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gedurende 4 jaar mocht ontvangen.

Geen werk zonder administratie, en daarbij is onze vakgroepin excellente han-
den: Martine Buysse, Ilse Van Royen, Davinia Stevens, Karien Hemelsoen, Ilse
Meersman, Marleen Van Duyse en Bernadette Becue zijn maar enkele van de per-
sonen waar ik regelmatig wel eens bij terechtkwam met vragenomtrent onkosten-
nota’s, reisaanvragen, buitenlijnen en dergelijke meer. Engelengeduld moeten ze



ii

gehad hebben, toen ik nog maar eens mijn personeelsnummer niet terugvond, of
voor de zoveelste keer de fax niet kon laten doen wat ik het woulaten doen (in dit
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Nederlandse samenvatting
–Summary in Dutch–

De grote verspreiding van het internet en de beschikbaarheid van krachtige com-
puters en hogesnelheidsnetwerken tegen een relatief lage kostprijs geeft ons tegen-
woordig de mogelijkheid om een ruime variëteit aan gedistribueerde resources met
elkaar te verbinden en, mits voorzien van de nodige software, gebruik te maken
van hun gebundelde kracht. Deze aaneenkoppeling van heterogene, dynamische
resources tot een geünificeerde, krachtige machine wordt “metacomputing” of
“Grid computing” [1, 2] genoemd. Toepassingen die nuttig gebruik kunnen maken
van een Gridinfrastructuur zijn onder meer gedistribueerde dataverwerking (v.b.
CERN DataGrid [3]), computationeel intense jobverwerkingen geavanceerd col-
laboratief onderzoek (vb. EScience Grid [4]). Tegenwoordig vereisen bepaalde
toepassingen ḿeér rekenkracht dan de huidige clusters en supercomputers kunnen
leveren en kunnen daarom enkel economisch verantwoord uitgevoerd worden in
de context van een Grid.

Vanuit de bedrijfswereld en onderzoeksinstellingen is er dan ook een grote in-
teresse in software die eenvoudige ingebruikname van Gridsen de bijbehorende
Gridapplicaties toelaat. Deze software moet toelaten om gedistribueerde, hetero-
gene resources op een transparante, veilige en performantemanier te gebruiken,
en is reeds beschikbaar onder de vorm van enkele standaard Grid middleware
toolkits zoals Globus [5] en de LCG middleware [6]. Tot voor kort werd er
echter weinig onderzoek gedaan naar de invloed van het netwerk op onder meer
de algehele resource-efficiëntie en de optimaliteit van resource-assignaties door
Gridschedulingalgoritmen. Dit is deels te verklaren vanuit de historische ver-
bondenheid van Grids met het clustercomputingconcept. Bijclustercomputing
kan verwerking ook gedistribueerd plaatsvinden, maar bevinden de resources zich
in tegenstelling tot Grids allemaal op geografisch dezelfdelocatie en zijn deze
gëınterconnecteerd door middel van een hogesnelheidsnetwerk met aanzienlijk
kleinere vertragingen. Hierdoor is de status van netwerkresources bij het nemen
van o.a. schedulingbeslissingen minder belangrijk dan bijGrids. Bovendien is
de resource- en topologieconfiguratie van een cluster volledig gekend en kan de
status eenvoudiger gecontroleerd worden dan bij geografisch gedistribueerde en
dynamische Gridsystemen.

Het werk dat we in dit boek presenteren kan opgesplitst worden in meerdere
delen. Allereerst bespreken we hoe we een performante en schaalbare Grid-mo-
nitoringarchitectuur ontwikkeld hebben met als doel realistische waarden met be-
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trekking tot typische job- en resourcekarakteristieken opte meten. De algemene
opbouw van deze monitoringarchitectuur (met sensoren, producenten, consumenten
en een directory service) wordt uit de doeken gedaan, alsookde gebruikte im-
plementatietechnologieën. We vergelijken de performantie en functionaliteit van
het ontwikkelde Gridmonitoringplatform met die van anderemonitoringpakket-
ten (o.a. Globus Monitoring and Directory Service 2 - MDS2 [7]) en moeten na
uitgebreide metingen concluderen dat ons monitoringplatform met een minimum
aan systeembelasting de beste performantie en schaalbaarheid aanbiedt. Zo is de
processorbelasting bij het simultaan bevragen van een producer uit ons monito-
ringplatform door 600 gebruikers lager dan 6 procent, waarbij een antwoord gefor-
muleerd wordt met een gemiddelde responstijd van 0,01 seconde (wat een factor
10 beter is dan bij MDS2). Als we de performantie van de directory services met
elkaar vergelijken, zien we dat onze oplossing zo’n 458 bevragingen per seconde
kan afhandelen, terwijl dit bij MDS2 slechts 311 bevragingen per seconde is. Deze
resultaten worden mogelijk gemaakt door de combinatie van de gebruikte imple-
mentatietechnologiëen met een schaalbaar architecturaal ontwerp.

In een tweede stadium bespreken we de nood aan een Gridsimulator die in
staat is om netwerkinterconnecties accuraat voor te stellen en tegelijkertijd toelaat
om een grote variëteit aan Gridtopologiëen en resourceconfiguraties te modelleren.
Dit leidt tot de ontwikkeling van NSGrid, een op ns-2 [8] gebaseerde Gridsimu-
lator die modellen bezit om jobs en resources (computationele, opslag-, data- en
netwerkresources) voor te stellen. NSGrid is bovendien voorzien van verschillende
Gridmanagementcomponenten, zoals een scheduler, replica-, netwerk- en service-
manager, monitoring- en informatiediensten. Vervolgens worden schedulingalgo-
ritmen voorgesteld die rekening houden met de toestand van resource-interconnec-
ties om performante jobschedules op te stellen. Deze algoritmen worden gëevalu-
eerd op verschillende Gridtopologieën en jobpatronen, gebruik makend van NS-
Grid. Uit de resultaten blijkt dat het opnemen van de status van netwerkconnecties
in het schedulingproces kan leiden tot betere jobassignaties: bij Gridinterconnec-
tiebandbreedtes van 10 Mbps wordt een gemiddelde jobresponstijd opgemeten die
61 procent beter is dan wanneer geen netwerkinformatie opgenomen wordt in het
schedulingproces. Bovendien tonen we bij hetzelfde scenario aan dat computa-
tionele resourcereservaties gemiddeld 30 procent van hun tijd ongebruikt worden,
wegens het wachten op invoer- en/of uitvoerdata (wat vermijdbaar is indien er
correct rekening gehouden wordt met de status van de netwerkresources op het
moment van schedulen).

Er wordt dieper ingegaan op een geautomatiseerde service-managementarchi-
tectuur die, rekening houdend met het gemonitorde applicatiegedrag, een verde-
ling van Gridresources over verschillende serviceklassenafdwingt. Serviceklassen
zijn in dit geval een verzamelnaam voor jobs die eenzelfde gedrag vertonen met
betrekking tot hun gevraagde verwerkingskracht en data-intensiteit. Deze verde-
ling van resources over serviceklassen met verschillende prioriteiten, samen met
het dynamisch instantiëren van managementcomponenten (scheduler, informatie-
diensten, etc.) exclusief toegewijd aan die serviceklassen, laat toe een Grid op te
splitsen in meerdere “Virtual Private Grids”, elk afgestemd op de karakteristieken
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van een welbepaalde serviceklasse. We bespreken hierbij verschillende resour-
cepartitioneringsalgoritmen gebaseerd op genetische algoritmen, en evalueren de
performantie van deze algoritmen gebruik makend van NSGrid. Uit de resultaten
blijkt dat niet alleen de gemiddelde computationele en netwerkresource-efficiëntie
verbeteren (met gemiddelde winsten tot respectievelijk 17en 5,5 procent), maar
ook dat gemiddelde jobresponstijden omlaag gaan (bij scheduling waarbij reke-
ning gehouden wordt met de status van netwerkresources kan dit tot 30,5 procent
winst opleveren) en dat het mogelijk wordt om geautomatiseerd serviceklassepri-
oriteiten af te dwingen.

Tot slot wordt in dit werk een recente ontwikkeling besproken: het gebruik
van Gridtechnologie voor de verwerking van digitale audiovisuele data bij organ-
isaties verantwoordelijk voor radio- en televisieproducties. Verschillende orga-
nisatieprofielen (gebruikers, applicaties, vereisten, etc.) worden voorgesteld en
kunnen gesimuleerd worden met MediaNSG, een uitbreiding opNSGrid die in
staat is om het gebruik van Gridtechnologie in de audiovisuele sector na te boot-
sen.
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English summary

Widescale adoption of the internet and the availability of powerful computational
resources and high-bandwidth networks at a relatively modest cost, presents us
with the opportunity to interconnect a wide variety of distributed resources in order
to harness their combined capabilities. This interconnection of heterogeneous, dy-
namic resources in order to construct a single unified, powerful machine is called
“metacomputing” or “Grid-computing” [1, 2]. Applicationsthat can use this Grid
infrastructure to their advantage are among others distributed dataprocessing (e.g.
CERN DataGrid [3]), computationally intense batch processing and advanced col-
laborative research (e.g. EScience Grid [4]). Nowadays, some applications de-
mand more computational power than can be provided by current clusters or su-
percomputers, and can therefore only be processed (under economically sain con-
ditions) when utilising a Grid.

