scheduling is employed, no connectiontjoaihg results are
shown, due to the fact that the network unaware scheduliggrighm does not
take into account the connection reservation system.

When scheduling network unaware, the best results are edtaitnen using
computational partitioning taking into account input datzality, as data intensive
jobs can be run on computational resources reserved plysiear resources that
store much needed I/O data, leading in turn to less computtstalling, as 1/0
data suffers from less network bottlenecking. When netwar&ra scheduling is
employed, one is best off using a heuristic that partitiooih lromputational and
network resources. Network partitioning assures thaicetasses with high 1/0
requirements do not consume all bandwidth (thereby preéwgebmputationally
intensive service classes from retrieving their 1/0), mstéad force them to only
use a predefined percentage of bandwidth. It is interestimpte that, since the
average runtime of the computational and data intensiwgcgeclass jobs i250
and50 seconds respectively (only taking into account computaticequirements)
and taking into account that the fastest computationaluregoin our simulated
topology can process a job at three times the reference spetuhal average job
response time i83.33 seconds.

4.5.5 Resource efficiency

Using the same job load, the average hopcount over whichvadasaransferred
by data-intensive jobs (with hopcount equalling the amairtops between data
resource and computational resource added to the amounpsfdetween com-
putational resource and storage resource) is shown in fig& We notice that
average hopcount dropped by8 percent when network unaware scheduling was
employed (i.e. computational resource partitioning wighedlocality versus non-
service partitioned resources), andhy percent when a network aware schedul-
ing heuristic was used (i.e. network partitioning with datzality compared to the
non-service managed case), due to the fact that input/od#pa was located at re-

GRID SERVICE MANAGEMENT 4-27

450

T
no Serv. Man =%

global CR Part.
global CR-IDLP Part.
400 global CR-Network Part.
global CR-Network-IDLP Part.

350 |

300 |

250 |

200 |

Avg. Job Response Time (s)

150

100

50 |

Non Network Aware Network Aware

Figure 4.12: Job response times for GA-based partitioning heuristics

sources closer to the job’s service class’ assigned CRsvaodletesources are thus
used most sparingly when computational and network resgpactitioning with
input data locality is employed together with a schedulilggathm that takes into
account the state of the network links interconnecting dfésjresources.

Furthermore, we calculated the average computationaliresaitilization:

Zje.]obscn LOCLdj
Makespan x speedcr

In this equatiord_ , ;... Load; is the total amount of processing that needs to
be done for the jobs accepted on this resouvtakespardenotes the total amount
of time these jobs spend on this resource, whileedc is the amount of work
that can be processed per time-unit on that particular ctettipnal resource (note

that% represents the minimum amount of time for processing these
jobs on that particular computational resource, if no tisméost waiting for 1/0
data to arrive). The improvement obtained by employinguessto-service parti-
tioning when using network unaware scheduling equalgercent, whereas in the
case where network aware scheduling is used,litis percent. Indeed, the fastest
(and rarest in our topology) computational resources wetenaatically reserved
for processing computationally complex jobs, disallowdtaga intensive jobs from
cluttering these resources and using their full procesgotgntial for those com-
putationally intense jobs. The slower computational resesiwere then assigned
to the data intensive service classes, that (because ofdrge I/O needs) benefit
more from having fast (i.e. LAN) access to much needed data.

4-28 CHAPTER4

T T
9 no Serv. Man =%
global CR Part.

global CR-IDLP Part.

global CR-Network Part.
global CR-Network-IDLP Part.

Hopcount

A\

Non Network Aware Network Aware

Figure 4.13: Network resource efficiency

4.5.6 Scheduling

We measured the time it takes to calculate a schedulingidec@d noticed a
decrease in scheduling time 28.17 percent when comparing the service man-
aged Grid to the non-service managed Grid in case networkeascheduling is
used (i.e. from an averagel88s in the non service managed casei66s in the
service managed Grid). Note that this is the time measuregheduleall jobs
that are present in the scheduling queue, as we are schgdulivatch with a
scheduling round time interval &0s. This behaviour can be explained by the
fact that a scheduler queries the information servicesdsources adhering to a
job’s requirementand assigned to either the job’s service class or service 6lass
When resources are partitioned amongst services, lesssr@slilbe returned to
the scheduler, allowing for faster schedule making decssio

4.5.7 Priority - service class QoS support

In another experiment, we gave the cpu-intensive jobs higherity than the
data-intensive jobs (by informing the service manager eftigher service class
priority before resource-to-service partitioning stejtand let the service manager
construct a Virtual Private Grid (dedicated resource psciheduler and informa-
tion service) for each service class. Due to the high pyiaftthe cpu-intensive
class, its cost function impact factor becomes higher whaals to more (and/or
better) resources being assigned to the prioritized clkils®, during deployment
of the VPG schedulers, the service manager configures theated cpu-intensive
scheduler to schedule those prioritized jobs as soon aghgsssing a network

GRID SERVICE MANAGEMENT 4-29

aware scheduling algorithm (the data intensive jobs wese stheduled using a
network aware scheduling algorithm, but were by defaultuggdeuntil the next
scheduling round). The results are shown in figure 4.14: vbeage job response
time of the computationally intensive service class is ti&lly improved (due
to more/better resources assigned to this service clasthanrdiSAP scheduling
policy enforced by the VPG scheduler), while the data intenservice class’s
average response time gets worse (prioritizing servicesek over other service
classes can not lead to win-win situations: the non-pr&it service classes’ per-
formance will deteriorate).

70

No VPG £X3
VPG + priority z22.722

60

50

40

30

Average Job Response Time (s)

20

10

Data CPU

Figure 4.14: VPG service class priority support

4.6 Conclusions

We proposed the use of a distributed service managemeriteatcine, following
the OGSA ‘service level manager’ concept, capable of manigoservice char-
acteristics at run-time and partitioning Grid resource®agst different priority
service classes. This partitioning, together with the dyicacreation of per-
service management components, lead to the introductigheo¥irtual Private
Grid concept. A variety of resource-to-service partitrapalgorithms (based on
Genetic Algorithm heuristics) were discussed and we etedlieir performance
on a sample topology using NSGrid. Our results show that thpgsed service
management architecture improves both network and corigoghresource effi-
ciency and job turnaround times, eases the process of ms&iregluling decisions,
and at the same time offers service class QoS support. Maregeomplexity

4-30 CHAPTER4

and scheduling / information service scalability is imgdwdue to the automated
deployment of service class dedicated management comigonen

GRID SERVICE MANAGEMENT 4-31

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

|. Foster, C. Kesselman, J.M. Nick, and S. Tueceid services for distrib-
uted system integrationEEE Computer, 35(6):37-46, 2002.

Enabling Grids for E-Science in Europehtt p:// egee-intranet.
web. cern. ch.

|. Foster and al. The Open Grid Services Architecture, Version. 1ddaft-
ggf-OGSA-spec-01%ht t p: // forge. gri df orum or g/ pr oj ect s/
ogsa- Wg.

K. Czajkowski and al. The WS-Resource Framework Version. 1M t p:
/I ww. gl obus. org/ wsrf/specs/ ws-wsrf. pdf.

J.O. Kephart and D.M. Chesdhe Vision of Autonomic ComputindEEE
Computer, 36(1):41-50, 2003.

A.G. Ganek and T.A. CorbiThe dawning of the autonomic computing .era
IBM Systems Journal, 42:5-18, 2003.

I. Foster K. Ranganathan.Simulation Studies of Computation and Data
Scheduling Algorithms for Data GridsJournal of Grid Computing, 1:53—
62, 2003.

F. Berman et al. Adaptive Computing on the Grid Using AppLe&EEE
Transactions on Parallel and Distributed Systems, 14:38%3-2003.

H. Casanova H. Dail, F. Bermar\ Decoupled Scheduling Aproach for Grid
Application Development Environment¥ournal of Parallel and Distributed
Computing, 63-5:505-524, 2003.

R. Wolski, N. Spring, and Jim HayesThe Network Weather Service: A
Distributed Resource Performance Forecasting ServiceMetacomputing
Journal of Future Generation Computing Systems, 15(59991

K. Czajkowski, S. Fitzgerald, |. Foster, and C. KessahGrid Information
Services for Distributed Resource Shatirlg Proc. of the 10th IEEE Inter-
national Symposium on High-Performance Distributed Cotimgyi2001.

V. Sander |. Foster, A. RoyA Quality of Service Architecture that Combines
Resource Reservation and Application Adaptatidn Proceedings of the
Eighth International Workshop on Quality of Service (IWQd#®Q), 2000.

A. Rodger. Analyst report: Butler Group Subscription Services: Teuhn
ogy Infrastructure - IBM Tivoli Intelligent Orchestratona IBM Tivoli Pro-
visioning Manager ftp://ftp.software.ibm conf software/
tivoli/anal ystreports/ar-orch-prov-butler. pdf,2004.

4-32 CHAPTER4

[14] H.L. Lee and al.A Resource Manager for Optimal Resource Selection and
Fault Tolerance Service In Griddn Proceedings of Cluster Computing and
the Grid (CCGrid 2004), 2004.

[15] D. Yu and T.G. RobertazzDivisible Load Scheduling for Grid Computing
In Proceedings of the IASTED 2003 International ConferesrcParallel and
Distributed Computing and Systems (PDCS), 2003.

[16] P. Thysebaert, B. Volckaert, M. De Leenheer, F. De TuBkDhoedt, and
P. Demeester. Resource partitioning algorithms in a programmable ser-
vice Grid architecture published in Lecture Notes in Computer Science,
Proceedings of the 5th Intern. Conf. on Computational $&d@CS 2005,
3516:250-258, 2005.

[17] LHC Computing Grid projectht t p: / /| cg. web. cern. ch/ LCG

[18] D. Lu and P. Dinda.Synthesizing Realistic Computational Grids Pro-
ceedings of ACM/IEEE Supercomputing 2003 (SC 2003), 2003.

[19] J.J. Grefenstetteptimization of control parameters for genetic algorithms
IEEE Trans. Systems, Man, and Cybernetics, 16-1:122—-1988.1

Media Grids

5.1 Introduction

In this chapter, we introduce a typical Grid use case baseth®mecent trend
of employing Grid technology in audio/visual productiordatistribution compa-
nies. In this media environment, typical audio/video taskgose heavy network
resource QoS requirements. We discuss how NSGrid, the retaveare Grid

simulator presented in chapter 3, was extended to incamtypical audio/visual
production company profiles, user profiles and task profil@sder to allow quick

and accurate simulations for studying the effectivenesatodducing Grid tech-
nology in the media production/distribution environment.

Much in the same way as other businesses, the media indwsrigden con-
fronted with an increasing complexity in both the technimatl the business do-
main. Up until now, a broadcaster was an umbrella orgawizditr different kinds
of in-house activities like media production, distributiand play-out, etc.. More
and more however, business drivers such as cost reduct@mrréduced infrastruc-
ture investments by sharing resources), added value manesuge partnerships,
global sourcing, and business componentisation are f@ritinse companies to
become more agile, find partnerships and evolve to dynalyieatending orga-
nizations, with business models based on business semtedsable within the
media market. These parameters combined with possiblesfatergers, acquisi-
tions and fusions drive the media businesses to become mibee a

Furthermore, exponential decrease of harddisk costs fiileig a paradigm

5-2 CHAPTERS

shift in the production of audiovisual media from tape to fikssed. Current cost
per byte of harddisk based storage systems rivals that efdtaped systems and is
expected to go below the stagnating prices of the lattehobigh today’s architec-
tures promiselemocratizatiorof data access, i.e. inexpensive, non-mediated, and
shared access to centrally-managed storage, this prosnisdyi partially met by
existing installations. On a software level, generic (Grithbled) applications are
tuned towards typical ICT related requirements and are epfityed for the spe-
cific challenges induced by a file based media production estdvang platform.

In the long term, one wants to allow automated interactiomveen several
audio/video media production sites, and share centrabmm@ge, computational
and specialized (e.g. capturing devices, broadcastingpegumt) resources with
several independent corporate users in a controlled martinisrin this domain
that media production environments can benefit from Gritrietogy to both im-
prove media handling/processing times and provide a mearseturely sharing
and utilizing distributed resources and applications aggbmultiple virtual orga-
nizations by employing specialized Grid middleware.

Due to the specific scenario however, current Grid techryodag not be intro-
duced in a straightforward way. The high bandwidth, religband short response
time requirements when handling audio/video streams (hbsvillustrated in sec-
tion 5.4) imply the need for special care in the design of therall architecture
and in particular in the scheduling and resource controtgss. Media handling
can take place at local sites before streaming them to a eesitetor can be per-
formed at a remote site: the scheduling, resource contil@uS management
components of the Grid will have a high impact on the achieygglication per-
formance. Furthermore, the software architecture of theagement platform
will need to exhibit high performance and reliability to nélee specific applica-
tion requirements. The MediaGrid architecture presemetis chapter has been
developed to cope with these challenges, and will make #iptesfor media part-
ners to evolve to extended organizations where partnesshipdia communities
and commercialization of media services are omnipresent.

Advantages of Grid-enabling the audiovisual media prddaddistribution
companies would be:

e Ability to distribute media files among different companieishin an envi-
ronment with high reactivity requirements and various lewd Quality of
Service (QoS)

e Ease the exchange of media resources/assets (renderimg; fgpecialized
media capture devices, etc.) allowing for a.o. distributechputing

e Integration of broadcast media exchange standards (ed=Bl)'s P/Meta
standard [2]) in a Grid services environment to provideriperability be-
tween different media content providers

MEDIA GRIDS 5-3

e Migration from special purpose resources and applicatiortonventional
IT hard/software

e Stimulate the growth of media community Virtual Organirat{\VO) setups
supporting advanced collaborative working

This chapter continues as follows: first we give an overviéthe related work
in section 5.2, and continue by discussing the MediaGricc{®MMacroGrid) ar-
chitecture in section 5.3. An overview of the different neegdroduction/distribu-
tion company profiles, along with the typical charactecsbf their associated job
classes is presented in section 5.4. MediaNSG, a Medianidator is discussed
in section 5.5, while simulation results are shown in sectdb. Finally, we give
some concluding remarks in section 5.7.

5.2 Related work

For an overview of current Grid enabling technologies weréd the related work
of the previous chapters. Here we focus on Grid technologgifipally tuned to
the needs of audio/visual production and distribution canigs.