Industrial and research communities are increasingly moreinterested in soft-
ware that allows easy deployment of Grids and the accompanying Grid applica-
tions. This software has to support utilising distributed,heterogeneous resources
in a transparent, secure and well-performing manner, and isreadily available in
the form of standard Grid middleware toolkits such as Globus[5] and the LCG
middleware [6]. Until recently however, little research has been done on the influ-
ence of the network on (among others) computational resource efficiency and the
optimality of assigning resources to jobs by different Gridscheduling algorithms.
This can be partially explained because of the historic connection of Grids with
the cluster computing concept. Cluster computing allows jobs to be processed
in a distributed way, but the computational and storage resources are (in contrast
with Grids) all located at the same geographical location and are interconnected
by means of high speed network links with relatively small delays. This renders
the status of network resources when taking scheduling decisions less important
than when scheduling jobs in a Grid. On top of this, when a cluster is employed
for processing jobs, its resource and topology configuration is fully known mak-
ing it easier to monitor resource state than when a geographically distributed and
dynamic system (such as a Grid) is used.

The work we present here can be subdivided in multiple parts.First off, we dis-
cuss how we have developed a performant and scalable Grid monitoring platform
capable of delivering realistic values regarding typical job and resource character-
istics. The overall architectural structure of this monitoring platform (with sensors,
producers, consumers and a directory service) will be explained, together with the
implementation methods that were used. We compare performance and function-
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ality of the developed Grid monitoring platform with that ofexisting leading mon-
itoring platforms (a.o. Globus Monitoring and Directory Service 2 - MDS2 [7])
and have to conclude that our monitoring platform offers thebest performance and
scalability, with a minimum of resource load; processor load when simultaneously
querying a producer by600 users is lower than6 percent, with query answers for-
mulated with an average response time of0.01 seconds (which is ten times better
than MDS2). If we compare the performance of the directory services, we notice
that our solution can handle458 queries per second, while MDS2 can only handle
311 queries per second. These results are made possible becauseof the combi-
nation between utilised implementation technologies and an architectural design
focussed on scalability.

In the next part we discuss the need for a Grid simulator that accurately repre-
sents network interconnections and at the same time allows modelling of a large
variety of Grid topologies and resource configurations. This leads to the develop-
ment of NSGrid, a Grid simulator based on ns-2 [8] offering models to represent
jobs and resources (computational, storage, data and network resources). NSGrid
also provides different Grid management components: schedulers, replica man-
agers, network managers, service managers, monitoring andinformation services,
etc.. We present Grid scheduling algorithms that take into account the state of
resource interconnections to construct well-performing job schedules. These al-
gorithms are then evaluated on different Grid topologies and job patterns, utilis-
ing the NSGrid simulator. The results show that taking into account the state of
network connections when scheduling jobs on a Grid can lead to better job assig-
nations: with Grid interconnection bandwidths of10 Mbps we measure average
job response times that are61 percent better than when no network information is
included in the scheduling process. For the same scenario, we show that computa-
tional resource reservations spend on average30 percent of their time idling, while
waiting for input and/or output data to arrive/be sent (which can be avoided when
taking into account the state of network resources at the time of scheduling).

We give an in-depth discussion of an automated service management archi-
tecture that, taking into account monitored Grid application behaviour, enforces a
partitioning of the Grid resource pool among the different service classes. Service
classes in this case are collections of jobs that present similar behaviour regard-
ing their processing and I/O requirements. This partitioning of resources amongst
service classes with different priorities, together with the dynamic deployment of
management components (scheduler, information services,etc.) for exclusive use
by those service classes, allows subdividing a Grid into multiple “Virtual Private
Grids”, each tuned to the characteristics of their service class. We discuss different
resource partitioning heuristics based on genetic algorithms and evaluate the per-
formance of these heuristics using NSGrid. The results showthat computational
and network resource efficiency improve (with average improvements of17 and
5.5 percent respectively), combined with lower average job response times (when
employing a network aware scheduling algorithm this can lead to 30.5 percent
better job response times) and that it becomes possible to automatically enforce
service class priorities.
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Finally, a recent trend will be discussed: the use of Grid technology for process-
ing digital audio/visual data in organisations that are responsible for radio and
television production / distribution. Different organisation profiles (users, appli-
cations, requirements, etc.) are presented and can be simulated by means of Me-
diaNSG, an extension to NSGrid capable of modelling different media company
Grid deployments.
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1
Introduction

1.1 An introduction to Grid computing

The main workhorses for processing computationally complex problems have long
been supercomputers and clusters, with work often originating from the research
and development community. However, problems are becomingincreasingly de-
manding, challenging the capabilities of even the most powerful supercomputer or
cluster systems. This led to the idea of joining resources tosolve these problems in
a reasonable time frame, effectively interconnecting geographically remote com-
putational, storage and data resources into a single numbercrunching system. As
a first step in realizing this concept, the maturation of the Internet in the nineties
led to the first global distributed computing projects. Two projects in particu-
lar have proven that the concept works extremely well. The first project, distrib-
uted.net [1], used thousands of independently owned computers across the Internet
to crack encryption codes. The second is the SETI@home project [2]. Over two
million people have installed the SETI@home software agentsince the project’s
start in May 1999. This project proved that distributed computing could accelerate
computing project results while at the same time managing project costs (IBM’s
ASCI White [3] supercomputer is rated at 12 TeraFLOPs and costs $110 million.
SETI@home currently gets on average 15 TeraFLOPs and has cost $500K so far).

Grid computing is increasingly being viewed as the next phase of distrib-
uted computing and enables organizations to share computing, storage and data
resources across department and organizational boundaries in a secure, efficient
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Figure 1.1: Global Grid computing

manner. One of the main motivations for this new computing paradigm lies in
the observation that the demand for resources is ever growing while on the other
hand vast resource pools remain underused. Grid technologyaims at solving this
mismatch by offering its users transparent access to a variety of resources, making
abstraction of the exact geographic location of the physical resource.

Although some similarities exist, Grid computing differs from cluster comput-
ing in a number of key aspects. First, due to the geographic distribution of Grid
resources (see figure 1.1), a Grid does not have a central administration point (in-
stead it consists of resources from multiple administrative domains), whereas all
cluster resources can usually be administered from one location. Second, this geo-
graphic distribution entails drastically different resource usage policies and hetero-
geneity of equipment: a variety of resources will be connected by a wide range of
network technologies, whereas a cluster will usually consist of a large collection of
homogeneous resources interconnected by a proprietary busor high speed / short
range network links. This again indicates an important distinctive Grid feature:
communication links can be long haul, possibly subject to congestion, while the
Grid topology itself is subject to frequent change, due to the possibly dynamic na-
ture of resources and the decentralized authority over resource usage (this dynamic
behaviour can easily be spotted in the case of SETI@home typeGrids, based on
desktop pc’s donating unused CPU cycles).

The term “Grid computing” [4, 5] suggests a computing paradigm similar to
the operation of an electric power grid: the same way an electrical outlet delivers
power without the consumer knowing exactly where that electrical power is gen-
erated, a variety of geographically dispersed resources can be transparently joined
into a shared resource pool for consumers to access on an as-needed basis. Al-
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though this ideal is still a few years off, standardization is the key to realizing Grid
computing benefits, so that the diverse resources that make up a modern comput-
ing environment can be discovered, accessed, allocated, monitored, and in general
managed as a single virtual system - even when provided by different vendors
and/or operated by different organizations. The Global Grid Forum (GGF [6]) acts
as a standardization body for the Grid, comparable in terms of philosophy as the
IETF [7] for Internet related matters. The GGF is a community-initiated forum of
thousands of individuals from industry and research leading the global standard-
ization effort for Grid computing. The GGF’s primary objectives are to promote
and support development, deployment, and implementation of Grid technologies
and applications through the creation and documentation of“best practices” - tech-
nical specifications, user experiences, and implementation guidelines. Some no-
table GGF groups are the Open Grid Services Architecture working group (OGSA-
WG [8]), Grid High-Performance Networking research group (GHPN-RG [9]), the
Grid Scheduling Architecture research group (GSA-RG [10])and the Job Submis-
sion Description Language working group (JSDL-WG [11]).

Today, organizations around the world are utilizing Grid computing in diverse
areas as collaborative scientific research, drug discovery, financial risk analysis and
product design. Grid computing enables research-orientedorganizations to solve
problems that were infeasible to solve due to computationaland data-integration
constraints. Grids also reduce costs through automation and improved resource
utilization. Finally, Grid computing can increase an organization’s agility enabling
more efficient business processes and greater responsiveness to change.

Based on their main application area, Grid systems can be divided in three
classes: computational Grids, data Grids and service Grids. Computational Grids
are tailored to provide huge amounts of processing power (e.g. NEESgrid for
earthquake simulation studies [12]). Cycle scavenging Grids are special cases of
computational Grids: they allow desktop users to donate their idle CPU time to
help scientific research (mostly global interest projects e.g. SETI@home based
on the BOINC [13] Grid framework, Folding@home [14] for research regarding
protein folding which could in time lead to cures for diseases like Alzheimer and
Parkinson, fightAIDS@home [15]).

A second Grid system class is coined the term “data Grid”. These synthesize
new information from distributed data repositories. The Large Hadron Collider
Computing Grid (LCG [16]) project is a well-known example ofthis type of Grids.
In the LCG project data generated by CERN’s Large Hadron Collider [17] (which
is to be operational in 2007 and will roughly produce 15 Petabytes annually) will
be distributed around the globe, according to a four-tieredmodel. Thousands of
high energy physics scientists from around the world will access and analyse frag-
ments of this data.

Service Grids are Grids that do not focus on batch job processing, but instead



1-4 INTRODUCTION

Cycle Scavenging

Grids

Computational

Grids

Service

Grids

Data

Grids

CPU

# USERS

LCG

EGEE

TeraGrid

UD Grid

SETI@home

E-Health

SpaceGrid

DATA

Figure 1.2: Grid taxonomy

offer access to a wide variety of real-time services that cannot be provided by a
single machine. Services can range from collaborative working (enabling interac-
tion between users and applications through a virtual workspace), to multimedia
Grids and “on demand” Grids, enabling a user to dynamically increase the amount
of machines processing on its jobs. A thorough look at Grid taxonomy can be
found in [18].

Current Grid deployments include the Belgian BEgrid [19], covering 6 Grid
sites for a total of 259 computational resources and 3.4 TB ofstorage space inter-
connected by a 2.5 Gbps backbone. BEgrid in turn is connectedto the Enabling
Grids for E-Science in Europe (EGEE [20]) Grid which houses 240 TB of storage
space and 1846 KSI2K of computational power (kiloSpecINT2000 is the compu-
tational power rating based on the SpecINT2000 benchmark [21]) interconnected
by network links varying in bandwidth between 34Mbps and 10Gbps. Currently,
one of the most powerful computational Grid deployments is the US-based Ter-
aGrid [22], which interconnects 8 data and computing centres providing a total
of 50 TeraFlops of processing power and 1046 TB of on-line storage space for
scientific purposes. The network connectivity of each TeraGrid site ranges from
10Gbps to 30Gbps.

We refer to appendix A for a more elaborate introduction to Grid computing.

1.2 Problem statement

Despite the current deployment of operational Grid systems, important research
challenges still exist. Whereas initial Grid research mainly focused on tackling
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batches of computationally intense problems and parametersweep applications,
the rise of data and service based Grids (e.g. the aforementioned EGEE project) is
imposing new requirements in terms of responsiveness, scaling behaviour, Quality
of Service-support, network requirements and robustness.Since one of the main
characteristics of a Grid is its geographically distributed nature, the network in-
terconnecting the different computational, storage and data resources should be
treated with the same importance as any other resource, as itcan pose a signifi-
cant bottleneck. With this in mind, and noting that the deployment of various Grid
configurations for testing/research purposes is a time-consuming (if not impossi-
ble) feat, accurate network aware Grid simulation becomes anecessity in order
to be able to easily experiment with new scheduling and resource management
algorithms on a variety of Grid topologies.

Furthermore, to cope with the advent of a new generation of service based
Grids, research into novel Grid service management architectures (and accompa-
nying management algorithms) is required in order to be ableto meet the necessary
QoS requirements.

1.3 Main research contributions

In a first stadium, we develop a Grid resource monitoring platform tuned to scal-
ability, performance and easy extendibility and compare it(with positive results)
with notable existing Grid monitoring platforms. Inspecting monitored Grid sta-
tus information, we notice that the state of the network links interconnecting the
various Grid resources has a big impact on the overall Grid job throughput and
usage efficiency. In order to allow research into new management and schedul-
ing algorithms that incorporate network resource state information to produce bet-
ter management/scheduling decisions, we develop the NSGrid simulator (based
on the ns-2 network simulator [23]). NSGrid is capable of accurately simulating
the interconnecting Grid network links and offers advancedmodels for the differ-
ent Grid resources (computational, storage, data and network resources), jobs and
management components. While the work in this thesis focuseson allowing accu-
rate and advanced Grid simulation, ir. Pieter Thysebaert simultaneously developed
multiple novel network aware Grid scheduling and dimensioning algorithms using
NSGrid.

As services are becoming more and more important in the context of Grids, we
develop and (using NSGrid) evaluate a distributed Grid service management archi-
tecture incorporating resource-to-service partitioningof Grid resources in multiple
“Virtual Private Grids” (VPGs). Our results show that this partitioning of Grid re-
sources in multiple service-dedicated resource pools, together with the dynamic
deployment of VPG management components (automatically) tuned to the service
class they are responsible for, can improve Grid service QoSsupport, resource
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efficiency and overall scalability.

A recent development is the incorporation of Grid technology in the audio/vi-
sual production industry (i.e. radio and television production companies). In this
thesis we present architecture, requirements and characteristics of these Media-
Grids. Furthermore, we incorporate our simulation, scheduling and service man-
agement research into the MediaGrid-case and present the results.

1.4 Outline

This thesis continues as follows: in chapter 2 we discuss thedeveloped Grid mon-
itoring framework and compare its functionality and performance to notable exist-
ing Grid monitoring architectures. Chapter 3 covers NSGrid, a network-centered
Grid simulation environment built on top of ns-2, and provides details about Grid,
resource and job models that have been implemented along with an overview of
the various management components and their functionality. We continue in chap-
ter 4 by presenting a distributed Grid service monitoring/management framework,
allowing for automated resource-to-service partitioning. Different partitioning al-
gorithms (based on Genetic Algorithm heuristics) are detailed and their perfor-
mance is evaluated using NSGrid. We conclude this thesis in chapter 5 with the
introduction of Grid computing in the audio/visual production industry, studying
requirements, characteristics and architecture of MediaGrids.

1.5 Publications

1.5.1 Publications in international journals

• F. De Turck, S. Vanhastel,B. Volckaert, P. Demeester,Generic middleware-
based platform for scalable cluster computing, Elsevier Journal on Future
Generation Computer Systems, 18:549-560, 2002.

• P. Thysebaert,B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester,Evalu-
ation of Grid scheduling strategies through NSGrid: a network-aware Grid
simulator, published in Neural, Parallel & Scientific Computations, Special
Issue on Grid Computing, Dynamic Publishers Atlanta, Editors H.R. Arab-
nia, G.A. Gravvanis, M.P. Bekakos, 12:353-378, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt,
P. Demeester,Grid computing: the next network challenge!, published in
The Journal of The Communications Network, Proceedings of FITCE 2004,
43rd European Telecommunications Congress, 3:159-165, 2004.
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• B. Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeester,Application-
specific hints in reconfigurable Grid scheduling algortihms, published in
Lecture Notes in Computer Science, Proceedings of ICCS 2004, Springer-
Verlag Berlin Heidelberg, Krakow, LNCS 3038:149-157, 2004.

• P. Thysebaert,B. Volckaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,Resource partitioning algorithms in a programmable service
Grid architecture, published in Lecture Notes in Computer Science, Pro-
ceedings of the 5th Intern. Conf. on Computational Science ICCS 2005,
Atlanta, LNCS 3516:250-258, 2005.

• P. Thysebaert, M. De Leenheer,B. Volckaert, B. Dhoedt, P. Demeester,
Scalable Dimensioning of Optical Transport Networks for Grid Excess Load
Handling, accepted for publication in Photonic Network Communications
(PNC).

• M. De Leenheer, P. Thysebaert,B. Volckaert, F. De Turck, B. Dhoedt,
P. Demeester, D. Simeonidou, R. Nejabati, G. Zervas, D. Klonidis, M. J.
OMahony,A View on Enabling Consumer Oriented Grids through Optical
Burst Switching, accepted for publication in IEEE Communications Maga-
zine, 2006.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,Flexible Grid service management through resource partition-
ing, accepted for publication in the Journal of Supercomputing.

• B. Volckaert, T. Wauters, J. Baert, M. De Leenheer, P. Thysebaert, F. De
Turck, B. Dhoedt, P. Demeester,Design of a MediaGrid framework and sim-
ulation of workflows for collaborative audiovisual organizations, submitted
to the Journal of Computer Communications.

1.5.2 Chapters in international publications

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,Network and Service Aware Grid Resource Assignment, to be
published as a chapter in Grid Technologies: Emerging from Distributed
Architectures to Virtual Organizations, Editors: M.P. Bekakos, G.A. Grav-
vanis and H.R. Arabnia, WIT Press.

1.5.3 Publications in international conferences

• S. Vanhastel, P. Thysebaert, F. De Turck,B. Volckaert, P. Demeester, B.
Dhoedt,Service brokering in an enhanced grid environment, published in
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Proceedings of the International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’02), Las Vegas, 2:712-718, 2002.

• F. De Turck, S. Vanhastel, P. Thysebaert,B. Volckaert, P. Demeester, B.
Dhoedt,Design of a middleware-based cluster management platform with
task management and migration, published in 2002 IEEE International Con-
ference on Cluster Computing and the Grid, Chicago, pages 484-487, 2002.

• B. Volckaert, P. Thysebaert, F. De Turck, P. Demeester, B. Dhoedt,Evalu-
ation of grid scheduling strategies through a network-aware grid simulator,
published in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications PDPTA’03, Las Vegas,
1:31-35, 2003.