GridCast [3, 4] is a research project being undertaken byBBE and the
Belfast eScience Center aiming to develop a prototype m@&did, running on
Globus middleware, that will manage the sharing of prograntent between dis-
tributed sites. The objectives are to effectively managediltribution of broad-
cast media files, permit distributed processing and prosatirity and network
resilience within a highly reactive environment requirtnigh levels of Quality of
Service (QoS). The GridCast project has similar objectag®ur work, but fo-
cusses more on the specific BBC topology (with regional BBRad@nents inter-
acting with the main BBC production house), whereas we tpyrtwide a general
framework and focus on the accurate simulation of a mukitaticollaboration
setups between audiovisual companies.

The FIPA project [5] (File based Integrated Production Atextture), is an
IBBT project aiming at the development of an IP based archite to share stor-
age and computing power on single or multiple sites. Apfibiceareas are digital
media production, e-security, e-health, etc. Apart from skorage, processing
and management of the data, accessibility is also a cruwhitactural issue, es-
pecially since more and more companies tend to share thiirwdéh business
partners and freelance international employees. The wamtamed in this chap-
ter is based on and an extension to some of the research wddtmped in the
FIPA project.

A scalable solution for digital media post production netigois offered by
ForcelO Networks [6]. They mainly focus on the interconivégtof rendering

5-4 CHAPTERS

Rendering Processing
Farm Servers

QoS Service ization Service
Access control Access control
‘Accounting info ‘Accounting info

Replication Service itoring Service
Access control Access control
Accounting info Accounting info

Storage / Media file archive Management Services
lion Service ing Service
Access control Access control

Accounting info Accounting info

‘; Media File Access Service
router Access control
‘Accounting info
Resource Usage Service
Access control
‘Accounting info
tive Working Service

" Access control
Media

Specialised Resources Clients Accounting info
Ingest

ol

Figure 5.1: Typical MicroGrid scenario

farms with several hundreds of cluster nodes through EétérANs and offer no
full Grid solutions.

SGI[7]is known to be able to deploy an IT storage, computimg @etworking
hardware infrastructure tuned to broadcast media envieorsn

MediaNSG, the MediaGrid simulator detailed in this chapteas developed
on top of NSGrid (detailed in chapter 3), our in-house dgvetbnetwork aware
Grid simulator. An overview of other Grid simulators hastg@en in chapter 3.

5.3 MediaGrid architecture

The MediaGrid architecture consists of two main componehtsMicroGrid con-
cept on one side and the MacroGrid concept on the other. TheoRrid is very
similar to NSGrid'sGrid site concept from chapter 3 while a MacroGrid shares
similarities with NSGrid’sGrid concept. We introduce these new terms in order
to have a clear distinction between NSGrid’s generic sitirastructure and the
concrete use case at hand (i.e. Grid computing technolaggudio/visual pro-
duction companies). In what follows we will explain the Ma@irid constituents

in detail.

5.3.1 MicroGrid

As explained above, a MicroGrid (see figure 5.1) denotes d €t up at a local
audiovisual media processing facility, interconnecting different local resources
and providing the tools to manage, access and control IseHtdwned) resources.
Resources can be storage/data resources, providing desk$épr storing and re-
trieving media files, or computational resources, whichuim tprovide the com-
putational power required for processing the differentr i gdmitted tasks. In

MEDIA GRIDS 5-5

a media production company, one typically discerns contjmutal resources lo-

cated in terminals (with a high degree of interaction betwie job and user e.g.
editing terminals) and computational resource farms @eed on fast processing
of computationally intensive tasks e.g. rendering). TherdGrid can also allow

Grid access to specialized resources (capturing deviceadbasting equipment,
etc.).

Each MicroGrid, like our local Grid site described in chapde needs a set
of Grid management components to be able to tackle issuésasujob schedul-
ing, Quality of Service, etc.. Required management compigreze: a scheduling
system (responsible for the allocation of resources to gmz®rding to a certain
objective e.g. minimize job turnaround time or meet specifadlines), informa-
tion service (storing registered MicroGrid resource’spgamies and characteris-
tics), monitoring system (monitoring the status of compatel, storage and data
resources), connection manager (responsible for mongdhie status of network
resources and setting up network connection reservatisaes)ice monitor (mon-
itoring QoS requirements of jobs and collecting servicesglaformation) and a
service manager (which reserves resources for serviceedas order to provide
them with specific QoS guarantees). Other notable manageroeiponents in-
clude an accounting component, an authorisation/seawityponent (for restrict-
ing MicroGrid resource access) and a data transfer/repli@aager (responsible
for replicating/caching frequently accessed media files).

A MicroGrid can thus be seen as a provider of a set of Grid sesyiand these
services can be advertised not only to the local compang userif wanted also to
3rd party media companies with which one wants to collaleqisge section 5.3.2).
Each offered service is accompanied by extensive accesmt@escribing which
user/userclass can use that service and to what extentraadrding agreements
(e.g. service usage pricing information for different udasses), allowing Micro-
Grid managers full control over how local resources may beed by MediaGrid
users.

5.3.2 MacroGrid

A MacroGrid is a collection of interconnected MicroGridesit In such a Macro-
Grid, resources can be shared amongst the different comstiMicroGrids (while
taking into account the access policies of each MicroGridsource usage ser-
vice). This way, jobs that originate at one MicroGrid sitende migrated to
another MicroGrid for processing (e.g. in case insufficigritcessing power is
available at the originating site or if the job needs to haseeas to specialized
resources not available at its originating site). The Marid schedulers query
the different MicroGrid sites’ information services fosmirces adhering to a user
job’s requirements and decide whether it is beneficial fagter processing times)

5-6 CHAPTERS

Post
Productiong"¢

Broadcaster

TV Program

9 Supplier, P

Radio
Broadcast

Figure 5.2: Physical MacroGrid

MacroGrid A .~~~ ~_
7
Iy ps m
\ MicroGrid)
\ /

N -

B

~

MacroGrid
-7 ~N

/ b
\ MicroGrid)
\ /

N -

Figure 5.3: Logical MacroGrid

MEDIA GRIDS 5-7

or necessary (e.g. specialized resources unavailabléiocavhen having to cope
with local resource failures) to utilize remote resoureesile taking into account
the possible downsides of using remote resources (pricést@gr network trans-
fer times due to remote location, etc.).

On top of resource sharing, MacroGrids also enable medistfdeing between
different MicroGrids. In this case, users are able to ilistrieve/store remote
media files, again taking into account any access restnigtioat have been spec-
ified (speed/ratio limitations in order to not deterioraternal MicroGrid perfor-
mance, clearance levels depending on the content/copyrigimedia files, etc.).

Another important benefit of sharing MicroGrid servicesossrcompany bound-
aries is the ability for users to work on projects collabiwedy. The accounting
managers of each MicroGrid can be used to keep track of res@und media file
service usage by users/MicroGrids allowing economic ghinsharging money
and/or bartering for external resource usage compensation

It is important to note that a MacroGrid does not have exetusiccess to
a MicroGrid’s services: one MicroGrid can be included in tiplé MacroGrids
(and each membership can come with different resource&nigeliusage policies
and access control configurations), with each MacroGridessmting a different
Virtual Organization (see figure 5.2 and figure 5.3). Also,cktésrids are not
necessarily static structures, in that MicroGrids can witeave this Virtual Or-
ganization at any time by changing service access policies.

5.4 Audiovisual application/user/company profiles

Together with partners from the media industry (more speatifi the Flemish

Radio- and Television Network [8] and Video Promotion [9]c@mpany active

on the broadcast television market), we studied the cheniatits and require-
ments for the audiovisual applications that are to be supgdry the MediaGrid

architecture. This resulted in task, user and company psofifat have been im-
plemented in the MediaNSG simulator (see section 5.5) aadddn readily be
used in simulations.

5.4.1 Application profiles

Audiovisual application classes show large differenceth&ir processing, net-
work and storage requirements. In table 5.1 we give an oserof average task
class/application requirements of the most typical tagkdications in a media
centered company. The Quality of Service parameter can dx us MediaNSG

while scheduling and during service management to ensiogti@s are given to

high QoS tasks. Table 5.2 shows the network and storageresggmts for differ-

ent resolution audio and video streams.

CHAPTERS

Following important tasks were identified:

e Ingest: deals with bringing media files onto the storagélaecsystem, ex-
tracting keyframes and constructing metadata about trested media.

e Quality checking, HiRes Browse: tasks from this class insfiee quality of
media files in high resolution to see if it’s fit for playout.

e LoRes browse: mainly used to rapidly shuffle through différarchived
media files in low resolution when trying to find specific ortable source
material.

e LoRes rough EDL: construction of a rough Edit Decision LED({). This
Edit Decision List is a list of events that include the sosrtebe recorded
from and information about transitions (cuts, dissolveges), transition
durations, etc.. Once an EDL has been processed, the rekies newly
constructed media file.

e Send to/Restore from archive: fetching data from the aschivstoring new
media files mainly stresses the available network resources

e Craft editing: high quality finegrained editing and jog dtio§ of multiple
audio/video streams.

e Rendering, conforming, transcoding: this task involvesle¥ing graphics,
conforming of media to different video standards and tradsg of au-
dio/video data to different qualities/resolutions/staimts.

e Playout: Viewing multiple audio/video streams and sending of those to
playout equipment (e.g. broadcast equipment).

e Audio editing: Editing of multiple audio streams (possilayconjunction
with a video stream that needs to have the associated aueansedited)

e Graphic creation: The creation of Computer Generated Inyg@Gl), cus-
tom scene transitions, etc.

5.4.2 User profiles

Now that we have discussed the different application/téesdses and their require-
ments, we can look at the different user classes of typiadibaisual companies,

with each user class showing widely differing charactesstegarding which ap-

plications they use:

e Ingester: This profile includes tasks like quality checlkamgl low resolution
browsing, besides the actual ingesting of media onto thagoarchive.

suawalinbas uonealdde [ensinoipne [ealdAlL :T°G a|qel

Bandwidth CPU Storage QoS no
Ingest Lo- or HiRes AV Low 0,65-25,7GB/h High 1
Quality checking, HiRes HiRes A/V Low 25,7GB/h Low 2
browse
LoRes browse LoRes A/V Medium 0,65GB/h Low 3
LoRes rough EDL LoRes V, Lo- or HiRes A| High 0,5GB/h; 0,15-0,7GB/h Medium | 4
Send/Restore archive Lo- or HiRes A/V Low 0,65-25,7GB/h Medium | 5
Craft editing 5-10 HiRes A/V High 5-10 25,7GB/h High 6
Rendering, conforming, HiRes A/V High 25,7GB/h Low 7
transcoding
Playout 1-40 HiRes AV Low 1-40 25,7GB/h High 8
Audio editing Lo- or HiRes A/V High 0,65-25,7GB/h Medium | 9
Graphic creation HiRes V High 25GB/h Low 10

Sdaldo VvIid3In

6-G

5-10 CHAPTERS

Streams Bitrates Storage
HiRes Video 20-50 Mb/s| 25 GB/h
LoRes Video 1 Mb/s 0.5GB/h
HiRes Audio 1.5Mb/s | 0.7 GB/h
LoRes Audio 256 kb/s | 0.15 GB/h

HD HiRes Video | 200Mb/s | 100GB/h

Table 5.2: Network and storage requirements of typical audio/videarsise

¢ Video journalist: The main tasks of a journalist are low tason browsing,
low resolution rough EDL construction (Edit Decision Lisid rendering,
conforming and transcoding.

e Audio/Video editor: an audio editor deals with mixing andtied) multiple
audio tracks, while video editing includes quality checkieraft editing,
rendering/conforming/transcoding and graphic creation.

e Producer/Director: involved at different stages of meddpiction, mainly
doing low resolution browse tasks, with the occasional sentb/restoring
from archive and some quality checking and/or high resotutirowsing.

e Playout: tasks include quality checking, low resolutiooviegsing and play-
out.

e Archivist: an archivist mainly performs low resolution krsing and send-
ing to/restoring from archive.

This information, together with the user/task workflowssgented in figure 5.4)
and average application characteristics presented ia fab) has been used to con-
struct accurate media user profiles for use in MediaNSG sitiauls.

5.4.3 Company profiles

Finally, profiles have been provided for typical audiovist@mpanies (mainly de-
scribing the average amount of users from each userclagingaimultaneously).
The most important profiles are:

e Television production: an example of television produti®news program
production. In these organizations tens (regional) or heahsl (national) of
video journalists gather information that has to be ing&stdited, archived
and played out.

e Television post production: in a post-production facitie same user classes
are present, along with producers / directors managingttitéocswork.

MEDIA GRIDS 5-11

Ingest Video journalist

. 5
60% % 30% 5%
80% 50}7 25% 25% %

@ @'ﬂ.@ 50%1 Example
50%
50% 10% 5%
\ @ 20% \ @ T% X % Z%
Y%
—_

Audio Editor Producer / director User “Example” is active on the system for T% of
the day. During this active time, there is a chance of
Y% that he starts doing task B after finishing task A.
90% 10% 30% The total duration spent on task A is X% of his

active time, while Z% is spent on task B.

100% 8% @ There may be parallel tasks (e.g. X + Z > 100).
/ \ 30%

® |lg=

32%

60%

Playout Archivist Video craft editor

60%
h00% (?”
or

60% @”% 80% @
60%
10% myv \

%

\ 100% 20%
or @ 25% 60% @

- O O

10%,

Figure 5.4: Task workflow of typical audiovisual company user @ass

e Television broadcast: television broadcast companiesiarénvolved in
(post) production. The focus is more on playout than on regliti

e Television program supplier: these companies combineiithgial items into
finished programs and send these to television broadcadkatisors and
producers/directors are the most important user classbssitype of orga-
nization.

¢ Video on Demand: companies delivering Video on Demand sesunainly
focus on indexing of the available material, user and chiasheygendent en-
coding of the streams and play out.

e Radio broadcast: similar to television broadcast, but different require-
ments (e.g. no buffering or delays allowed).