• P. Thysebaert,B. Volckaert, M. De Leenheer, E. Van Breusegem, F. De
Turck, B. Dhoedt, D. Simeonidou, M.J. O’Mahony, R. Nejabati, A. Tzanakai,
I. Tomk, Towards consumer-oriented photonic grids, published and pre-
sented at Workshop on Optical Networking for Grid Services at ECOC2004,
Stockholm, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,On the use of NSGrid for accurate grid schedule evaluation,
published in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications PDPTA’04, Las Vegas,
1:200-206, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,Network aware scheduling in grids, published in Proceedings of
NOC2004, 9th European Conference on Networks & Optical Communica-
tions, Eindhoven, pages 311-318, 2004.

• P. Thysebaert,B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester,Net-
work aspects of grid scheduling algorithms, published in Proceedings of the
ISCA 17th International Conference on Parallel and Distributed Computing
Systems, San Francisco, pages 91-97, 2004.

• M. De Leenheer, P. Thysebaert,B. Volckaert, F. De Turck, B. Dhoedt, P.
Demeester,Evaluation of a job admission algorithm for bandwidth con-
strained grids, published in Proceedings of the International Conferenceon
Parallel and Distributed Processing Techniques and Applications PDPTA’04,
Las Vegas, 2:591-594, 2004.

• M. De Leenheer, E. Van Breusegem, P. Thysebaert,B. Volckaert, F. De
Turck, B. Dhoedt, P. Demeester, D. Simeonidou, M.J. O’Mahony, R. Ne-
jabati, A. Tza,An OBS-based grid architecture, published in 2004 IEEE
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Globecom Telecommunications Conference Workshops, Dallas, pages 390-
394, 2004.

• S. De Smet, P. Thysebaert,B. Volckaert, M. De Leenheer, D. De Winter,
F. De Turck, B. Dhoedt, P. Demeester,A performance oriented grid mon-
itoring architecture, published in Proceedings of the 2nd IEEE Workshop
on End-to-End Monitoring Technics and Sercives (E2EMON), Monitoring
Emerging Network Services, San Diego, pages 23-28, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,A Distributed Resource and Network Partitioning Architecture
for Service Grids, published in Proceedings of (on CD-ROM) the 5th IEEE
International Symposium on Cluster Computing and the Grid (CCGrid05),
Cardiff, 2005.

• F. Farahmand, M. De Leenheer, P. Thysebaert,B. Volckaert, F. De Turck,
B. Dhoedt, P. Demeester, J.P. Jue,A multi-layered approach to optical burst-
switched based grids, published in Proceedings (on CD-ROM) of Workshop
on Optical Burst/packet Switching (WOBS2005), 2nd International Confer-
ence on Broadnet Net, Boston, pages 127-134, 2005.

• M. De Leenheer, F. Farahmand, P. Thysebaert,B. Volckaert, F. De Turck,
B. Dhoedt, P. Demeester, J. Jue,Anycast routing in optical burst switched
grid networks, published in Proceedings of ECOC2005, 31st European Con-
ference on Optical Communications, Glasgow, 3:699-702, 2005.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.
Demeester,A scalable and performant grid monitoring and information
framework, published in Proceedings of the International Conferenceon
Parallel and Distributed Processing Techniques and Applications, PDPTA
’05, Las Vegas, 2005.

• P. Thysebaert, M. De Leenheer,B. Volckaert, F. De Turck, B. Dhoedt,
P. Demeester,Using Divisible Load Theory to Dimension Optical Trans-
port Networks for Grid Excess Load Handling, published in Proceedings of
the International Conference on Networking and Services (ICNS), Papeete,
French Polynesia, 2005.

• J. Baert, M. De Leenheer,B. Volckaert, T. Wauters, P. Thysebaert, F. De
Turck, B. Dhoedt, P. Demeester,Hybrid optical switching for data-intensive
media grid applications, published in Proceedings of the workshop on De-
sign of Next Generation Optical Networks: from the Physicalup to the Net-
work Level Perspective, Gent, 2006.
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1.5.4 Publications in national conferences
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F. De Turck, B. Dhoedt, P. Demeester,Optical burst switching for consumer
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2
Grid Monitoring

2.1 Introduction

Grids provide a uniform interface to a collection of heterogeneous, geographically
distributed resources. Each and every resource has its own specific static proper-
ties (e.g. processor speed, total amount of memory, total amount of disk space,
networking capabilities) and dynamic status information (e.g. processor usage,
available memory, available disk space, network usage). Furthermore, these re-
sources are dynamic in nature: resources can join/part fromthe Grid, hardware
failures can occur, etc. In order to make intelligent Grid resource management and
scheduling decisions, accurate resource property and state information is required.
In a distributed computing environment, one of the key components necessary to
be able to perform effective job scheduling, resource management, fault detection,
performance analysis and tuning is on one hand an information repository stor-
ing static resource properties and on the other a monitoringservice, capable of
measuring resource status and predicting future resource state. Monitored compu-
tational, storage, data and network resource status can also be used to construct
realistic Grid topologies for simulation purposes (see NSGrid in chapter 3). The
requirements for a framework delivering information and monitoring services are
in no specific order: efficiency, accuracy, non-intrusiveness, scalability, portability
and extensibility.

In this chapter, we present a Grid information and monitoring service facili-
tating a constraint-based resource selection mechanism for use by different Grid
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management components (scheduler, service manager, resource broker, etc.). Sta-
tic resource properties are stored in a distributed directory service, while resource
status information can be fetched from a highly extensible yet performance ori-
ented Grid monitoring platform, developed according to theGlobal Grid Forum’s
Grid Monitoring Architecture (GMA [1]) specifications. Important features in-
clude configurable caching mechanisms, non-intrusiveness, support for third party
sensor plugins and an intuitive Graphical User Interface. We discuss the tech-
nology decisions that were made when developing this platform, and compare its
performance with the widely deployed Globus [2] Toolkit version 2 Monitoring
and Discovery Service (MDS [3]) and Globus Toolkit version 3.2 Web Services
Information Service (WS-IS [4]).

This chapter continues as follows: Section 2.2 gives an overview of impor-
tant related work and highlights the differences with our framework. A high-level
description of the constituent components is given in section 2.3, while techni-
cal decisions made during implementation are discussed in section 2.4. Our test
results are presented in section 2.5 followed by concludingremarks in section 2.6.

2.2 Related work

The Grid Monitoring Architecture, as defined by the GGF [5], is a reference ar-
chitecture for feasible Grid monitoring systems and consists of three important
components: producers, consumers and a directory service (see figure 2.1). The
directory service stores the location and type of information provided by the dif-
ferent producers, while consumers typically query the directory to find out which
producers can provide their needed event data (after which they contact the pro-
ducers directly). Producers in turn can receive their eventdata from a variety of
providers (software/hardware sensors, whole monitoring systems, databases, etc.).
The GMA does not specify the underlying data models or protocols that have to
be used.

Multiple monitoring architectures for distributed computing systems have al-
ready been successfully deployed. Not all of them follow theguidelines set by the
GMA (e.g. Condor’s HawkEye [6, 7] does not support a decentralized architec-
ture), and some are geared towards monitoring one single resource type (e.g. Re-
mos [8, 9], focusing on network parameters). Below we present some notable Grid
monitoring platforms with an architecture similar to our framework, and point out
the differences with our implementation. For a complete overview of Grid moni-
toring tools we refer to [10].

GMA-compliant Grid monitoring systems include the European DataGrid’s [11]
Relational Grid Monitoring Architecture R-GMA [12, 13] andGridRM [14, 15].
R-GMA offers a combined monitoring and information system using a Relational
Database Management System as directory service and monitoring data reposi-
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Figure 2.1: Grid Monitoring Architecture overview

tory. The implementation is based on Java [16] servlet technology (using the Tom-
cat [17] servlet container), trading performance for portability and limited software
dependencies. GridRM is an open source two-layer Grid monitoring framework,
the upper layer being structured according to the GMA. This upper layer connects
the per-site monitoring systems in a scalable way. Like R-GMA, GridRM makes
use of Java and SQL to query data producers. Currently, GridRM’s directory ser-
vice (containing info on the location of the different resource status providers) can
be a bottleneck and/or single point of failure, but work is under way to remedy this
problem.

Network Weather Service [18, 19] is an architecture for measuring the perfor-
mance of distributed systems in processing intense environments. It can predict
network and processing load in the near future based on monitored historical data.
Measured data includes cpu load, packet round trip time, TCPconnect/disconnect
time and network bandwidth between two endpoints. The Network Weather Ser-
vice is a robust and scalable system generating low computational and network
overhead, but does not measure some important parameters (memory usage, swap,
packets sent/received, etc.) and is hard to extend. It is also platform dependent as
it relies on UNIX/Linux system tools for measuring cpu load.It is mostly used for
its network forecasting capabilities.

Java Agents for Monitoring and Management (JAMM [20]) is a monitoring
architecture fully implemented in Java. JAMM is mainly based on the GMA ar-
chitecture and offers automated deployment of sensor agents on hosts from a cen-
tral HTTP server. These sensors are actually wrappers for popular UNIX/Linux
system utilities such as netstat, iostat and vmstat and are therefore badly deploy-
able on other operating systems. JAMM does not offer supportfor application
monitoring and performance analysis/forecasting.