5.5 MediaGrid simulation

If we wish to develop MediaGrid suitable scheduling/seevicanagement algo-
rithms, or wish to evaluate the performance of differentuwoek/computational/s-
torage resource configurations, we either have to condrtedttbed and measure

uonejuasaildal ssed Jasn [ea1dA1 Auedwod fensinoipny €°G ajqel

ingest | video journ. | audio ed. | video ed. | prod./director | playout | archivist

regional TV prod. 2 30-50 2-3 2 2
national TV prod. 3 300-500 20-30 3 4

TV post prod. 1 10-50 1-3 5-20 10 1 1
TV broadcast 1 5-10 1-5 1 1
TV program supplier 25 25

Video on demand 2 5 2 1
Radio prod./ broadcast 30 20 50

¢T-S

GY3ILdVHD

MEDIA GRIDS 5-13

task/resource performance, or we can simulate the Mediadrehaviour. Due to
the size and the amount of resources involved in setting udid®Grid testbed
each time a new scenario needs to be evaluated, accuratatsimof MediaGrid
scenarios is likely to be more efficient.

MediaNSG, a MediaGrid specific extension to NSGrid has beamldped
allowing users to simulate typical task submission behavad different media
company organizations and experiment with scheduling andce® management
architectures. MediaNSG supports the simulation of botbrd4i(single site) and
MacroGrid behaviour (Grid comprised of different interoested Micro Grids),
and provides the user with output data regarding job execgiatistics (job re-
sponse time, time spent in scheduling queue, data trarnizédsgeed, etc.) for the
different tasks, resource (computational, storage anslorktresources) and man-
agement component (scheduler, information service, agape statistics, bottle-
necks, etc..

5.5.1 User model

Each user belongs to a particular user class (with the ldéseribing the charac-
teristics of job types that are to be submitted) and is mededk a job submitting
entity. Every time a user wishes to launch a job, it conssricijob from one
of its user class’s registered job types (job charactessire generated from dis-
tributions specified in the job type’s definition) and wait#tilithe job has been
scheduled and processed by the Media Grid. When the job isididjsthe user
class’s workflow (as seen in figure 5.4) is inspected to seaa frhich job type a
new job is to be generated (i.e. a user class’s workflow détesi(by probability)
which job types will be executed after a particular job hasfiad).

5.5.2 MediaNSG operation

In order to set up a simulation, users must provide both a emsnand resource
topology description. The default organizations that éseussed in section 5.4.3,
are all readily available through the MediaNSG frontend.clEarganization is
modelled as a collection of users belonging to different tygees (see section 5.4.2),
with each user in turn being modelled as a task submittinigydine. users submit
tasks according to the task workflows discussed in sectibn $he default tasks
described in section 5.4.1, along with all their proper{i@BU utilization, storage
needs, bandwidth, QoS, etc.) have been supplied, and klttasacteristics can
be modified through the GUI (see figure 5.5). New media orgsiuiz profiles can
be added, and existing profiles can be modified to includetiaddi users and/or
jobs.

Currently, simulated MicroGrid topologies deploy one cehtlata storage /
retrieval resource by default, with each client submittjolgs from a dedicated

5-14 CHAPTERDS

[Medianse L e
File Topology
C Profiles Users Tasks
Regional TV Production Wideo Journalist LoRes rough EDL
Non-Regional TV Production Audio Editor Rendering/Conforming/Transcoding
TV Post Production Play Out LoRes Browse
TV Broadcast Video/Craft Editor SendRestore Archive
TV Program Supplier Archivist
ideo On Demand Ingester
Cinema
Radio Production/Broadcast
Add Remove Add Remove

= | Edit User Workflow

LoRes rou.. Rendering.. |LoRes Bro.. |SendiRest.| | yame: RendetingiConfarmingMranscoding
LoRes rou.. 0.0 0.5 0.0 0.5 o =
Rendaring. 0.0 0.0 0.0 0.0 Input Bandwidth: |HiRes AN -~
LoRes Br... (0.8 0.0 0.2 0.0 Streaming Input:
SendiRest. (0.0 0.25 0.74 0.0
endirtes Output Bandwieth: |
Streaming Output: []
cpU: High e
Storage: 0.0
Duration: 3600.0
QoSs: Low ‘V
Description: Fast random read and write HiRes
iden and Audio streams
OK Cancel | 0K Cancel

Figure 5.5: MediaNSG frontend

MEDIA GRIDS 5-15

computational resource (which is used to provide procgssawer for the user-
submitted jobs) connected to this storage resource by nwah€P/IP network
links. Furthermore, each MicroGrid site can have a commriat resource farm,
offering processing power to computationally intensiwkta(e.g. rendering tasks).
Different MicroGrid network topologies can automaticdtly generated by Medi-
aNSG: for now point-to-point topologies, in which clientg airectly connected
to the data storage resources, and ring topologies are gagpdther network
topologies can easily be added manually or one can use Gfi6G1]l], a tool
to generate realistic Grid topologies (which is supportgdhie NSGrid simu-
lation core). Also, additional storage/computationalortgses can be added to
the topology to allow simulation of dedicated storage/cataponal server farms
(e.g. used for rendering). A multitude of task schedulingpeathms (e.g. net-
work aware scheduling, service aware scheduling, apmitdevel scheduling)
are available from NSGrid and can be employed to schedulesubenitted tasks
on the MicroGrid/MacroGrid resources. Also, advanced rganz&ent components
such as replica managers, checkpointing, service clasagees (providing QoS
support) can be instantiated and used in Micro/Macro Grauttions. Once a
suitable media company profile has been selected/corstiucsers can automat-
ically generate a Tcl script describing the scenario’s kogy together with the
different company profiles to NSGrid. The NSGrid simulatself has beegridi-
fiedin thatitis able to run in a Grid environment (all NSGrid silations described
in section 5.6 were run on an LCG-2.6.0 Grid [12] comprisedudl Opteron 242
1.6Ghz worknodes with 2 GB RAM per cpu, and operating und@rific Linux
3).

5.6 Simulation results

In what follows, MediaNSG will be used to construct reatisiediaGrid topolo-
gies and simulate some proof-of-concept MediaGrid situnati In all simulations
presented here, each user was associated with a compatatisource, with all
computational resources having equal reference progesaipabilities. We lim-
ited storage resource/archive access to a maximum reselthwroughput of 5600
Mbps (which is realistic as a proof-of-concept storage elenarray intercon-
nected by fiber channel technology [13] and attaining theseds is deployed
in the FIPA project). User tasks with a duration1df0 percent were mapped to
a simulated duration of 3600 seconds (e.g. from figure 5.4amesee that each
Quality Checking/HiRes browse task by a producer/diretztkes 1080 seconds to
complete on a reference processing element).

5-16 CHAPTERS

Storage / Media file archive Storage / Media file archive

(a) MicroGrid ring topology (b) MicroGrid point-to-point topology

Figure 5.6: MicroGrid topologies

Point-to-Point ===
Ring s

1800

1600 1

1400

1200 - 1

1000

800 -

600 -

Average Job Response Time (s)

200

1 2 3 4 5 10 100 1000
LAN bandwidth (Mbps)

Figure 5.7: Influence of topology on average job response time - mktavweare scheduling

MEDIA GRIDS 5-17

5.6.1 MicroGrid topology

In a first batch of simulations, we constructed a TelevisiooaBlcasting Micro-
Grid, and parametrized LAN network bandwidth (LAN interoections are in
this case the network connections between the differeantdiand the central
MicroGrid storage/archiving element containing 1/0 datathe different tasks)
from 1 Mbps to 1000 Mbps. We mapped low, medium and high CP\geusa
respectively 10, 50 and 90 percent processor utilizatioa ogference processor
in this simulation. In this first case a point-to-point coatien between clients
and storage element was provided and network aware schgaduéis employed.
We measured the average job response times (we define jameespmes as the
difference between the time the job ends, and the time it wasnited to the
scheduling service) and notice (see figure 5.7) that tagkerence serious delays
when MicroGrid LAN bandwidth is less than 2 Mbps (due to thet fdnat data
input/output retrieval/storage is blocked by network acestepn, thereby stalling
computational progress). It is also interesting to note¢ the difference between
10 Mbps and 1 Gbps interconnections is relatively small {@vage tasks took 29
seconds longer to run when 10 Mbps network technology wad) asethe network
is no longer posing a bottleneck.

In the next batch of simulations, we changed the point-tiotpretwork con-
nection from clients to the storage/archiving element tmng topology. The re-
sults show that at least 3 Mbps interconnections are neédesks are to execute
without substantial delays. This can be explained becdifitbe oing configuration
of the network topology, network congestion on one link wifluence more than
one client’s job response times (as opposed to the poipbiat network). It is
interesting to note that when network bandwidths of 5 Mbp®ore are available,
the difference between point-to-point connections anglconnections is virtually
non-existent, while a ring topology has the benefit of pritgcclient machines
from single link failures.

The average job hopcount (number of hops storing job outatat lom com-
putational to storage resource, plus the number of hopgfoeving job input data
from data resource to computational element) when a ringléggy was used is
7.88, while hopcount when using point-to-point connection.is

5.6.2 MacroGrid resource sharing

In this simulation, we connected the Television BroadogshicroGrid to a re-
mote computational resource provider, offering 5 addélgrocessing elements
capable of running at twice the reference processor spesdt-{o-point con-
nected to a gateway). We again parametrized MicroGrid LANdwadth (and
used a point-to-point topology), and low, medium and higtk tarocessing re-
quirements in this simulation were respectively se2@t 100 and 180 percent

5-18 CHAPTERS

Figure 5.8: Simulated MacroGrid topology

Macroérid —]
Tv Broadcast MicroGrid sessss

2000

1500

1000

Average Job Response Time (s)

500

1 2 5 10 100 1000
LAN bandwidth (Mbps)

Figure 5.9: Influence of MacroGrid resource sharing on avg. jokp@nse time

MEDIA GRIDS 5-19

T T T
non-network aware scheduling ==
network aware scheduling sesssse

2000 |-

1500

1000

Average job response time (s)

500

1 2 5 10 100 1000
LAN bandwidth (Mbps)

Figure 5.10: Network unaware vs. network aware scheduling

of a reference processor. Jobs running &i percent can be processed on the
Television Broadcasting MicroGrid, but will run at55% of their normal speed.
The link connecting the remote resource provider to thevigtmn Broadcast-
ing MicroGrid is a dedicated link, and in each simulationywés given the same
bandwidth as the Television Broadcast company’s LAN badtiwiThe television
broadcast’s scheduling service (utilizing a network unavegheduling algorithm)
queried both its own information service and the computatiicesource provider’s
information services for resources adhering to the jolgsiirements, and both re-
turned status information regarding the provided res@urce

From figure 5.9 we can see that the average task responsediogesignifi-
cantly when the Television Broadcast MicroGrid is givenesscto the computa-
tional resource provider’s asséftshe interconnecting link bandwidth does not go
below 5 Mbps Indeed, since network unaware scheduling is used, thalstdre
looks at the state of available computational and storageurees, but does not
take into account the state of the network links intercoting¢hese resources. If
the available link bandwidth between MicroGrid sites drdpsan be detrimental
to schedule jobs for processing on remote resources (asecegen on figure 5.9
for bandwidths of 1 Mbps and 2 Mbps), since the network linksreecting these
resources to the job’s originating site’s storage elemeihbecome a bottleneck.

If the network does not hamper computational processingl§psvbr more in-
terconnections), average job response times were 8(.3G percent better when
MacroGrid’s resource usage services were being used @rcise allowing mi-
gration of jobs from the TV broadcast company to the computat resource
provider).

5-20 CHAPTERS

Macroérid e—]
1200 Tv Broadcast MicroGrid sewewsm |

1000

800 -

Avg. computational resource 1/O waiting time (s)

0 I - L | —
1 2 5 10

LAN bandwidth (Mbps)

Figure 5.11: Computational resource blocking times

5.6.3 Network aware versus network unaware scheduling

To overcome the problem described in the previous simulationetwork aware
scheduling algorithm needs to be employed. We simulate dheesViacroGrid
topology as in section 5.6.2 and compare average job respiomss when schedul-
ing jobs by using network aware on one hand and network ureséreduling al-
gorithms on the other. From figure 5.10 we see that at low baitttg; the average
job response time no longer exhibits bad performance whieg asmetwork aware
scheduling algorithm. This is due to the fact that the nekveovare algorithm will
schedule jobs for processing on remote resources only ifigiwork links con-
necting these resources to the required storage resouttigéasupport transfer-
ring the job’s 1/0 data at sufficient speeds so as to not wasterved processing
time.

5.6.4 Resource efficiency

From the simulations performed in section 5.6.2 we caledl&te average amount
of time during which a computational resource was reserged fob without be-
ing able to continue processing (i.e. ‘idling’), becaude poocessing was blocked
while waiting for necessary input/output data to be readsent. From figure 5.11
we can see that utilizing remote resources (the MacroGiéd)da not efficient if
available connection bandwidth drops below 5 Mbps. At 1 Miopsal MicroGrid
task processing capabilities are being hindered by nethattlenecks towards the
local storage element/archive.

MEDIA GRIDS 5-21

5.7 Conclusions

Since media production/broadcast companies are more arelewolving to file
based media handling instead of tape based, and since tbegmuies tend to
have high requirements regarding Quality of Service, thedrie integrate state-
of-the-art IT technology in this domain is becoming mandaté second impor-
tant evolution in this field is the need for collaboration amgst media companies,
not only on application level, but also to share resourcesmedia repositories.
Grid computing can offer a solution in this case, with supgor resource/data
sharing and advanced collaborative virtual organizat@ossing media company
boundaries. We therefore propose the use of a MediaGridtectlre consisting
of MicroGrid and MacroGrid components. The developmentuitadle schedul-
ing and service management algorithms in a MediaGrid contex only happen
thoroughly if multiple collaboration scenarios are invgated. To this end, we
have developed MediaNSG, a media company specific Grid atorubuilt on top
of NSGrid. Typical task, user and media company profiles weesented, and a
set of proof-of-concept simulations was discussed.

5-22 CHAPTERS

References

[1] S. Gilheany. Projecting the Cost of Magnetic Disk Storage Over the Next
10 Years http://wwv. archi vebui | ders. com whi t epaper s/
22011p. pdf, 2001.

[2] EBU Project Group P/Meta Metadata Exchange Scheme, V.Ht.Op: //
www. ebu. ch/ en/technical /trev/trev_290- hopper. htm .

[3] T.J. Harmer and alGridCast - Using the Grid in Broadcast Infrastructures
In Proceedings of UK e-Science All Hands Meeting (AHMO03)020

[4] T.J. Harmer et al.GridCast - A Service Architecture for the Broadcasting
Media In Proceedings of UK e-Science All Hands Meeting (AHMO04)02.