MDS2 is the Globus Toolkit (version 2) Monitoring and Discovery Service [3],
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Figure 2.2: Information & Monitoring Framework components

and although MDS development was started before the GMA architectural refer-
ence appeared, it can still be seen as a GMA implementation. MDS2 only supports
latest-state queries, making it mandatory for the consumers to actively retrieve sta-
tus information from the GRIS (MDS2 component offering producer-like func-
tionality). In addition, MDS2 does not offer visualizationfeatures. An extensive
comparison of MDS2 against other monitoring frameworks hasalready been car-
ried out in [21, 22]. It was shown that MDS2 outperforms (i.e.exhibits lower
response times and better scalability) the other frameworks mentioned in most use
cases. Therefore, we have only compared our platform’s performance to that of
MDS2 and its successor, the web services based Information Service (WS-IS [4])
from the Globus 3.2 Toolkit.

2.3 Information & Monitoring Framework compo-
nents

A sample setup of the developed framework is shown in figure 2.2. Each compo-
nent’s function is detailed below.

2.3.1 Sensor

Every resource to be monitored has at least one sensor attached to it. Each sensor
can monitor different load properties of a single resource by means of plugins (e.g.
we have implemented a CPU plugin capable of monitoring CPU load, idle time
and time spent executing system/user processes). The actual monitored values are
communicated to one or more producers. This list of producers (and conversely,
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the list of sensors that is allowed to communicate with each producer) is found in
the directory service (see figure 2.3(a)). The only configurable parameters of a sen-
sor (read from a configuration file) are the location and authentication parameters
to query the directory service and the plugins that need to beloaded.

As shown in figure 2.3(b), a sensor can register itself with one or more pro-
ducers, by sending them a “HELLO” message. The producer will answer this with
an “OK producer ready” message to acknowledge that it is on-line and ready. The
sensor in turn will send its unique name to the producer, who is then capable of
looking up the sensor’s name in his configuration and can decide to either allow
the sensor to sign in (return “+OK, done”) or to reject the sensor login (return
“ -ERR”), preventing illegitimate sensors from sending (possibly tampered) moni-
toring data to the producer. Once this is done the registration connection is closed
and the sensor is registered with the producer.

When a producer decides it wants to start receiving monitoreddata from one
of its registered sensors, the producer can open a TCP connection with this partic-
ular sensor, sending the sensor a monitoring configuration message detailing from
which plugins the producer would like to receive monitored data (together with the
desired monitoring frequency of each plugin the producer isinterested in). Once
the configuration has been received by the sensor, it will start pushing the required
monitoring values over the already open TCP connection, avoiding a connection
setup overhead on every update.

The currently implemented sensor plugins can provide detailed status informa-
tion on CPU, memory, swap and network usage. We give a brief overview of some
of the most important resource characteristics that can be monitored:

1. CPU Monitor

• CPU Total: percentage of time CPU was active during last measure-
ment interval.

• CPU Sys: percentage of time CPU was processing system tasks during
last measurement interval.

• CPU User: percentage of time CPU was processing user tasks during
last measurement interval.

• CPU Idle: percentage of time CPU was idle during last measurement
interval.

2. MEM Monitor

• MEM Total: total amount of memory installed in the system.

• MEM Used: amount of memory in use.

• MEM Free: amount of free memory.
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Figure 2.3: Sensor

• MEM User: amount of memory used by user processes.

3. SWAP Monitor

• SWAP Total: total amount of swap space in the system.

• SWAP Used: amount of swap space in use.

• SWAP Free: amount of free swap space.

4. NET Monitor

• Bytes in/out: total amount of received/sent bytes since thestart of the
network monitoring.

• Errors in/out: total amount of packets with errors received/sent since
the start of the network monitoring.

• Bytes/s in/out: amount of received/sent bytes per second during last
measurement interval.

2.3.2 Producer

Producers (see figure 2.4(a)) register themselves with the directory service and
publish the type of information (aggregated from the sensors that report to the pro-
ducer) they provide. This data can be queried by authorized consumers (using a
request/reply model) or can be pushed to authorized consumers using a subscrip-
tion/notification event-based model.
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Figure 2.4: Producer and consumer

Each producer has its own cache, storing a configurable number of status up-
dates from the different plugins of each registered sensor.Consumers can retrieve
either the last known status update from a specific sensor plugin, or historic data
from the producer’s cache. Furthermore, producers providea limited number of
statistical operations (average, minimum, maximum, standard deviation, etc.) on
cached data. Sensor failures (e.g. resources going off-line abruptly) can be de-
tected and a failure notification will be sent to consumers who were interested in
this sensor’s data. Access control prevents unauthorized consumers from retrieving
data from a producer and prevents unauthorized sensors frompushing monitored
data.

2.3.3 Directory service

The directory service (see figure 2.5) contains informationon the registered pro-
ducers (and their respective offered status information),the producer-sensor map-
pings and producer access control lists. It is queried by producers and sensors to
retrieve these mappings, and by consumers and the monitoring service to find a set
of providers matching a given criterium. On top of this, the directory service also
stores static resource properties (e.g. installed software/hardware) to be used by
the information services.

2.3.4 Consumer

Consumers (see figure 2.4(b)) query the directory service tofind producers ca-
pable of delivering the desired monitoring data. They then proceed by directly
contacting these producers, either to retrieve data using arequest/reply pattern or
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Figure 2.5: Directory service

to register themselves in order to retrieve future data using an event-based sub-
scription model. Several consumers have been implemented,the most important
being an archiving consumer (storing data in a relational database and offering a
GUI view of historical data), a real-time Java-based visualization agent (see fig-
ure 2.10) and a network status correlation agent supportingusage prediction (by
passing monitored network status to the Network Weather Service) and network
failure localization (by automated comparison of historical status information).

2.3.5 Monitoring service

The monitoring service is in effect an optimizedconsumer: its primary role is to
retrieve dynamic status information (from the appropriateproducers) pertaining to
the resources presented to it by the information services. Producers capable of sup-
plying the requested status data can be located through the directory service. The
monitoring service only gathers the most recent value published by the producers,
and communicates with the producers using a request-reply type transaction.

2.3.6 Information service

The information service provides Grid management components with a resource
status/property match-making functionality: managementcomponents can contact
this service by submitting resource queries, containing one or more(attribute, re-
lational operator, value)triplets limiting the resulting resource set (e.g. available
memory>= 256 MB and architecture== multiprocessor). The information ser-
vice will first query the directory service for resources adhering to the requested
static resource property demands (e.g. installed software/hardware, installed mem-
ory). Once the resources complying to the static requirements of this request are
known, the necessary dynamic status information for these resources will be sup-
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Figure 2.6: Monitoring and information service

plied by the monitoring service. Finally, the resulting resource set (to be sent back
to the management components) will be further reduced by removing resources
that do not adhere to the requested dynamic resource demands(e.g. available
memory, remaining storage space).

Figure 2.7 shows the message passing order between the different components
when a management component submits a resource query.

1. A management component sends a query to the information service for re-
sources adhering to static resource properties (installedCPU, total mem-
ory, installed software/hardware, etc.) and dynamic resource state (available
memory, available storage space, etc.).

2. The information service sends a query to the directory service for resources
adhering to the static resource property requirements.

3. The directory service supplies a subset of its registeredresources adhering
to the requested static resource properties.

4. The information service queries the monitoring service for monitored re-
source state information of the resources supplied by the directory service
in step 3.

5. The monitoring service queries the directory service forproducers capable
of providing the required resource state info.

6. The directory service supplies a list of producers that receive monitoring
data from sensors installed on the resources the monitoringservice is inter-
ested in.
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Figure 2.7: Resource query message passing order

7. The monitoring service asks the different producers for monitored resource
state information.

8. Producers provide monitored resource state info.

9. The monitoring service sends the information service therequired dynamic
resource state information.

10. The information service answers the management component’s query with
the resources that adhere to both the static resource properties and the dy-
namic resource state information.

Note that step2, 3, 5 and6 are not necessarily mandatory (as shown in figure 2.7(b)),
as both the information service and the monitoring service have been equipped
with a directory service caching mechanism (storing staticresource properties and
producer offerings respectively). Producers do not need tocontact their sensors, as
they consult their sensor update cache (which is filled by thesensors’ status update
push).

2.4 Technology analysis and implementation

The Information & Monitoring Framework presented here was designed to achieve
good performance while maintaining a high level of portability. Our performance
requirement has driven us to the use of the C++ language [23] in the implemen-
tation of the different components. While C/C++ programminglanguages pro-
vide good performance and offer more control over memory allocation/dealloca-
tion (than for instance the Java programming language), theC++ standard library
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does not offer cross-platform solutions for various vital application patterns such
as networked communication and multiple threads of execution. Therefore, the
need arises to use a portable and well performing C++ middleware platform for
implementations of these high-level features. In our framework, we have decided
to use the Adaptive Communication Environment (ACE [25, 26]). It offers cross-
platform multithreading, and itsreactorconcept allows for easy implementation of
event-based (including network events) applications. Furthermore, we make use
of theAcceptor/Connectorpattern offered by ACE to open networked communi-
cation channels between producers and sensors.

Whenever a sensor needs to send monitored data to the producers they are
registered with, the data is sent in CORBA Common Data Representation (CDR)
format [27], offering a portable, network optimized way of communicating. The
resource monitoring data gathered by the sensors is obtained through the GTop
library [28], a portable C/C++ library offering access to performance values re-
lated to system resources. Each resource is monitored by a sensor plug-in, which
is essentially a shared library. The plug-in approach is enabled by the fact that
ACE features cross-platform dynamic loading of shared libraries. The methods of
the abstract MonitorPlugin class which every plugin must implement is shown in
listing 2.1.