[5] FIPA - File based Integrated Production Architecture Piijeht t ps: //
projects.ibbt.be/fipal.

[6] Forcel0 Networks White Paper - Building Scalable Digital diée
Post Production Networks: The Role of Ethernethttp://www.
forcelOnet wor ks. com

[7] SGI White Paper - Broadcast Media Management in a Data-Geltork-
flow. htt p: / / www. sgi . com

[8] VRT - The Flemish Radio- and Television Netwoit t p: / / www. vrt .
be/vrt _master/vrt _en_honmepage/i ndex. shtm .

[9] Video Promotionht t p: / / www. vi deopr onot i on. be/ .

[10] D. Lu and P. Dinda.Synthesizing Realistic Computational Grids Pro-
ceedings of ACM/IEEE Supercomputing 2003 (SC 2003), 2003.

[11] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids
ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003

[12] LHC Computing Grid projecthtt p: / /1 cg. web. cern. ch/ LCG

[13] Tom Clark.Designing Storage Area Networks - A practical referencerfor
plementing fibre channel and IP SANSddison-Wesley Professional, 2003.

Overall Conclusion

In this work we have investigated the use of network statalsaguplication moni-
toring information when assigning resources to jobs arajjptications on a Grid.
To this end we have developed:

e a scalable and performance tuned Grid monitoring architect

e NSGrid, a Grid simulator focussed on modelling accuratdiegiion con-
trol and data transfers

e network and service aware Grid scheduling algorithms afigiaster aver-
age job response times and more efficient Grid resource e@seag

e a distributed Grid service management architecture withiph& resource-
to-service partitioning heuristics

The main conclusion of the work comprised in this thesis carstated as
follows: when up-to-date and accurate Grid application msurce status mon-
itoring information is available, the Grid infrastructucan be utilised more ef-
ficiently by taking into account the state of the network ahe tharacteristics
of the different Grid service classes when scheduling Gaiis jand/or managing
these service classes. By differentiating between senlasses and allocating
Grid resources based on these classes’ characteristietiaely easy to imple-
ment advance reservation mechanism can be deployed in a Grid

To reach this conclusion, we first presented a well-perfognscalable and
portable Grid monitoring framework. Performance was otgdiby using C++ as

6-2 CONCLUSION

base implementation language, together with caching nmésing at key locations
(e.g. producers caching sensor data, eliminating the rerqutéducers to contact
sensors directly); portability then dictated the use ofrapgate middleware for
which we chose the Adaptive Communication EnvironmentGfiep libraries for
monitoring resource status and Java based consumersbi8galeas achieved by
using a “Grid Monitoring Architecture”-compliant architieire consisting of sen-
sors, producers, consumers and a decentralized dire@origs. Multiple ready-
to-use consumers (e.g. network usage prediction/faileteation, real-time visu-
alization, archiving) have been implemented, and the métdion service offers a
fast resource matchmaking portal for use by management @oemps.

We compared the functionality, performance and intruségsnof our moni-
toring framework to that of Globus MDS2 and its successa,@13.2 web ser-
vices based information service. Satisfying results weesgnted in terms of
query throughput and response times, both for our produaedsdirectory ser-
vice. Monitored resource properties (e.g. typical proicgssapabilities, network
bandwidths) and state information data (e.g. failure podbs) allow construc-
tion of realistic Grid topology descriptions for simulatipurposes.

Noting the absence of a Grid simulator providing accuratevokk resource
modelling, we developed NSGrid, a Grid simulator built op ¢t the ns-2 network
simulator and capable of accurately modelling networlfitrdfetween different
Grid resources and management components. Computatginedge and data
resource models were discussed, along with job models anfiitictionality and
interoperation of the different management componentbeduler, connection
manager, service manager, service monitor, informatiovicee and replication
manager.

In order to demonstrate the usefulness of a network awack<Briulator like
NSGrid, different Grid scheduling algorithms (some netvaware while others
network unaware) were detailed and their performance walsi@ed on a sample
Grid topology. The results showed that whether data wast{aged or accessed in
parallel with the job’s execution (i.e. streamed), acairatwork status informa-
tion allowed to create significantly better schedules im&of both job response
time and computational resource efficiency. With Grid giteiconnection band-
widths of 10 Mbps we measured average job response times thaté¥grercent
better than when no network information was included in ttfeeduling process.
For the same scenario, we showed that computational resoeservations spent
on average30 percent of their time idling, while waiting for 1/0O data tore/be
sent (which can be avoided when taking into account the statetwork resources
at the time of scheduling). Our simulations also showedup&bnt reservation of
bandwidth (between Grid resources) for different serviesses can improve the
average job response times by avoiding that data-intessiéce classes monop-
olized available bandwidth.

CONCLUSION 6-3

Additional research into the area of Grid service clasediifitiation yielded a
distributed service management architecture capable nitorong service charac-
teristics at run-time and partitioning Grid resources agsbdifferent priority ser-
vice classes. This partitioning, together with the dynaon@ation of per-service
management components, lead us to the introduction of thieu&¥ Private Grid”
concept. A variety of resource-to-service partitioningoathms (based on ge-
netic algorithm heuristics) were discussed and we evaluhtr performance on
a sample topology using NSGrid. The results showed that thpoged service
management architecture can improve both computatiortahatwork resource
efficiency (with average improvements of and5.5 percent respectively), com-
bined with lower average job response times (when emplogingtwork aware
scheduling algorithm this can lead 36.5 percent better job response times) and
that it became possible to automatically enforce serviasscpriorities. Manage-
ment complexity and scheduling / information service duitityg was improved
due to the automated deployment of service class dedicaaedgement compo-
nents.

We concluded our Grid research contributions by preseratinge case based
on a recent trend in Grid computing: the deployment of Grahtmlogy in the
audio/visual production industry. As media productionAxfcast companies are
more and more evolving to file based media handling insteadps based, and
since these companies tend to have high requirements negapdiality of Ser-
vice, the need to integrate state-of-the-art IT technolaghis domain is becom-
ing mandatory. A second important evolution in this fieldhe heed for collabo-
ration amongst media companies, not only on applicatioal Jdut also to share
resources and media repositories. Grid computing can affalution for these
problems, with support for resource/data sharing and aghdéanollaborative vir-
tual organizations crossing media company boundaries. hafefore proposed
the use of a MediaGrid architecture consisting of MicroGaid MacroGrid com-
ponents. The development of suitable scheduling and semanagement algo-
rithms in a MediaGrid context, can only happen thoroughlgnifitiple collabo-
ration scenarios are investigated. To this end, we havelafge® MediaNSG, a
media company specific Grid simulator built on top of NSGfiigpical task, user
and media company profiles were presented, and a set of pfaafhcept simula-
tions was discussed.

In the future, we expect work to continue on extensions toesoifithe key
aspects discussed in this PhD thesis. In particular, ddioguihe NSGrid Grid
modelling layer from the underlying ns-2 network layer amdviding a generic
interface to discrete event network simulators (e.g. Dauttm SSF) would allow
for more scalable Grid simulations. It would also be inténgsto implement the
presented network and service aware Grid scheduling #hgasiin a real-life Grid
middleware scheduling system as this would allow us to ately determine the

6-4 CONCLUSION

error margins when simulating Grid behaviour with NSGridhjet in turn would
allow us to tune resource and management component delégster reflect the
behaviour of a particular Grid middleware solution. A thimdtable extension
would be the conception, implementation and evaluationddiiteonal resource-
to-service partitioning algorithms (particularly withgard to network resource
partitioning) for the presented Grid service managemaititacture.

Grid Computing: The Next Network
Challenge!

B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B.
Dhoedt, P. Demeester

published in The Journal of The Communications Network (Praeedings of
FITCE 2004), 43rd European Telecommunications Congress,0®4, Vol. 3,
pp. 159-165.

Abstract For the last five years, grid computing has been a very hot et} f
ful research theme resulting now in the deployment of the dpsrational grid
systems. The main motivation for this new computing paradigs in the obser-
vation that the demand for computational and storage resesiis ever growing
while on the other hand vast resources remain underusedgiitiparadigm aims
at solving this mismatch by offering its users computatiana storage resources
transparently, making abstraction of the exact geograpbéation of the physi-
cal resource (this approach has appealing similarities te power grid, hence
the term “grid computing”). Despite the current deploymefitoperational grid
systems, important challenges still lay ahead. New apfiting, opening the grid
also for commercial exploitation, impose new requiremémterms of e.g. se-
curity, scaling behaviour, Quality of Service and robusthe In particular the
geographic spread of grid users in combination with thesg reguirements will
certainly have drastic consequences for the communicatioastructure. In this

A-2 APPENDIXA

paper, an overview of current grid systems, applicatioroteomy and emerging
trends will be discussed. The implications for the netwatkbe analysed, taking

current grid deployments as a starting point. The impor&an€ co-management
of computational/storage and network resources will hesiftated.

A.1 The concept of Grid computing

A.1.1 Historical background

Supercomputers and clusters have been the main workhorpesdess computa-
tionally complex problems, often originating from the sttiic community. How-
ever, problems are becoming increasingly demanding,egilhg the capabilities
of even the most powerful single supercomputer or cluststesy. This observa-
tion led to the idea to join forces for solving these probléma reasonable time
frame, interconnecting these remote computational anégtoresources into a
single number crunching system: the Grid.

As a first step in realizing this concept, the maturation &f lfiternet in the
nineties led to the first global distributed computing petge Two projects in par-
ticular have proven that the concept works extremely welle Tirst project, dis-
tributed.net, used thousands of independently owned ctargacross the Internet
to crack encryption codes. The second is the SETI@homeqpridje Over two
million people have installed the SETI@home software agerte the project’s
start in May 1999. This project proved that distributed coitmy could accel-
erate computing project results while at the same time niagggroject costs
(IBM's ASCI White supercomputer is rated at 12 TeraFLOPs aysd<$110 mil-
lion. SETI@home currently gets on average 15 TeraFLOPs asddst $500K so
far).

The term “Grid computing” suggests a computing paradignilaimo the op-
eration of an electric power grid: a variety of resourcestiGonte power into a
shared pool for consumers to access on an as-needed basisughi this ideal
is still a few years off, key efforts are emerging to definendtds allowing the
easy pooling and sharing of all computing, storage, datanahslork resources in
a way that can promote mass adoption of grid computing.

A.1.2 What's in a name: Grid computing or cluster comput-
ing?

Grid computing differs from cluster computing in a numbekey aspects. First,
due to the geographic distribution of Grid resources, a @oés not have a cen-
tral administration point (instead it uses resources acnosltiple administrative
domains), whereas all cluster resources can usually benésteried from one loca-

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-3

Data

A\ Client
N Resources

\, Scientiic
~Input

Figure A.1: Global computing Grid

tion. Second, the same geographic distribution usuallgilsrdrastically different
resource usage policies and heterogeneity of equipmenériaty of resources
will be connected by a wide range of network technologiegnhs a cluster will
usually consist of a large collection of homogeneous ressuinterconnected by
a proprietary bus or high speed / short range network linkés again indicates an
important distinctive Grid feature: communication linksde long haul, possibly
subject to congestion, while the Grid topology itself isjeabto frequent change,
due to the possibly dynamic nature of resources and the ttatirad authority
over resource usage (this dynamic behaviour can easily digegpin the case of
SETI@home type grids, based on desktop pc’s donating untiBédcycles).

A.1.3 No one-size-fits-all: different Grid systems for diferent
application areas

Based on their main application area, grid systems can ligedivn three classes:
Computational grids, Data grids and Service grids. Contjmutal grids can offer
more processing power than any of its constituent machirieshis category,
one can further distinguish “distributed supercomputiagt “high throughput
computing” categories. The former class attempts to shaxecution time of a
task by processing the task in parallel on multiple machiwéde high throughput
computing systems are tuned to process large job batcheimgtance parameter
sweep jobs). Cycle scavenging grids are special cases gbutational grids:
they allow desktop users to donate their idle CPU time to keipntific research
(mostly global interest projects e.g. SETI@home, fightA@ISome, etc.).

A second grid system class is coined the term “Data Grid".s€éh&y/nthesize

A-4 APPENDIXA

cru 4
DATA

@ TeraGrid

Computational
Grids

®LCG

@ UD Grid
Cycle Scavenging
Grids
@ SETI@home

Data
Grids

@ SpaceGrid @ EGEE

Service
Grids
@ E-Health

USERS

Figure A.2: Grid taxonomy

new information from distributed data repositories. TheQ @roject (i.e. the
processing of data generated by CERN’s Large Hadron Col[Rlg is a well-
known example of this type of grids.

Service grids offer services that cannot be provided by glsimachine. Ser-
vices can range from collaborative working (enabling iat¢ion between users
and applications through a virtual workspace), to multiregtids and “on de-
mand” grids (enabling a user to dynamically increase theuwmhof machines
processing on its jobs or even to dynamically select deglitatjuipment to realize

a possibly virtual experiment). A thorough look at Grid tageny can be found
in [3].

A.1.4 Grid standardization

The Global Grid Forum (GGF [4]) acts as standardization Hodyhe Grid, com-
parable in terms of philosophy as the IETF for Internet exdlanatters. The GGF
is a community-initiated forum of thousands of individuftlem industry and re-
search leading the global standardization effort for gochputing. The GGF's
primary objectives are to promote and support developnaepioyment, and im-
plementation of Grid technologies and applications thiothg creation and docu-
mentation of “best practices” - technical specificatiorsenexperiences, and im-
plementation guidelines. Similar to the Internet, adaptiommon standards and
promoting the use of these standards will allow clients toneet transparently to
multiple grids and eventually facilitate grid interworkin

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-5

A.2 The Grid today

A.2.1 Generic Grid management architecture

Just like an electrical power grid needs advanced contrations and infrastruc-
ture to assure proper operation, managing resources sl &vitl function. A Grid
management architecture consists of three fundamentdityblocks: resource
discovery, resource advertisement and a scheduler capabksigning Grid re-
sources to jobs in an intelligent manner. Grid applicatioesd to formulate their
resource needs (processing elements, storage elementiamdunication and
data requirements) and their respective Quality of Semggairements in job re-
qguests. The resource management architecture contaidsmassion control com-
ponent that decides if an incoming job / resource requesbeatcepted. In order
to be able to schedule jobs on Grid resources in an intelligay, the Resource
Monitoring component provides resource information (bstétic properties and
dynamic status) to the scheduler. Other notable managernemnionents are the
naming service, which provides a distinct name to each Gasdurce, and the
reservation manager that keeps track of all resource r&ts@mg. Once a job has
been scheduled, the execution manager is responsibleafbingtthe Job on the
assigned resources. The job monitoring component prewejab from violat-
ing its allocated resource utilization contract and theuese policy (enforced by
the policy manager). This allows the resource managemehttacture to offer
Quality of Service to Grid applications. The Job Monitor iscaresponsible for
reporting the job’s resource usage to the external AccogfRilling components.
Besides having a Grid application interface, the resouraeagement system
also has an interface with the Grid resources’ native opeyatystem (in order
to be able to execute jobs on resources and provide job aadroesmonitoring),
with the Security Manager (the resource managers mustrithte and authorize
all resource requests with the Grid security manager), aitld tve accounting
manager (responsible for issuing Grid resource usagetbiiensumers).

A.2.2 Glueing Grid resources: Grid middleware systems

Grid middleware refers to a service layer that operatesd@tvthe Grid resources
on the one hand and applications on the other: it attemptatsparently con-
nect networks, computational resources and data resoimtoesne Grid that can
encompass different architectures, operating systemglaysical locations, and
provides the tools for applications to communicate ancabaltate effectively. The
Globus toolkit [5] is one of the most advanced and widely dgetl Grid mid-
dleware suites, offering a set of Grid services and softwhraries to construct
computational, data- or service grids. Globus implementstrof the Global Grid
Forum’s specifications and provides components for regomm@nagement (Grid

A-6 APPENDIXA

Resource
Info
Resource
Info
Resource
Requests
Job
Requests

Scheduling

Resource | Algorithms

Discovery

[SE)

Resource

i eservatiol
Advertisement esource R
‘ Monitoring Manager Job Queue

Resource
Broker

ZO0O—-4>»0—-—rTUvU>

‘ Naming Service ‘ ‘ Job Monitoring ‘ Policy Manager

Job
Request feeed
Handler
Execution Manager
Admission Control

PLATFORM/HARDWARE INTERFACE

mormImM—AZ—

ACCOUNTING INTERFACE

SECURITY INTERFACE

Figure A.3: Generic Grid management architecture

Resource Allocation & Management Protocol), informatienvices (Monitoring
and Discovery Service), security services (Grid Securifyalstructure) and data
movement/management (Global Access to Secondary StondgeradFTP). Grid
developers typically pick the Globus services they neediaoarporate those in
their Grid-enabled application. An important example obk&ls’ usage in cur-
rent scientific grids is the Large Hadron Collider Compuataail Grid middleware
(LCG). The LCG middleware is built on services provided byl@&ls and compo-
nents developed by the European DataGrid project, andgeewd Grid capable of
processing large amounts of data (further details are givére LCG case study).

Another notable middleware suite, Legion, provides an aljased frame-
work in which resources can be combined into a computatiGmnal. Legion is
not a “sum of services” architecture (as Globus is), buteathcompletely inte-
grated architecture, allowing for fast Grid deployment.

A.3 Grid applications: case studies

A.3.1 Cycle Scavenging Grids

United Devices Grid [6] offers desktop users the ability tmdte their unused
processing power and thereby help achieve scientific pssgndfinding new cures
for life-threatening diseases. Global participation hassed the 2.5 million mark
in 2004. UD Grid is now the largest public grid in operatioe|gding the Cancer

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-7

| Project [Grid Category | CPU | Storage | Network |
EGEE Service 1000 10TB 2.5-10 Gbps
LCG Data & Comput. 1075 15TB | 10Gbps(core)
TeraGrid | Comput. & Data| 6174 + 1.1TF| 1PB | 40Gbps(core)

Table A.1: Grid case studies

Research Project, the Anthrax Research Project and thentiatriotGrid project,

designed specifically to identify new leads for cures todni@rism diseases. Due
to the participation of numerous users, UD Grid projectsehaghieved record
levels of speed and success in processing data. Other aatgdle scavenging

grid projects are SETI@home and fightAIDS@home.

A.3.2 Dedicated scientific computing and data Grids

TeraGrid [7] is a US-based virtual computing infrastruetubuilt from five in-
dividual clusters, offering 1 Petabyte of storage, anddahky a cross-country
40Gbps core network. The goal of TeraGrid is to provide senwith a ded-
icated computing and storage infrastructure deliverirgggbwer needed to cope
with large data set analysis and high resolution simulatiand, in the process,
speed up scientific discovery.

Another major example of this type of Grid is the Large Had@atlider com-
putational Grid project (LCG). In this project, a worldwidemputational grid
will be deployed to cope with the massive data flow that willneofrom CERN'’s
Large Hadron Collider (in 2007 the LHC will roughly generaigtween 12 to 14
Petabytes of data). Data analysis requirements are in tlee of 70.000 of today’s
fastest PCs.

A.3.3 Service Grids

The Enabling Grids for E-Science project in Europe (EGEE §8hs to develop a
dedicated service Grid infrastructure in Europe, avaddblscientists 24 hours-a-
day. The project focuses on building a consistent, robustsacure grid network
(built on the GANT research network), offering a large varief production-
quality services to the user. For the moment, the two maiviceinterests lie
in the area of Biomedical Science and High Energy Physicsnimre services
will be added at a later stage.

A.3.4 Grid services meet web services

The Globus toolkit is, as of 2003, evolving towards a sertiased Grid concept
with the development of the Open Grid Services Architecl@&SA), offering

A-8 APPENDIXA

complete virtualization of the Grid resources. The goal GfSA is to standardize
all the services one finds in a Grid application (job manag#rservices, resource
management services, security services, accountingcssnétc.) by specifying a
set of standard interfaces for these services. The Webcgsri®esource Frame-
work (WSRF) was chosen as the base of this architecture, dhe fact that web
services offer a way for accessing diverse services/agjoits in a distributed
environment. The WSRF standard is being developed parthhéyGrid devel-
opment community and partly by the Web Services communétyt allows Grid
services to be treated as extended web services.

A.4 New Grid trends

A.4.1 Emergence of new applications

As the ability to tap into the Grid’s power is getting closedeacloser to the end-
user’s home, the need to support new (not necessarily gmg@rid applications

arises. In what follows we present some of these next-ggaei@rid applications

and their associated requirements:

e Multimedia Editing : With the advent of high-definition video, and a grow-
ing interest in home video editing, end-users need pracgssapabilities
exceeding those of the regular personal computer. ConipughiGrids can
offer end-users the possibility to use industry level viddiiing capabilities.

e Collaborative Working: Collaborative working focuses on bringing Grid
benefits as on-demand processing power and data avajldbdither in an
integrated environment, giving people at different lozasi all the necessary
tools to be able to work on a common project.

e Online Gaming: Massively Multiplayer Online games, where thousands of
players can simultaneously interact with each other in t&irworld, are
becoming increasingly popular. In the near future, as theuarnof players
grows, the resource limitations of the game provider wilréached. Grid
technology can offer a cost-effective scalable solutioeréasing compu-
tational power by assigning more resources during gamislg hours, and
solving the network bottleneck by distributing the workdoa

e Virtual Reality : New advances in screening technologies allow people to
experience realistic 3D environments through a varietyidtidl Reality ap-
plications (e.g. entertainment, exploring new architeadtstructures, sim-
ulator training, etc.). The more realistic the scenarie, fiore processing
power involved (especially when rendering complex envinents in real-
time), giving an incentive to move to Grid computing.

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-9

| Application | CPU | Data | Netw. | Robust | Users | Secure| Realt. |

Online Gaming ++ ++ ++ + T+ + T+
Virt. Reality +++ | ++ ++ + + + o+

Collab. Working | ++ ++ ++ ++ ++ +++ +++
MM Editing | A | At ++ + + +
Data Mining 4+ |+ | ++ ++ +++ +

Table A.2: New Grid trends and requirements

e Data Mining: Effective data mining is being hampered by the massive
amounts of data available in today’s digitized age. Fittgrihis data re-
quires huge amounts of processing and storage, unavattabtest end-
users. Since data mining is becoming critical for launcheffgctive mar-
keting campaigns, companies are more and more interestbe inenefits
(faster results, cost-effective processing on an as-mglegisis, etc.) of Grid
technology.

A.4.2 Telecom oriented Grid management

In [9], the Grid is defined as follows: “A computational Grisl @ hardware and
software infrastructure that provides dependable, ctergispervasive, and inex-
pensive access to high-end computational capabilitiekis definition was later
extended to include usage policy issues, but the messagan®mlear; when
broad adoption of grids becomes a reality, we should tremjpeing and storage
not as an asset, but instead as service. Typically, thisceewill be purchased,
on demand, from one or more service providers. This mightdae peighbour
who shares his spare CPU cycles, or it might be a dedicatettsgurovider.
These Grid Service Providers will usually house powerfuhpatational and stor-
age resources, and charge customers for the used capagitimen Obviously
this scenario poses several challenges for Grid relatesrels. For instance, how
should a provider dimension his network, and, for a givensdiow should prices
be determined and varied over time?

Additional difficulties arise if we consider the fact that aypg customer
will not tolerate degraded service levels. First and forstha user-submitted job
should be executed until completion, even in case of fail@spurces. This implies
that we need a resilient Grid environment, which can handiblpms quickly and
efficiently with minimal (preferably even no) interventioihis requirement has
implications on Grid resource management strategies amgaoents (resource
allocation, reservation management, job schedulingiesthey must be able to
react to network link failures, malfunctioning hardwareftaare errors, etc. A
natural consequence of this service-oriented view of ggdfe introduction of

A-10 APPENDIXA

service classes. This gives providers the opportunity fer @idded value on top
of their basic service, which essentially is the successfunhpletion of a user-
submitted job. Which service classes the providers willraffgnains to be seen,
but an obvious example is a deadline guaranteed service ichwite user’s job

will be completed before a specified deadline. Offering Qo$&e Grid also poses
several scientific challenges, since it must be based omttependently provided
QoS levels of the network and the resources.

A.5 Grid network importance

A.5.1 Network aware Grid scheduling

Traditionally, computing jobs have been scheduled on ipratiessor or cluster
systems using algorithms that ignore network parametets as bandwidth and
delay. The rationale behind this approach is that (i) thero@nnection band-
width between processing elements is high, (ii) input dateeadily available at
the processing site and (iii) the overall time spent tramisfg input and output
data is negligible in comparison with the total job duratigiven its computational
complexity. Given the distribution of resources in a Gridiemnment (resulting
in greater network delays between two distant resourcasjlansize of the data
to be moved around for a typical Grid job, it becomes cleat tihia approach is
suboptimal: the time spent in transferring data can no Iobhgeneglected, and if
it is transferred between distant resources, networkdyattiks can severely block
a job’s computational progress.

It follows that in order to generate quality schedules (Hotim the end user’s
point of view - the experienced job turnaround time - and tf@vigler’s point of
view - efficient use of the interconnecting network), dateation and network
status need to be incorporated. In particular, decisionst tne taken regarding
() the replication of input data sets to multiple locatiardd (ii) the allocation of
available network bandwidth to the different jobs.

The latter requires that a Grid scheduler is able to quenstatis (available
bandwidth) of network links, and make bandwidth reserveifor jobs. In other
words, it is necessary that the network can be treated as ageahle resource,
which in turn requires the presence of a Network Managemrddtructure that
implements all these operations.

If all resources (including network) are manageable, itobees possible to
partition the Grid’s aggregate resources into subsets salaset can be dedicated
to a single class of applications, or can be reserved fosusguesting a specific
class of service.

In figure A.4 and figure A.5, we have visualized both user-eepeed and
provider-experienced improvements in schedule qualitgmdtheduling jobs from

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-11

Average Network Link Utilization (%)

100

an
i) @ CPU jobs
@ Data joks

40

20

Mon-hetwork Betwork Aware Service Aware
Aware
Algorithm

Figure A.4: Average network link utilization

Average Turnaround Time (%)

100
a0
60
40

20

Mon-Metwork Awvare Metwork Aware Service Aware

Algorithm

Figure A.5: Average turnaround time for data jobs and cpu jobs

A-12 APPENDIXA

different application classes using either tradition&t@ork unaware) and more
refined (network and possibly application class aware)ikgécs. The results were
obtained from the simulation of a Grid consisting of 5 diffet sites, each pro-
viding local resources and a humber of end-users submitiingy It is clear that

network-awareness in the Grid scheduler can improve theagegob turnaround

time significantly. In addition, when jobs fall into distinapplication or service

classes, this knowledge can be exploited by providers tatermore efficient

schedules in terms of resource utilization (as is shownHemetwork resources),
while preserving the overall job turnaround time. A moredapth discussion of
these results can be found in [10-12].

A.5.2 Management and control in the optical transport layer

Incorporating network information in a scheduler not omhpiies that the sched-
uler will decide which computational and storage resouecgs® should use, but
also how data should be transported through the networkthier evords, the grid
traffic is routed through the network by the scheduler. Ireotd exploit the grid’s
capacity to its full extent, resources should be connediealigh high capacity
links. Advances in optical and fiber technology such as Dé&kaeelength Divi-
sion Multiplexing (DWDM), allow us to make these kinds of cections between
grid resources. Since we expect optical technology to nerties dominant tech-
nique for building high-speed networks, an important @ralk is to optimize the
interface between grids and optical networks.

Broadly speaking, there are three methods to send datameptiaal network.
The firstis called circuit switching, and works by reservingedicated wavelength
on all links of the path between the sender and receiverofitjh setting up a path
takes a non-negligible time, the end points have exclusigess to the path once
itis in place. Not surprisingly, this technique is very atttive when large datasets
need to be transmitted. A second technique, called packethémng, sends small
amounts of data in packets. These packets are sent indeyplgrafecach other. A
router, receiving a packet, has to inspect the header and mabuting decision.
A third recently developed technique called Optical Burstt&ing (OBS [13]),
combines features of both packet and circuit switching. ng<DBS, a control
packet is sent first, which reserves a wavelength for a spddtfinount of time at
each router it passes. The control packet is closely foliblethe actual data (a
burst), which does not wait for a confirmation of the reséovat Note that OBS
is only usable for medium-sized datasets; in practice thésm a burst length
smaller than 100 ms (longer bursts are better transmittemdrbyit switching), or
about 10 MB on a 1 Gbps link.