Listing 2.1: abstract class MonitorPlugin

classMonitorPlugin:public ACE Task<ACE MT SYNCH>{
public:

MonitorPlugin();
virtual ˜MonitorPlugin();
virtual int receiveconfigdata(char∗ data)=0;
virtual int convertToChar(char∗ buffer)=0;
virtual int convertFromChar(char∗ data)=0;
virtual NameValVector getValues()=0;
virtual bool needActivate()=0;
virtual PluginCapabilities getCapabilities()=0;
virtual int WriteToCDR(ACEOutputCDR &cdr)=0;
virtual int ReadFromCDR(ACEInputCDR &cdr)=0;

};

In what follows we briefly given an overview of the supported methods in this
abstract class:

• int receiveconfigdata(char* data): enables the plugin to receive additional
configuration information from a producer or the directory service (e.g. fre-
quency of monitoring).

• int convert(To/From)Char(char* data): used mainly for debugging internal
plugin data.
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• NameValVector getValues(): constructs a vector of (name,value) pairs with
name and value both string representations of the name of themeasured
item and the actual monitored data (this string representation enables us
to generically store different data types: the actual data type used by the
monitored value can be retrieved by querying the plugin’s capabilities).

• bool needActivate(): a sensor uses this function to check if it needs to start
a separate thread for the plugin. For small calculations no such thread is re-
quired, but if the plugin needs to perform heavy processing on the monitored
data, a separate thread can prevent the sensor from blockingwhile retrieving
the plugin’s monitoring data.

• PluginCapabilities getCapabilities(): in order to support generic plugins,
this function enables retrieval of metadata information regarding the items
that can be monitored using this plugin. It returns name, description and
data type for each item that the plugin is capable of measuring.

• int (ReadFrom/WriteTo)CDR(...): The Adaptive Communication Environ-
ment (ACE [25]) offers ACECDR classes for optimised (w.r.t. data size)
and machine independent storing of primitive data types (and arrays of the
aforementioned types), useful for transporting over a network.

Our directory service is essentially a decentralized LDAP [29] directory server.
While the expressive power of LDAP queries does not match thatof e.g. an SQL
query over a relational database [30], LDAP is performance-tuned for write-once,
read-many operations (which is ideal in our case since directory service queries
are much more frequent than static resource property changes or monitoring ar-
chitecture component deployment changes). Entries in thisLDAP directory ser-
vice are stored in a Directory Information Tree (DIT) based on their Distinguished
Name (DN). Each entry is uniquely identifiable by its DN (comparable to a pri-
mary key in a relational database system). In figure 2.8 we show the DIT for the
Grid monitoring framework (along with some sample attributes). One or more
Grid entries can be stored in the directory service, with each Grid entry consist-
ing of a set of producer entries. Each producer entry is parent to one or more
sensor entries, which in turn are parenting one or more “MeasurementModule”
entries. Host information is stored in a separate entry and can be linked to by
producer and sensor entries, as we allow multiple producersand/or sensors to be
deployed on a single host. An example of a unique DN in figure 2.8 is Sensor-
Name=‘Sensor1’,ProducerName=‘Producer1’,GridName=‘testGrid1’,cn=‘test’.

In order to ease directory service management, an easy-to-use Graphical User
Interface was developed (as seen in figure 2.9).

Producers provide a Web Service Description Language (WSDL [31]) inter-
face through which they are contacted by consumers using SOAP [32]. SOAP is
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Figure 2.8: Sample LDAP directory service information tree

Figure 2.9: Directory service management GUI



2-14 GRID MONITORING

from/to Sensor Producer Consumer Dir. Service Inf. Service
Sensor / ACE / LDAP /

Producer ACE / SOAP LDAP /
Consumer / SOAP / LDAP SOAP

Dir. Service LDAP LDAP LDAP / LDAP
Inf. Service / / SOAP LDAP /

Table 2.1: Communication technologies

an XML-based RPC protocol which can be transferred over HTTP; as such, the
use of SOAP allows for the easy integration of our monitoringarchitecture in a
web services-based Grid environment. In our implementation we used gSOAP as
reported on in [33].

The information service also provides a WSDL interface to thedifferent Grid
management components. In listing 2.2 we provide a sample query, in which a
scheduler asks the information service for resources with at least a 500Mhz proces-
sor (a static resource property) and 256MB of available memory space (a dynamic
and monitored resource state), with query results ordered according to the amount
of memory available. Listing 2.3 provides a sample answer tothe previous query,
with the information service providing the IP addresses of 3resources adhering to
the scheduler’s requirements.

The information service contacts the directory server using native LDAP com-
mands (to retrieve resource sets that comply to static resource property demands)
and offers a WSDL interface towards the monitoring service component.

An overview of the communication methods used between the various com-
ponents of our Grid Monitoring Architecture is given in table 2.1. It should be
noted that SSL encryption [34] is possible for both SOAP-over-HTTP and LDAP
communication. This allows access control through the use of user and server
certificates. The data updates between sensors and producers can be secured by
enabling an SSL socket adapter in these components.

A realtime data visualization consumer was implemented in Java and offers
GUI visualization of select monitored data (see figure 2.10)and can print data to
HTML files in a presentable manner (see figure 2.11). An archiving consumer was
also implemented in Java, capable of storing monitored datain a PostgreSQL [35]
relational database (using a JDBC [36] connection) and offering GUI visualization
of archived data.

In order to provide network resource state forecasting functionality, a “ping”
and “trace” sensor plugin was developed, capable of measuring round trip time
(RTT), packet loss and routing details between two hosts. These sensors send
monitored network data to interested producers, who in turncan push this data
to a specialized network forecasting consumer, storing received data, along with
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Figure 2.10: Realtime consumer GUI



2-16 GRID MONITORING

Listing 2.2: Scheduler-information service query example

<?xml version=”1.0” encoding=”UTF−8”?>

<SOAP−ENV:Envelope xmlns:SOAP−ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:SOAP−ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:ms=”urn:monitoringserversoap”
xmlns:is=”urn:informationserversoap”>

<SOAP−ENV:Body id=” 0”>
<getRestrictedList xmlns=”urn:informationserversoap”>

<q xsi:type=”is:Query”>
<numberOfMachines>3</numberOfMachines>
<constraints xsi:type=”SOAP−ENC:Array” SOAP−ENC:arrayType=”is:Constraint[2]”>
<item xsi:type=”is:Constraint”>
<constraintItem>CPU Speed</constraintItem>
<constraintType>greater than or equal to</constraintType>
<constraintValue>500</constraintValue>

</item>

<item xsi:type=”is:Constraint”>
<constraintItem>MEM Free</constraintItem>
<constraintType>greater than or equal to</constraintType>
<constraintValue>256</constraintValue>

</item>

</constraints>
<sortData xsi:type=”SOAP−ENC:Array” SOAP−ENC:arrayType=”xsd:string[2]”>
<item>MEM Free</item>

<item>by greatest</item>

</sortData>
</q>

</getRestrictedList>
</SOAP−ENV:Body>

</SOAP−ENV:Envelope>

timestamps, in a PostgreSQL database. The stored data can then automatically be
fed to the Network Weather Service’s forecasting program, generating predictions
about RTT and packet loss between hosts.

2.5 Results

2.5.1 Testbed setup

The testbed used in our performance comparison is depicted in figure 2.12 and
summarized in table 2.2. Six machines (AMD Duron 750Mhz, 64MB RAM) have
a sensor deployed on them (a single sensor can have multiple sensor plugins in-
stalled), and four other machines (Intel P4 3GHz, 1GB RAM) carry one producer
each; two producers have two sensors registered with them, and the other two have
one sensor registered. An OpenLDAP [37] directory server was deployed on a sep-
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Listing 2.3: Information service answer example

<?xml version=”1.0” encoding=”UTF−8”?>

<SOAP−ENV:Envelope xmlns:SOAP−ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:SOAP−ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:ms=”urn:monitoringserversoap”
xmlns:is=”urn:informationserversoap”>

<SOAP−ENV:Body id=” 0”>
<getRestrictedListResponse xmlns=”urn:informationserversoap”>
<Result xsi:type=”SOAP−ENC:Array” SOAP−ENC:arrayType=”xsd:string[3]”>
<item>10.10.10.197</item>

<item>10.10.10.198</item>

<item>10.10.10.156</item>

</Result>
</getRestrictedListResponse>

</SOAP−ENV:Body>
</SOAP−ENV:Envelope>

Figure 2.11: HTML output for measurements

arate machine featuring dual Xeon processors (2.8Ghz, 1GB RAM). Lastly, the
consumers (implemented as concurrent threads) used in the tests are located on a
second dual Xeon machine. All machines are interconnected through a 100Mbps
switched Ethernet LAN (see figure 2.12); this setup allows usto evaluate intru-
siveness and scalability of the different developed components without suffering
significant network bottlenecks.

Globus MDS2 was deployed as follows: a Grid Resource Information Ser-
vice/Grid Information Index Server (GRIS/GIIS) pair ran onthe Intel P4 machines
(instead of the producers), sensors were replaced with GRIScomponents whose
monitoring data was cached by the Intel P4 GIIS. Our LDAP directory service was
replaced by a GIIS (on the dual Xeon machines) connected to the lower level GI-
ISs. Consumers in our MDS2 tests were spawned from the same machine as our



2-18 GRID MONITORING

consumers

100 Mbps
ethernet

sensor sensor

producer

sensor sensor

producer producer

sensor sensor

producer

directory service

dual Xeon 2.8Ghz
1GB ram

P4 1Ghz
1GB ram

Duron 750Mhz
64MB ram

Figure 2.12: Testbed topology

Sensor Producer Consumer Dir. Service
Monitoring Framework Sensor Producer Consumer LDAP

MDS2 GRIS GRIS/GIIS Consumer GIIS
GT 3.2 WS-IS WS-IS Consumer /

Table 2.2: Testbed component setup

first tests.
The Globus Toolkit 3.2 Web Services based Information Services (GT 3.2

WS-IS) was deployed on the AMD Duron and Intel P4 using the default sup-
plied OGSI-compliant container [38]; on the AMD Duron machines, the WS-IS
was configured to submit its data to a Pentium 4 machine (whichused to run a
producer). Again, consumers were spawned from a dual Xeon machine. GT 3.2
WS-IS does not offer a component comparable to our directory service.

2.5.2 Metrics

Two metrics were used to evaluate component performance:throughputand re-
sponse time. During a 10 minute period, “users” submitted blocking queries to the
component under investigation, while waiting for 1 second between the moment
an answer to the previous query has been received (the waiting time is used to
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reinitialise the querying threads) and the time a new query is sent. The through-
put was then taken to be the number of queries handled by the component per
time unit; the response time is the average amount of time taken to process 1 user
query. Note that, in practice, multiple components can takeon the “user” role: the
information service, monitoring service and producers allcommunicate with the
directory service, whereas a producer is always contacted by consumers (in this
context, the consumer is the monitoring service).

2.5.3 Information and Monitoring Service

From the previous section, it follows that the two most prevalent communica-
tion patterns are the ones where either the directory service or the producers are
queried. We have therefore chosen to limit our performance and scalability tests
to these patterns. SOAP communication between the Grid’s management compo-
nents and the information service on the one hand, and between the information
service and the monitoring service on the other hand, consists of simple data trans-
fers with no extra intelligence. Processing time spent in the monitoring service
includes per-resource directory service lookups (if no producer location caching is
used) and producer queries.

2.5.4 Producer intrusiveness

The network and computational intrusiveness (i.e. overhead) of our producer com-
ponents is shown in figure 2.13 and figure 2.14, and compared tothe load generated
by the Globus MDS GRIS. The network traffic generated was monitored using the
SCAMPI [39] multi-gigabit monitoring framework. The CPU load is the aver-
age (over the 600 second interval) one minute CPU load average, as measured by
uptime.

The higher network load generated between our producer and the consumers
(i.e. users in this test) stems from the use of the SOAP-over-HTTP XML-based
communication mechanism (note that we did not enablezlib [40] compression).
The web services approach used by Globus Toolkit 3.2 Web Services based In-
formation Service (WS-IS) imposes a network load comparableto that of our ar-
chitecture for low (<100) amounts of concurrent users. However, beyond 100
concurrent users, the GT3.2 WS-IS do not scale well (with time-outs and drop-
ping of user requests), which explains their apparent low network intrusiveness. In
analogy, the CPU load generated by the WS-IS seems to degrade with increasing
number of concurrent users, but this is slightly deceptive:as the WS-IS does not
scale beyond 100 users, it is no longer able to keep up with an appropriate pace
of query response generation from this point on. A producer from our monitoring
architecture imposes a processor load of less than 6 percentwhen 600 consumers
are concurrently querying it, while the MDS GRIS needs 213 percent of processor
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Figure 2.13: Producer vs. MDS GRIS vs. WS-IS network intrusiveness

time under the same user load conditions (note that a load value higher than1 in
figure 2.14 denotes insufficient processing power availableto handle all jobs).

It should be noted that the WS-IS framework is the only monitoring and infor-
mation framework in these tests which is completely web services based, trading
performance for a standards based interface.

2.5.5 Producer scalability

In figure 2.15 and figure 2.16, we have compared producer scalability with in-
creasing number of concurrent users for both our framework’s producers, MDS
GRIS and WS-IS components. Again, only cached data was requested from the
MDS GRIS; due to the use of a push-model our framework’s producers always
contain up-to-date information, while the GRIS would have to invoke information
providers to refresh its data. We measured only small differences between MDS
GRIS and our producers (best visible on the response time graph). Beyond 550
concurrent users and using the given machines, MDS GIIS performance started
to degrade. We also compared our producer scalability to thescalability of the
GT 3.2 information service. Again, it is clear that GT 3.2 WS-IS does not scale
well beyond 100 concurrent users (the GT 3.2 WS-IS results even forced us to use
a logarithmic scale in figure 2.16, which shows that responsetimes differ by as
much as a factor of 100).
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Figure 2.16: Producer vs. MDS GRIS vs. WS-IS response times

2.5.6 Directory Service Scalability

The throughput and response times for directory service queries were compared
(figure 2.17 and figure 2.18) to those obtained for queries against the MDS GIIS
(operating on cached data). Average response times are lower for our directory
service; however, both our directory service and the MDS GIIS don’t scale well
beyond 450 concurrent users in this scenario on the given hardware. It should be
noted however, that a GIIS typically contains more data (including cached moni-
toring data) than our directory service, which only stores configuration data, never
monitoring data (this should be requested straight from a producer or from an
archiving consumer). This led to a bigger result set when theGIIS was queried.
In addition, our directory service is a plain OpenLDAP server, without module
extensions. We chose not to show results for the GT 3.2 because of the absence of
a dedicated component offering functionality which corresponds to our directory
service or the MDS2.2 GIIS.

2.6 Conclusions

In this chapter a well-performing, scalable and portable information and monitor-
ing framework was presented. Performance was obtained through the use of C++
as base implementation language, together with caching mechanisms at key loca-
tions (e.g. producers caching sensor data, eliminating theneed for producers to
contact sensors directly); portability then dictated the use of appropriate middle-
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ware for which we chose the Adaptive Communication Environment (ACE) with
Corba CDR data exchange, the GTop libraries for monitoring resource status and
Java based consumers. Scalability was achieved by using a GMA-compliant archi-
tecture consisting of sensors, producers, consumers and a decentralized directory
service. Multiple ready-to-use consumers (e.g. network usage prediction/failure
detection, real-time visualization, archiving) have beenimplemented, and the in-
formation service offers a fast resource matchmaking portal for use by manage-
ment components.

We compared our Information and Monitoring Framework to that of the Globus
MDS2 system and its successor, the Globus Toolkit 3.2 web services based infor-
mation service, in terms of performance and intrusiveness.Good results were
measured in terms of query throughput and response times, both for our produc-
ers and directory service. Network intrusiveness was comparable to the GT 3.2
information service but worse than Globus MDS2, although this can be remedied
by applying a compression algorithm to the SOAP-over-HTTP XML messages
between producers and consumers. The computational intrusiveness of our frame-
work was measured to be near negligible.

Monitored resource properties (e.g. typical processing capabilities, network
bandwidths) and state information data (e.g. failure probabilities) can be used to
construct realistic Grid topology descriptions for simulation purposes.
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3
Grid Simulation

3.1 Introduction

Due to the size and complexity of typical Grid topologies andthe large number
of resources involved, it is a cumbersome (if not impossible) ordeal to have to
build a real-life Grid testbed each time one wants to experiment with different
Grid scheduling algorithms and resource management strategies on a variety of
topologies. In order to facilitate research into Grid management and allow for a
wider range of Grid configurations to be experimented with, one needs to resort
to simulation. The Grid Information and Monitoring Framework described in the
previous chapter can in this case be used to provide simulations with realistic com-
putational, data, storage and network resource properties.

While a lot of Grid simulators are already in existence (see the related work
in section 3.2), none of them provide accurate and up-to-date network resource
modelling. Indeed, since one of the main characteristics ofa Grid is its distributed
nature, the interconnecting network should be treated withthe same importance
as any other resource (e.g. computational, storage), as themain focus of this dis-
sertation is to incorporate network status information into the scheduling decision
process. To cope with this hiatus, we have developed NSGrid,a Grid simulator
based on Network Simulator 2 (ns-2 [1]). Ns-2 is an ongoing research project
providing a discrete event network simulator with a multitude of accurate network
protocol models (TCP/IP, multicasting, routing) on a variety of wired and wireless
networks. NSGrid adds to ns-2 a layer modelling the Grid middleware as well
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as components for simulating the application layer and userbehaviour. It offers
advanced Grid job, computational, storage and data resource models that can be
mapped on an underlying ns-2 network. On top of the resource models NSGrid
also provides a variety of management components such as a replica manager,
monitoring and information service, scheduler, service manager, service monitor,
etc.

The use of a Grid-specific simulation environment allows us to depart from re-
strictive resource and job models often encountered in machine and cluster schedul-
ing [2]: over the years a lot of effort has been spent into developing algorithms to
efficiently schedule jobs over a range of processing elements (i.e. cluster nodes,
processors) [3, 4]. In order to obtain performance results,jobs were typically mod-
elled as “work units” to be processed by (a set of tightly-coupled) “processors” that
can perform work at a given rate, neglecting network and I/O requirements of jobs.
As such, this model does not capture all ingredients essential to a Grid, where jobs
process large amounts of data to be transferred between resources across networks
exposing largely differing characteristics (i.e. less-than-infinite bandwidth, possi-
ble substantial delay, unpredictability, etc.) compared to a local area network/net-
work bus.