One could think of assembling a complete grid job (code and)da one
burst. If the optical routers maintain some information @thehere resources

GRID COMPUTING: THE NEXT NETWORK CHALLENGE! A-13

are located, and if this information becomes more precisermapproaching the
resources, an intermediate router should be able to guideutst in the direction
of the resources. The router could dynamically make a rgudicision for each
burst based on the available resource status informatidtiméadely, this could
lead to a large scale, self-organizing optical network.

A.6 Conclusions

Grid systems are reaching the maturity level necessaryttatenproduction grade
roll-out initiatives, leading to an increasing user comityim scientific and busi-

ness sectors. Development of standards and wide spreae os&gplkits based

on these standards are signs of this maturity level. Relsgaograms like EGEE

and TeraGrid indeed aim at large-scale deployment, opernbivgst computational
and storage resources to many. The success of these highrapence Grid sys-

tems will undoubtedly lead to adoption of Grid technology $mall companies

and even residential users (just like the Internet itsedfénanlved from a purely re-
search infrastructure to a commaodity service for everybodlg suggested above,
development of Grid intensive applications for residdrdiad users will lead to

a paradigm shift towards service oriented Grid infrastites. New requirements
relating to e.g. service guarantees, resilience and sgouiti arise.

It becomes increasingly clear that together with the exgabgrowth of Grid
usage, important network challenges will need to be hand&alscheduling of
network resources and computational/storage resourcebden presented as a
promising avenue towards cost-effective Grid exploitation the longer term, a
vision of a self-organizing optical network infrastruaudesigned specifically for
massively scalable Grid operation has been presented.

References

[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. \Werter.
SETI@home: An Experiment in Public-Resource Computi@@mmuni-
cations of the ACM, 45:56-61, 2002.

[2] LHC Computing Grid projecthtt p: / /1 cg. web. cern. ch/ LCG

[3] K. Krauter, R. Buyya, and M. MaheswaraA.Taxonomy and Survey of Grid
Resource Management Systerirgernational Journal of Software: Practice
and Experience (SPE), 32:135-164, 2002.

[4] Global Grid Forum http://ww. gri df orum org/.

[5] The Globus Allianceht t p: / / www. gl obus. org/ .

A-14 APPENDIXA

[6] United Devices Gridht t p: // www. gri d. or g.
[7] The TeraGrid projectht t p: / / www. t er agri d. org/ .

[8] Enabling Grids for E-Science in Europehtt p:// egee-i ntranet.
web. cern. ch.

[9] lan Foster and Carl Kesselman, editofsie Grid: Blueprint for a New Com-
puting Infrastructure Morgan Kaufmann, 1999.

[10] B. Volckaert, P. Thysebaert, M. De Leenheer, F. De TukDhoedt, and
P. DemeesteNetwork Aware Scheduling in Grids Proceedings of 9th Eu-
ropean Conference on Networks & Optical Communications @N(ages
311-318, 2004.

[11] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, BnDemeesteEval-
uation of grid scheduling strategies through NSGrid: a rmtwaware grid
simulator. published in Neural, Parallel & Scientific Computationpe&ial
Issue on Grid Computing, 12:353-378, 2004.

[12] B. Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, &hdDemeester.
Application-specific hints in reconfigurable grid schedglalgortihms pub-
lished in Lecture Notes in Computer Science (LNCS 3038)¢c&edings P3
of ICCS 2004, LNCS 3038:149-157, 2004.

[13] C. Qiao and M. Yoo Choices, Features, and Issues in Optical Burst Switch-
ing. Optical Networks Magazine, 1:36—44, 2000.

Application-specific hints In
reconfigurable Grid scheduling
algorithms

B. Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeeste

published in Lecture Notes in Computer Science (LNCS 3038)Computa-
tional Science, Proceedings P3 of ICCS 2004, Springer-Vad Berlin Heidel-
berg 2004, Krakow, 2004, Vol. LNCS 3038, pp. 149-157.

Abstract In this paper, we investigate the use of application-spetifints
when scheduling jobs on a Computational Grid, as these jabsexpose widely
differing characteristics regarding CPU and I/O requiremtg. Specifically, we
consider hints that specify the relative importance of meknand computational
resources w.r.t. their influence on the associated appboé performance. Using
our ns-2 based Grid Simulator (NSGrid), we compare schedilat were pro-
duced by taking application-specific hints into accountdbegiules produced by
applying the same strategy for all jobs. The results showtiktter schedules can
be obtained when using these scheduling hints intelligentl

B-2 APPENDIX B

B.1 Introduction

Computational Grids consist of a multitude of heterogese®sources (such as
Computational, Storage and Network resources) which caocoka&located for
the execution of applications or jobs. The allocation obteses to particular
jobs and the order in which these jobs are processed on tldea@ridetermined
by the Grid’s management infrastructure through the appta of ascheduling
algorithm Most jobs will need access to different resource typesndutheir
execution, meaning job execution progress depends on #iléyqof service de-
livered to that job byeveryresource involved. The exact sensitivity of a job’s com-
putational progress w.r.t. the individual resources’ perfance depends on the
“nature” of that job: jobs that require huge amounts of CPWeo but perform
(relatively) little I/O operations, will only suffer lighg from a temporary degra-
dation of e.g. available network bandwidth, but cannot stdihd a sudden loss of
CPU power. Conversely, the computational progress made b¥Dabound job is
influenced dramatically by the network bandwidth availabl¢hat job, and to a
lesser extent by the variation in available computing powiéris leads us to the
observation that:

1. algorithms that schedule jobs on a Computational Gridhbtggtake into ac-
count the status of multiple different resource types exdief solely relying
on e.g. the available computational power.

2. using the same scheduling algorithm with rigid constsafar all job types
can be outperformed by applying different scheduling atgors for dif-
ferent job types; each job-specific algorithm only perfomigsd resource
reservation witteritical resources, but allows for relaxed resource availabil-
ity constraints when dealing with non-critical resources.

This indicates that programmable architectures, wherpthecheduling mech-
anism is provided (at least partly) by the application (aritere the algorithms
could even be adapted on the fly), are a promising avenue devgaids offering
a wide variety of services (each having their specific serwietrics and qual-
ity classes). In this approach, the grid infrastructure darsely managed by
cross-service components, supplemented by on-the-flyqromafile service spe-
cific management components. The latter components mahagedources allo-
cated to the service on a fine grained level, optimizing jebubhput and service
quality simultaneously according to service specific latitiés and metrics. In this
paper we show howgcheduling hintcan be incorporated into job descriptions.
The goal of these hints is to enable a Grid scheduler to etitha critical level
of the different resource types w.r.t. that job. Becauseéshéme contained in the
job description, they are available at each scheduler iGtigto which the job is
submitted or forwarded.

APPLICATION-SPECIFIC HINTS IN RECONFIGURABLEGRID SCHEDULING
ALGORITHMS B-3

This paper continues as follows: section B.2 starts with @tstiescription
of the related work. In section B.3, we give an overview of thkevant simu-
lation models used: the Grid, Resource, VPN, Job and Scimgddint models
are explained in detail. In section B.4, we discuss the varagorithms that we
compared; they differ from each other in (i) the types of ugses they take into
account and (ii) whether or not they treat all jobs equallyr €imulated scenario
and corresponding results are presented in section Bding#o the conclusions
in section B.6.

B.2 Related work

Well-known Grid Simulation toolkits includ&ridSim[1] and SIimGrid[2]. The
key difference withNSGrid[3] is that NSGrid makes use of a network simulator
(ns-2 [4]) which allows for accurate simulation down to tlegwork packet level.

Scheduling jobs over multiple processing units has beatiesliextensively in
literature. Machine scheduling [5] [6] is concerned witlbgucing optimal sched-
ules for tasks on a set of tightly-coupled processors, andges analytical results
for certain objective functions. Jobs are commonly modedle task graphs, or as
continuously divisible work entities. As these models db eeal with “network
connections” or “data transfers”, they do not capture al®@rid-specific ingredi-
ents described in the previous section. Grid schedulirageggies which take both
computational resource load and data locality into accamatextensively dis-
cussed in [7]. The use of Application-specific schedulingtsis not considered
however.

TheMetacomputing Adaptive Runtime Sys{@\RS) [8] is a framework for
utilizing a heterogeneous WAN-connected metacomputedésti@buted comput-
ing platform. When scheduling tasks, the MARS system takiesaocount Com-
putational Resource and Network load, and statisticaloperdnce data gathered
from previous runs of the tasks. As such, the MARS approaftardifrom the
scheduling model simulated by NSGrid, as NSGrid allowsuser preferenceto
be taken into account as well.

Application-level scheduling agents, interoperable \eitfsting resource man-
agement systems have been implemented idpgpE.eS9] work. Essentially, one
separate scheduler needs to be constructed per applibgi@rOur simulation en-
vironment allows the simulation of multiple schedulingrsagos, including those
using a single centralized schedule as well as those havirgpile competing
schedulers (not necessarily one per application type).

B-4 APPENDIXB

B.3 Simulation model

B.3.1 Grid model

Grids are modelled as a collection of interconnected andrmgghically dispersed
Grid sites Each Grid Site can contain multiptesourcesof different kinds such
as Computational Resources (CRs) and Storage Resourcs}iffB&connected
by VPN links. At each Grid Site, resource properties andustaiformation are
collected in a localnformation ServiceJobs are submitted throughGaid Portal
and are scheduled on some collection of resourcesSwhaduler To this end, the
scheduler make®servationsvith the appropriat®esource Managers

B.3.2 Grid resource models

Each Grid site can offer one or more CRs and/or SRs. A CR is alitioic entity,
described by its total processing power in MIPS, the maxinmumber of jobs
that it can handle simultaneously and the maximum slice ofgssing power (in
MIPS) that can be reserved for a single job. An SR on the othedhserves
the purpose of providing disk space to store input and owdpta. In our model,
their basic properties include the total available storgupece, the input data sets
currently stored at the resource and the speed at which senee can read and
write data. While a SR does not perform computational wortait be attached to
the same network node as some CR. Interconnections betaesrésources are
modelled as a collection of point-to-point VPN links, eadfeong a guaranteed
total bandwidth available to Grid jobs. Of course, these \liAks can only be set
up if, in the underlying network, a route (with sufficient lavidth capacity) exists
between the nodes to which these resources are attachéetebifGrid Sites can
be interconnected by a VPN link. These models are covereane uietail in [3].

B.3.3 Job model

The atomic (i.e. that which cannot be parallelized) unit afkvused throughout
this paper is coined with the terjpb. Each job is characterized by its length
(measured innstructiony, its requiredinput data setsits need forstorage and
the burstinesswith which these data streams are read or written. Durindha jo
execution, a certain minimal computational progress i®tgumranteed at all times
(i.e. a deadline relative to the starting time is to be met).

Knowing the job’s total length (in million instructions, Mand the frequency
at which each input (output) stream is read (written), thel texecution length of
a job can be seen as a concatenation of instruction “blockk& block of input
data to be processed in such an instruction block is to beprégfore the start of
the instruction block; that data is therefore transferredifthe input source at the

APPLICATION-SPECIFIC HINTS IN RECONFIGURABLEGRID SCHEDULING
ALGORITHMS B-5

start of the previous instruction block. In a similar way thutput data produced
by each instruction block is sent out at the beginning of #n mstruction block.
We assume these input and output transfers occur in panadtethe execution of
an instruction block. Only when input data is not availaliléha beginning of an
instruction block or previous output data has not been cetafyl transferred yet,
a job is suspended until the blocking operation completdse gresented model
allows us to mimic bottstreamingdata (high read or write frequency) addta
stagingapproaches (read frequency setijo A typical job execution cycle (one
input stream and one output stream) is shown in figure B.1.

concurrent Mioo/MIPS ecervea Mioo/MIPS eservea
tasks #reads [#writes
input1 | input2 input 3

processing | processing | processing

output 1 output 2

Migo/MIPS corved t

Figure B.1: Simulated job lifespan with indication of start-of-1/O events; nlmtking job

B.3.4 Scheduling hints model

From the job model described in the previous section, itaarcthat the computa-
tional progress made by a job is determined by both the caatipnal power and
network bandwidth available to that job. As such, scheduhimts (distributed

together with the job description) describe

e the resource types that are to be taken into account whemldaig this
job; any subset gf Conput ati onal / Network Resource} canbe
specified.

e for each of the above resource types, the size of an acceptadl pre-
venting the job from being scheduled on that resource) tlenidrom the
resource’s performance delivered to that job (describetienob require-
ments).

It is not desirable to have critical resources deliver a-thasi-minimal perfor-
mance to the job, while this may not matter much for nonaltresources.

B-6 APPENDIXB

B.4 Algorithms

When jobs are submitted to a Grid Portal, a Scheduler needscidalwhere to

place the job for execution. As has been mentioned prewipus discriminate

between algorithms using two criteria: the type of resositbey take into account
and whether or not they take into account scheduling hifiteelscheduler is un-
able to allocate the needed resources for a job, the job getseq for reschedul-
ing in the next scheduling round. The time between two sdireglvounds can

be fixed, but it is also possible to set a threshold which &igghe next schedul-
ing round. During each scheduling round, every algorithiwcpsses submitted
yet unscheduled jobs in a greedy fashion, attempting tormaa job completion

time. Once scheduled, our scheduler does not pre-empt jobs.

B.4.1 Algorithm “NoNetwork”

As the name implies, this algorithm does not take into actthenstatus of Net-
work Resources when scheduling jobs. Rather, it assumesrihaCRs are criti-
cal for each job. Furthermore, it will treat minimal job réguments as hard con-
straints; it disregards hints that might propose a softpr@gch. At first, “NoNet-
work” will attempt to place a job on a site’s local CRs, onlyngsremote resources
when strictly necessary (we believe this to be a plausibpgageh from an eco-
nomic viewpoint). If this is impossible, and at least one otenCR is available,
that job will be scheduled on the remote CR offering most @ssing power. It
is therefore expected that this algorithm will perform lyagdhen dealing with a
significant amount of “I/O-bound” jobs: due to “blockinghdse jobs will finish
considerably later than predicted by the scheduling algari

B.4.2 Algorithm “PreferLocal”

Similar to the “NoNetwork” algorithm, “PreferLocal” will @riori attempt to place
a job on a site’s local CRs. If this turns out to be impossibéenote CRs will
be considered. While looking for the best resources for aquéat job, however,
“PreferLocal” not only considers the status of CRs, but #tgaresidual bandwidth
on network links connecting Computational and Storage Ress. The best re-
source combination is the one that maximizes the job’s cdatipmal progress.
For a job requiring one CR and one SR (in different Grid Sitesinected through
a VPN link), the maximal computational progress (expressddlPS) that can be
delivered to that job is given by

MI « BWypy)
8 * DATASIZE

It is easily verified that it makes no sense to allocate a liggetion of the best
CR’s power to this job, as due to network limitations, the galmnot be processed

MIPS.y = _min (MIPScr,

APPLICATION-SPECIFIC HINTS IN RECONFIGURABLEGRID SCHEDULING
ALGORITHMS B-7

at a higher rate. In a similar way, due to CR limitations, ite@&no sense to allo-

cate more bandwidth to the job thaRPATASIZE-MIPSeis 1 ke “NoNetwork”,

“PreferLocal” does not adapt its strategy using job-spedtiints.

B.4.3 Algorithm “Service”

Algorithm “Service”, like “PreferLocal”, considers botho@putational and Net-
work Resources when scheduling jobs. However, instead midiately rejecting
those resource combinations that would not allow some ojdbs minimal re-
quirements to be met, it can still select those resource®(ie better are found)
if this is declared “acceptable” by the appropriate job hiffor instance, jobs
can specify that their available network bandwidth requizats are less important
than their computational requirements (and/or quantiértiative importance), or
that there is no gain in finishing the job before its deadliree o gain in attempt-
ing to maximize that job's\/ I PS.s¢). Using these hints, jobs can be divided into
different classes, where all jobs in one class have simgaoe@ated hints. The
algorithm can then be seen as delivering the same serviaetoda# those jobs in
a single class.

B.5 Simulation results

B.5.1 Simulated Grid

A fixed Grid topology was used for all simulations presenterel{see figure B.2).
This topology is depicted in table B.1. Grid control compuatseare interconnected
by means of dedicated network links providing for out-ofi&rid control traffic
(as shown by the dotted network links).

B.5.2 Simulated jobs

In our simulations, two types of hints were used (i.e. twwisertypes). The first
type of hint is supplied with CPU-bound jobs, and specified the job should
be scheduled on the fastest CR, even if this means schedhérjgb on a remote
resource when it could have been scheduled locally. Thensketype of hint is
distributed with I/O-bound jobs, stating that these joleslagtter off being sched-
uled using only local resources, as this offers better absntallocating sufficient
network bandwidth. In both cases, however, resource lo&dsat ignored; rather,
the preferredexecution rate for a job is no longer treated as a rigid mimmu

We have compared the “Service” algorithm (which understeanmtt uses the
hints as specified) for this job set with the “NoNetwork” artéferLocal” algo-
rithms, both disregarding the hints.

B-8 APPENDIXB

| Servicetype | I/Osize | MI |

I/0O-bound | 6100 MB | 12500000
CPU-bound | 0.4 MB | 25000000

Table B.1: Simulated job classes

Storage ,

Resource ~ Computational
Resources

32000 MIPS

-
& o
2
>

Information
Service

o Storage
Comptiational Resource

Resources

(-
16000 MIPS
<0y
~&7 .
GridPortal

$
Information

Service

Scheduler
)
(D

Central VPN
Manager

e
Information
Service

g Storage
Comptiational gecoyrce

Resources
8000 MIPS

Figure B.2: Simulated topology

B.5.3 Per-class response times

The average job response time for each algorithm is showrgindiB.3. The
figure shows both the overall response rate and the perteapsnse rates when
20% 1/0O jobs and 80% CPU intensive jobs are submitted to tie: s expected,
“NoNetwork” fails to produce good schedules for I/O-bounthg, as it ignores
network loads (which are, of course, of particular impoctato this type of job).
In addition, notice that the use of hints (algorithm “See’/)}dmproves the average
response time for CPU-bound jobs (which make up most of the jjo this sim-
ulation). Indeed, some jobs are now processed at a rat&t(glidower than the
preferred one (the goal of the hints is exactly to specify this is allowed), but
finish sooner than if they were delayed in time.

B.5.4 Response times with varying class representation

In these simulations we stressed the three Grid sites by itiigma heavy job
load (parameterized by the percentage of I/O-bound job&éntatal job load).
The resulting average job response time for the three aéhgosi (as a function of

APPLICATION-SPECIFIC HINTS IN RECONFIGURABLEGRID SCHEDULING
ALGORITHMS B-9

25000

NoNetwark &<
PreferLocal

Service Ty §§§ W
20000 [

15000 |

10000

Average Job Response Time (s)

7/

5000 -

1/0-bound CPU-bound All
Job Class

Figure B.3: Average job response time

NoNetwork —
PreferLocal
Service —*—

35000 |

30000 |

25000

Average Overall Job Response Time (s)

20000 |

15000 L L L L
0 20 40 60 80 100

Fraction of 1/0-bound jobs in input (%)

Figure B.4: NoNetwork, PreferLocal and Service schedule perfaoaa

the percentage of 1/0-bound jobs) is shown in figure B.4.

When only CPU-bound jobs are submitted, “NoNetwork” perfetike “Prefer-
Local”, as we remarked previously. Note that “Service” peris slightly better,
as this algorithm does not prefer local resources over renMghen the amount of
I/0-bound jobs is increased, “NoNetwork” performance degs as network load
status gains importance when scheduling jobs. Since “Rretal” always tries
local resources first (instead of the best resources),lisaliledule more I/O-bound

B-10 APPENDIXB

jobs remotely (i.e. using lower-bandwidth links) as CPUHba jobs (the majority)
use up these local resources; this accounts for the differaith “Service”. Once
the fraction of I/O-bound jobs pass&®%, the network links of our simulated Grid
saturate, and the three algorithms’ performance converges

B.6 Conclusions

In this paper we have shown the benefits of using active sdingdmechanisms
in a service oriented Grid environment. In particular, wediSISGrid to compare
the efficiency of schedules produced by algorithms that ddai@ into account
the service specific needs of a job, to schedules producetybyithms that use
service scheduling hints. It was shown that when using ttterlalgorithms, av-
erage job response times in our simulated scenario imprsiggtficantly (up to

30% in some cases).

References

[1] R. Buyya and M. MurshedGridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Schedulingsfadt Comput-
ing. The Journal of Concurrency and Computation: Practice aqmeience
(CCPE), May 2002.

[2] Arnaud Legrand, Loris Marchal, and Henri Casandsaeheduling Distributed
Applications: the SimGrid Simulation Framewoitk CCGRID '03: Proceed-
ings of the 3st International Symposium on Cluster Compuénd the Grid,
2003.

[3] B. Volckaert, P. Thysebaert, F. De Turck, P. Demeestat,B. Dhoedt.Eval-
uation of grid scheduling strategies through a network-engrid simulator
In published in Proceedings of the International Confegeenic Parallel and
Distributed Processing Techniques and Applications PDB3[AR003.

[4] The Network Simulator - NSBt t p: // ww. i si . edu/ nsnani ns.

[5] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohreniieth C. Sev-
cik, and Parkson WongTheory and Practice in Parallel Job Schedulinin
Dror G. Feitelson and Larry Rudolph, editors, Job ScheduBirategies for
Parallel Processing, pages 1-34. Springer Verlag, 1997.

[6] L. Hall, A. Schulz, D. Shmoys, and J. WeiScheduling To Minimize Average
Completion Time: Off-line and On-line Algorithm#n SODA: ACM-SIAM
Symposium on Discrete Algorithms (Conference on Thecaktad Experi-
mental Analysis of Discrete Algorithms), 1996.

APPLICATION-SPECIFIC HINTS IN RECONFIGURABLEGRID SCHEDULING
ALGORITHMS B-11

[7] I. Foster K. Ranganathan.Simulation Studies of Computation and Data
Scheduling Algorithms for Data Gridslournal of Grid Computing, 1:53-62,
2003.

[8] J. Gehring and A. ReinfeldMars - a framework for minimizing the job execu-
tion time in a metacomputing environmein Proceedings of Future General
Computer Systems 96, 1996.

[9] F. Berman et alAdaptive Computing on the Grid Using AppLéBSEE Trans-
actions on Parallel and Distributed Systems, 14:369-38232

Network Aware Scheduling in Grids

B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B.
Dhoedt, P. Demeester

published in Proceedings of NOC2004, 9th European Conferee on Net-
works & Optical Communications, TU Eindhoven, 2004, pp. 311318.

Abstract Computational Grids consist of an aggregation of data anthe€o
puting resources, which can be co-allocated to executeeldaa-intensive tasks
which cannot be handled by an individual resource. The viamiunts of (possibly
remote) data these tasks process give rise to the need fghadaipacity network
interconnecting the various resources. In this paper, @ngued that, in order to
obtain quality job schedules resulting in low throughputeis while making effi-
cient use of available resources, network- and servicerawégorithms need to
be used. We present several heuristic algorithms, whichwalate extensively in
order to gain insight in the quality of the generated schedulin particular, in a
Grid with heterogeneous Computational Resources and kpacities, we show
how the average job response time can be improved by dissimgg between
data-intensive and compute-intensive jobs, and scheglthiese jobs based upon
both Computational Resource and network load. We show lileateuristics pre-
sented perform well when compared to an Integer Linear Riogning approach
modelling a periodic on-line scheduler.

C-2 APPENDIXC

C.1 Introduction

In parallel and distributed computing communities, a loatiéntion has recently
been paid to Computational Grids. These Grids are conceigeal collection of
resources of various types (computational, storage, éistyibuted over multiple
geographical locations. The underlying principle of anragienal Grid is that
several resources can be co-allocated to the same redatensive task, over-
coming each resource’s individual limitations. These vese-intensive tasks will
typically operate on large amounts of data, which must besfeared from its
storage site to the processing site. This implies that, vélobieduling jobs on this
Grid, gathering information on data location and networkdwidth availability
is essential in order to generate quality schedules.

Scheduling algorithms for parallel computing systems Hhepen studied exten-
sively in literature [1]. Most approaches assume a disevet&load (e.g. jobs) and
use a stochastic [2, 3] or linear programming model [4]. Sible load theory [5],
on the other hand, assumes a continuously divisible loatisaems well suited to
model a Grid, as it leads to fairly easy systems of equatmres; for large problem
sizes. However, in order to remain analytically tractatiiese techniques trade in
some of the characteristic properties of a Grid by simplifynetwork and/or job
models or focusing on a particular topology.

More accurate grid models require the use of simulationstaolorder to be
evaluated. In [6] and [7], network-awareness is introduceithe scheduling de-
cisions by replicating data to suitable sites; jobs can tieacheduled to run at a
site holding all the necessary data. Our in-house develbi&#tbased Grid sim-
ulator NSGrid [8, 9] extends this model by allowing data tottaasferred to the
execution site while the job has already been started, as@xtension is used in
the simulations described here.

In this paper, we use this simulator to investigate the geiter of schedules
for a Grid in which the core network uses high capacity (dagsbptical) core
links. While this approach seemingly provides for abundamdwidth in the net-
work, it follows from the expected Grid job size in the neatufe (the expected
data size generated yearly in the European DataGrid prigjecthe order of 12-14
PB/year [10]) that high-bandwidth (typically found in ogdl networks) intercon-
nections are a necessity, not a luxury. This implies thatenscheduling heuristics,
which assume “infinite” (or at least “sufficient”) networkrmwidth at all times or
ignore the network altogether are unable to generate gusdhiedules, both in
terms of average job response time and in terms of efficiesouree utilization.

We verify this through simulation of different schedulinguristics and calcu-
lation of an ILP solution to the problem, operating on a sl@avorkload (con-
sisting of a mix of different types of Grid jobs requiring Saiently high compu-
tational power and network bandwidth).

NETWORK AWARE SCHEDULING IN GRIDS C-3

The remaining sections of this paper are organized as fell@gction C.2 ex-
plains how the various Grid components in our simulationremment are mod-
elled. A concise description of the scheduling problem assked here, the ILP
model of a periodic, on-line scheduler and the heuristiesius our simulations
are presented in section C.3. Our results are presentedtiars€.4, and the main
conclusions drawn from them are summarized in section C.5.

C.2 Grid model

For the simulations described in this paper, a Grid has bemfelied as a set of
interconnected, geographically dispergaid sites At each site, one or more re-
sources are present. The status and properties of theseages@re stored in an
Information Serviceepository. The idea is that a single site groups “geograph-
ically close” resources, connecting them through a highdiadth, low-latency
network. Each site is connected to the backbone network hsdrailations use
static shortest-path routing for inter-site traffic.

C.2.1 Grid resources

The resources modelled in the simulation framework inclGdenputational Re-
sources (CR) and Storage/Information Resources (SR/iBthgDtational Resources
represent either a cluster or multi-computer, and are testby the number of
(time-shared) processors provided, the amount of memaodytamporary disk
space. In order to schedule a job, a reservation can be madeavZR, con-
sisting of a time-share of a processor dedicated to that gtbrage/Information
Resources hold the data written/read by the job. We use tla¢iowC for the set
of Computational Resources, with elements C.

Jobs transfer data from and to remote resources wsingectionswhich act
as point-to-point bandwidth pipes between a pair of ressiend are allocated
with the network management system by the grid schedules allows the net-
work to be viewed as a resource (with limited renewable dapad.a. bandwidth,
of which a portion can be reserved for a connection), givivegscheduler the pos-
sibility to generate accurate network-aware schedules,batance computation
vs. communication bottlenecks. We use the notafidior the collection of net-
work links, where each € £ has a bandwidtii..

C.2.2 Jobs

We reserve the terob for atomic units of work. Jobg € 7 are characterized
by their computational and communication (I/O) complexitie first property is
captured using theeference running time; (time to execute on a reference proces-
sor when not experiencing any communication bottleneckisg communication

C-4 APPENDIXC

Resubmission in gueue | Rejected
Jobs

Scheduling
Algorithm

Job Submissions

Heuristics
- Network unaware

Accepted -
3 E Start execution
- Network aware obs
- Link Load Min.
- Service Diff.
Allocate assigned resources

Figure C.1: General overview of scheduling algorithm

complexity is specified by a number of parameters: the dasatlse job needs as
input (total sized?), the size of the outputs it produces (total sizg, whether or
not I/O are processed block-per-block (the opposite cagdén all input data is
pre-staged to the CR the job is running mor to execution) and the amount of
separate blocks I/0 data is divided into (if applicable)isTilows to simulate data
streamswith arbitrary precision. The fundamental relation betaveemputation
and communication in our model is that a data block can onlgrbeessed when
it has arrived entirely; if this is not the case, the job’s putational progress is
blocked

C.3 Scheduling algorithms

The scheduling algorithms we use apgeueingalgorithms (see figure C.1) that
attempt to schedule jobs in a FCFS fashion [11], and, oncé asjscheduled,
the scheduler does not attempt to pre-empt jobs. Sincerttnaduces the risk of
allocating minimal leftover computational resource tirhares to certain jobs, we
have demanded that a processor can be time-shared by at spestiied number

of concurrent jobsV.. Our scheduling algorithms are executed periodicall\graft
a specified amount of timé&', all job requests are taken into consideration, and,
based on the state of the grid’s resources at that time, aslehis calculated.

C3.1 ILP

In this section we present an Integer Linear Programmin@)linodel, which
captures all important parameters in the scheduling pnoblé is well known
that ILP is a computationally intensive technique. Thigetiver with the fact
that the proposed grid and job models are both very gendiigjes us to impose
additional restrictions to the model. We model a grid as kectbnC of resources,
where eaclt € C has a processing capaci®/ and unlimited storage capacity. We

NETWORK AWARE SCHEDULING IN GRIDS C-5

assume a job can only be executed at its reference processgagl, and thus
the execution length is given by the reference running timeThis also implies
the job is not held up by communication bottlenecks. We frrifissume a job
has only one input and one output block, which is to be trarsfleat a constant
datarate during the job’s execution. It follows that a joquieesb’; = d—; of input

bandwidth, and;” = % of output bandwidth. Two additional parameters for the
ILP model are the budgedz which a job pays if it is accepted for execution, and
the arrival sites;. We introduce the following binary variables:

e r; =1 «: jobjis accepted for execution.

e y;. =1 <: jobj uses processing power of resource
1 «: jobj uses storage capacity of resource

e 2 =1 <«: jobj uses network link for input.
2z =1 <«: jobj uses network link for output.

These variables allow us to express the cost to execute a/fodh is given by
a weighted sum of the processing cost and the transfer cost:

Cj = axk;jx > (CPxp;xyb)+Bxk;x Y (CYx(b)xzf,+b¥ xz1)) (C.1)
ceC ec&

wherek; = [%’1 is the number of periods a task will run, aa andC? are

the costs for using resoureeand network linke during one time unit. Parame-
tersa and 3 allow us to give priority to CPU-bound or network-bound johse
investigate their influence on the scheduler in section324.

Our objective function, stated below, expressegifodit our scheduler makes
by choosing which tasks to execute where. Clearly our go immaximize this
function, as it strikes a balance between a user’s percaatsfaction (high ac-
ceptance rate) and the provider’'s optimal resource utitinakeeping the costs
low means jobs are executed close to where they are subjnitted

f=3 (wxz;—Cy) (C.2)
=
We now introduce the constraints which need to be satisfiegtalRthat all
variables are binary-valued. We first state that an accgpltedses computational
power of exactly one resource, uses its submission sit@esgst site, and possibly
uses multiple network links:

- po_ . s _] if c=s;)
vJ Ze;yjc_xj PV yﬂc_{ 0 otherwise ’ Vi Ve zj" <
(C.3)

C-6 APPENDIXC

The following constraints limit the usage of the individuasources:

VC-Z Yi. < Ne o Vc~Z(pj Xyh) < P Ve-Z(b?xz}’e—i—b;-”xz;”e) < B,
Jjeg JET JjET
(C4)

The model is completed by expressing the balance of flowseamttwork
(analogous constraints are necessary for variati{gs

ViVue Y Han = D Fww = Yiu Y (C.5)
veY veyY
(u,w)EE (u,v)EE

C.3.2 Heuristics

The ILP model described above can only be used to solve anefltheduling
problem because of its computational intensiveness (tés unsuitable as an
actual scheduling algorithm implementation). Below weegan overview of the
scheduling heuristics that were used in our study and cosnbair results with
the ILP solution.

C.3.2.1 Network Unaware

We have used network unaware scheduling as a naive hedadsttmmparison.
This heuristic will compute job schedules based on CR/IRg&Rus. It does
not take into account information concerning the statussburce interconnec-
tions. Because of this, job processing can block on I/O djmerst computational
progress is no longer determined by the CR’s processolidratitat has been al-
located to a job (which, together with the job’s length anel @R’s relative speed
determines its earliest end tinfeall input and output transfers complete on time
i.e. before the start of the appropriate instruction blpdbut rather by the limited
bandwidth available to its I/O streams.

C.3.2.2 Network Aware

Network aware algorithms will not only query the Informati&ervices (for re-
sources adhering to the job’s requirements), but also ttveank management for
information about the status of the interconnecting netviioks. Based on both
the Information Services’ and Connection Manager’s anstlhierheuristic is able
to calculate job execution speed and end time more accyrtking into account
the speed at which data can be delivered to (or sent from)@aaglable CR. For
jobs with one input and one output stream, the best reso@RAR/SR) triplet

is the one that minimizes the expected completion time ofdbe This value is

determined by the available processing power to that jobhenGomputational

NETWORK AWARE SCHEDULING IN GRIDS C-7

Resource, the job’s length, the job’s total I/O size and #wdual bandwidth on
the links from IR to CR and from CR to SR.

C.3.2.3 Minimum Hop Count

This heuristic attempts to minimize network usage whendlieg jobs. In order
to achieve this, the scheduler evaluates the network loald €&®/IR/SR triplet
selection would generate for a given job, and chooses tadsid¢he job on the
triplet that minimizes this network usage. Typically, whehs require that their
I/O be streamed from/to the originating site, this heuwristill first attempt to

schedule the job on local resources, and, when this is iileasvill try to submit

the job to a CRas close as possible to the job’s originating siteinimizing the

amount of network links that data has to be sent over.

C.3.2.4 Service differentiation

The Service Differentiation heuristic will compute theaattensity of a job, based
on the job’s 1/0 and processing requirements, and, basebi@metric, will clas-
sify the job as either a data intensive or a computationahisive job. Data in-
tensive jobs will only be scheduled on resources local tgahts originating site
(if these resources adhere to the job’s requirements). lbcal processing slots
are available, the data intensive jobs are queued for locglegsing. Jobs in the
other service class will be scheduled on remote processswyrces (in a network
aware manner), in order to maximize the chance of havind lmoeessing slots
available for data intensive jobs.

C.4 Simulation results

C.4.1 Simulated topology

The Grid topology used in our simulations is shown in figur2.@he topology is
symmetric and consists of 12 Grid sites (8 edge and 4 cor® gitierconnected by
means of bidirectional optical link2(5Gb/s links between edge and core sites,
and a5Gb/ s ring network between core sites). Furthermore, each cteecen-
nects two edge sites to the core ring network. Each site tonéa IR/SR/CR and
an Information Service management component responsibteaicking resource
properties. Jobs are submitted to the site through thés siser interface. Core
sites differ from edge sites in terms of the offered Comportati Resource; both
CR types have 4 processors, capable of running 8 jobs sinedtesly, but a core
CR offers three times the processing speed of its edge apante A site’s local
interconnections are modelled as fiber channel links cepatbiransmitting data
at10Gb/s.

C-8 APPENDIXC

job submission:
6h-12h

job submission:
Oh-6h

Information <
Resource S
S

Compl#ational job submission:

, \ job submission:
/ \ 12h-18h
\
\
/ \
\
N
N
N
N

(a) Grid site (b) Grid topology

Interface

Resqurce 18h-24h

Grid Site

Figure C.2: Simulated topology

C.4.2 Grid jobs

The user interface at each Grid site submits two differemtypes: data-intensive
and cpu-intensive jobs. Both job types have the same refenem time, but they
differ in the amount of I/O data they need/generate. Jobfatentiated at speci-
fied time intervals, according to the interarrival time ()Aistribution of the job’s
class. Furthermore, all jokstreamtheir 1/O from/to the originating site’s local
IR/SR. Average job parameters have been summarized in@abldn each simu-
lation, the job load consists of 405 jobs. We chose to use d firerval of1000s
between consecutive scheduling rounds.

CPU-Job | Data-Job

Input(GB) 15.6 156
Output(GB) 15.6 156
IAT(S) 1350 5400

Ref. run time(s) 10000 10000

Table C.1: Job properties

C.4.3 Results
C.4.3.1 Bandwidth of core network

The job throughput for different core network bandwidthues is shown in fig-
ure C.3. We clearly see that, for the given job load, a “su#fiti bandwidth exists;
going above this value has little to no effect on the job tigiqaut and thus implies
an overdimensioned core network.

NETWORK AWARE SCHEDULING IN GRIDS C-9

9.58e-05

9.56e-05 |- e
9.54e-05 |-
9.52e-05 |-
9.5e-05 / 1
9.48e-05 |- /

9.46e-05

Average Job Throughput (jobs/s)

T
—

9.44e-05 |-

9.42e-05 |-

9.4e-05 L
3 4 5 6 7

Core Network Bandwidth (Gbps)

Figure C.3: ILP job throughput

8/8IAT —f—
718 IAT

100 =t ——

Utilization Core Sites (%)

| | | |
0.001 0.01 0.1 1 10 100 1000
Bla

Figure C.4: ILP utilization of core sites

C.4.3.2 Parameters of ILP

Figure C.4 depicts the utilization of the core sites for @as values of the quotient
g. This quotient expresses the relative cost between thesusfag network link
and a computational resource. Clearly, higher values irtayusing the network
becomes more and more expensive, and thus local executtomies preferable.
We performed this experiment for different values of the joterarrival times
(IAT); higher job arrival rates generate higher site uéitinn as long as the network
is cheap enough. When the usage of the network becomes tonsdxpethe site
utilization drops notably.

C-10 APPENDIXC

14000

12000 -

10000

8000

6000

Average Job Turnaround Time (s)

4000

2000

ILP NoNetwork Network MinHopCount Service

Figure C.5: Average job turnaround times

C.4.3.3 Turnaround time

Figure C.5 shows the average job turnaround time (time letveerival of a job
and the time it finishes) for the different scheduling heigssdiscussed above.
The “Service” heuristic clearly provides the best perfoneceg by pushing cpu-
intensive jobs to remote processing sites, and, in doingesgrving the local
processing slots for data-intensive jobs. It is exactlyaose remote processing a
lot of data-intensive jobs causes a network bottleneck {lagitby causes process-
ing to be blocked), that the network aware “Minimum Hop Cduartd “Service”
heuristics perform well.

C.4.3.4 Network utilization

The difference in network utilization resulting from deyilog different scheduling
heuristics is shown in figure C.6 (the lower part of each baragents network uti-
lization of data-intensive jobs). The metric used here iedaveighted hopcount,
as we took into account the fact that data-intensive jobsounsaverage 0 times
more data than other jobs. The results show that the leasbrietraffic flows
when we make use of the service differentiation heuristiximizing the chance
that data-intensive jobs obtain a local processing slot.

C.5 Conclusions

Our main observations are that due to the expected size datiadransferred by a
Grid job in the future, even with high-capacity network lnkaive (non-network

NETWORK AWARE SCHEDULING IN GRIDS C-11

16
14 - g
12 b g

10 B

I . 1

Weighted Average HopCount (hops/job)

ILP NoNetwork Network MinHopCount Service

Figure C.6: Weighted average hopcount

aware) heuristics are outperformed by network-aware sdimefstrategies both
from the end user’s viewpoint (job turnaround time) and frttwa provider’s view-
point (network usage efficiency). Furthermore, if multipfgplications with differ-
ent bandwidth requirements are run on the Grid, further aw@ments are possible
by deploying different service-oriented scheduling sigés.

References

[1] Dror G. Feitelson, Larry Rudolph, Uwe SchwiegelshohenKeth C. Sevcik,
and Parkson Wong.Theory and Practice in Parallel Job Schedulingn
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduitrategies for
Parallel Processing, pages 1-34. Springer Verlag, 1997.

[2] A.l.D. Bucur and D.H.J. EpemaAn Evaluation of Processor Co-Allocation
for Different System Configurations and Job StruxctutesProceedings of
SBAC-PAD, 2002.

[3] A.l.D. Bucur and D.H.J. Epemarhe Influence of the Structure and Sizes of
Jobs on the Performance of Co-Allocatidn Proceedings of JSSPP6, 2000.

[4] L. Hall, A. Schulz, D. Shmoys, and J. WeiScheduling To Minimize Average
Completion Time: Off-line and On-line Algorithmi SODA: ACM-SIAM
Symposium on Discrete Algorithms (Conference on Theaaktind Experi-
mental Analysis of Discrete Algorithms), 1996.

C-12

APPENDIXC

5]

[6]

[8]
[9]

[10]

[11]

D. Yu and T.G. RobertazziDivisible Load Scheduling for Grid Computing
In Proceedings of the IASTED 2003 International ConferesrcParallel and
Distributed Computing and Systems (PDCS), 2003.

I. Foster K. Ranganathan.Simulation Studies of Computation and Data
Scheduling Algorithms for Data GridsJournal of Grid Computing, 1:53—
62, 2003.

David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Idjl Caitriana
Nicholson, Kurt Stockinger, and Floriano ZinEvaluating Scheduling and
Replica Optimisation Strategies in OptorSiim 4th International Workshop
on Grid Computing (Grid2003), 2003.

The Network Simulator - NSAt t p: / / ww. i si . edu/ nsnam ns.

B. Volckaert, P. Thysebaert, F. De Turck, P. Demeestet,a DhoedtEval-
uation of grid scheduling strategies through a network-egrid simulator
In published in Proceedings of the International Confegemit Parallel and
Distributed Processing Techniques and Applications PDB3[A&Z003.

The DataGrid Project http://eu-datagrid.web.cern.ch/
eu- datagrid/.

M. Hovestadt, O. Kao, A. Keller, and A. Strelbcheduling in HPC Resource
Management Systems: Queueing vs. Planniitrg Proceedings of the 9th
Workshop on Job Scheduling Strategies for Parallel Praugs2003.