One of the main tasks of NSGrid is evaluating different scheduling algorithms,
most notably “network aware” heuristics: when choosing a computational resource
from the Grid resource pool on which to run a job, suboptimal decisions can be
made when selection is solely based on that computational resource’s properties
and status. Taking into account the current status of the network links intercon-
necting the Grid resources (such as computational resources, storage resources
and data resources) can lead to better job placement strategies (especially when
dealing with highly data-intensive Grid applications) andavoid cases where jobs
are scheduled on a remote computational resource which is connected to the Grid
through a low-bandwidth or already saturated network link.In such cases the
Grid network links become bottlenecks for computational progress, meaning that
a computational resource slot allocated to a job using such alink cannot be ex-
ploited to its full potential. We therefore see a need to adapt Grid scheduling
algorithms to deal with the issue of network connectivity status. NSGrid can be
used to accurately compare the performance of traditional network unaware versus
network aware Grid scheduling algorithms and to evaluate the efficiency of differ-
ent scheduling strategies (i.e. batch scheduling, asap scheduling, etc.) on a vari-
ety of Grid topologies and resource configurations. Sendingdata (either control
messages or job data) between resources/management components is modelled as
two layers in NSGrid: the first layer supports controlling the actual data stream
between the distinct endpoints (i.e. point-to-point connection), while the second
layer models the sending of network packets (routing, packet handling, network
protocol simulation, etc.)
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This chapter is structured as follows: section 3.2 details the related Grid sim-
ulation projects and the differences with NSGrid. In section 3.3 an overview of
the simulation models is presented: the Grid, network resource, computational re-
source, storage resource, data resource and job models are thoroughly explained,
followed by a presentation of the different management components (scheduler,
replica manager, connection manager, information service, service manager and
service monitor) and their functionality. Grid (re)scheduling strategies (whether to
start a scheduling round upon arrival of a job, or delay a new scheduling round un-
til multiple jobs are available) in NSGrid are discussed in section 3.4. Section 3.5
elaborates on the network aware and network unaware Grid scheduling algorithms,
while the evaluation of those scheduling heuristics (usingour NSGrid simulation
environment) for different job classes in a typical Grid topology is detailed in sec-
tion 3.6. Section 3.8 summarizes this chapter and gives someconcluding remarks.

3.2 Related Grid simulators

Our Grid simulation environment (NSGrid) is based on the well-known ns-2 [1]
network simulator. While not providing the most scalable simulation kernel (more
scalable C++ simulation frameworks are available, such as DaSSF [5, 6] and OM-
NeT++ [7, 8]), ns-2 is an up-to-date, discrete event networksimulator mostly used
in academic networking research, partly due to its easy extendibility (open-source
with a large support community). Ns-2 provides models for a wide range of pro-
tocols for both wired and wireless networks.

Notable existing Grid simulators include Bricks, MicroGrid, SimGrid, Grid-
Sim, ChicSim and OptorSim.

The Bricks Simulator [9, 10] focuses on client/server interaction in global high
performance computing systems. It allows for a single centralized scheduling strat-
egy, which does not scale well to large Grid systems and does not support the
notion of multiple (competing) schedulers.

MicroGrid [11, 12] is an emulator modelled after Globus [13], allowing for
the execution of Globus-enabled applications on a virtual Grid system. Research
into the area of Grid scheduling algorithms can be cumbersome with this kind of
approach, since it requires the construction of an actual Globus application to test.

SimGrid [14] is designed to simulate task scheduling (centralized or distrib-
uted) on Grids. Version 1 of SimGrid can be regarded as a low-level toolkit (which
interfaces to the C programming language) from which domain-specific simula-
tors can be built. The second version of SimGrid is dubbed MetaSimGrid [15]
and is essentially a simulator built upon this toolkit to enable the construction of
simulations with multiple schedulers (as C programs). Models for network links
as well as for TCP connections are present in SimGrid. This validated TCP imple-
mentation allows for smaller simulation times when compared to the packet-level
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TCP simulation performed by network simulators. Of course,simulations using
other transport protocols that are not readily available inSimGrid require that these
protocols are implemented first, whereas using a network simulator ensures easy
access to a wide range of protocols. The simulated application consists of several
tasks, organized into a Directed Acyclic Graph (DAG). MetaSimGrid is focused
on scheduling this application type in a master-slave environment.

GridSim [16, 17] is a discrete-event Grid simulator based onJavaSim [18]
(which has recently evolved to J-Sim [19] and has a similar Tcl/Java dual-language
simulation environment as ns-2). This simulator allows to simulate distributed
schedulers, and is specifically aimed at simulating market-driven economic re-
source models. While its computational resource models are highly configurable,
only a basic notion of network connectivity is supported andunderlying network
dynamics are not simulated accurately.

The Chicago Simulator [20, 21] is a simulation framework built on top of Par-
sec [22] for studying scheduling and replication strategies in Grids. A Grid is
modelled as a collection of interconnected Grid sites with network connectivity
of each Grid site modelled as a single parameter (describingthe bandwidth of the
gateway connecting this Grid site to the other Grid sites). As such, it does not
provide the level of network resource detail that is modelled in NSGrid.

OptorSim [23, 24] is a Java [25] based Grid simulator focussing on evaluating
the performance of data access optimization algorithms. Its architecture is based
on the EU DataGrid [26] architecture. OptorSim includes an economic model, us-
ing a peer-to-peer auction protocol that optimizes both theselection of replicas for
running jobs and the dynamic creation of replicas in Grid sites using a file revenue
prediction function. OptorSim takes network bandwidth into account when trans-
ferring job input/output data (although it does not actually simulate any existing
network protocols) and currently has no notion of Grid services.

Simulation of Grid scheduling strategies which take both computational re-
sources and data resources (more specifically, data locality) into account have been
reported upon in [27]. In this work, however, the network connecting different sites
is not simulated, but it is assumed that the different sites are connected through a
VPN-like construction over which TCP communication occurs. Scenarios where
files are pre-staged are considered, but data transfers in parallel with job execution
are not.

Table 3.1 summarizes the main differences between the discussed Grid simu-
lators.
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scheduler network packet level generic
model simulation

Bricks single basic no client-server
MicroGrid distributed very advanced yes Globus emulator
SimGrid distributed advanced no generic Grid
GridSim distributed basic no generic Grid

ChicagoSim distributed basic no generic Grid
OptorSim distributed basic no generic Grid
NSGrid distributed very advanced yes generic Grid

Table 3.1: Grid simulator characteristics

node
network link

XML

XML

node

network link

Grid portal

Grid portal

information

service

information

service
computational

resource

scheduler

connection

manager

storage

resource

data

resource
data

resourcescheduler

storage

resource
computational

resource

Data

Data

Figure 3.1: NSGrid Tcl/C++ dual layered architecture

3.3 NSGrid simulation framework

3.3.1 NSGrid architecture

We have designed and implemented a Grid simulation framework that takes into
account network resource parameters and that accurately models network traffic
using a variety of protocols and applications (FTP traffic over TCP connections,
variable bitrate UDP traffic, wireless traffic, etc.). To this end the simulator was
built on top of the widely used ns-2 network simulator. The key difference with
other Grid simulation toolkits such as GridSim and SimGrid is that NSGrid makes
use of an existing network simulator, which provides for realistic and accurate
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models for network links and protocols (ns-2 is continuously being improved and
updated with new network models and protocols). Ns-2 uses the Tcl [28] scripting
language to drive the simulation, while C++ [29] is used for the implementation of
the various Grid components in order to reduce simulation time. This Tcl front-end
gives us the possibility to rapidly create new simulation scenarios and offers a high-
level abstraction of the simulator entities’ implementations. NSGrid’s architectural
specification has been developed together with colleague Pieter Thysebaert.

Major components of our simulator are management components (schedulers,
information services, connection managers, service managers, service monitors,
etc.) and resources (computational, data, storage and network resources). Each
component (with the exception of network resources) is associated with a single
ns-2 node. These nodes and the network links that interconnect them are regular
ns-2 entities and model the Grid’s physical topology (figure3.1).

The simulator components can be seen as models for real-lifesoftware com-
ponents running on the nodes they are hosted by, as communication between com-
ponents is a source of network traffic in the simulation. The exact nature of this
traffic can be modelled after e.g. the communication middleware used by the soft-
ware components. Messages and RPC calls exchanged between components are
implemented as XML messages that can easily be transported between the C++
and Tcl layers. Job I/O data is sent as raw data (e.g. modelledas TCP or UDP
traffic) across ns-2 links and nodes from source to destination.

The NSGrid Grid simulation layer C++ source is composed of 47classes (not
including topology generation/GUI visualisation tools),comprising 19.000 lines
of code (19 KLOC). The most important classes are shown in figure 3.2. All el-
ements that can be assigned to an ns-2 node (resources, management components
and clients) inherit from theGridObjectclass, which connects the Grid simulation
layer with the ns-2 network simulation layer by providing methods for sending/re-
ceiving data and event control (see listing 3.1 for the most important methods
supported by the GridObject class). EachResourceobject contains aResourceInfo
object which stores resource properties/status information and provides methods
for reading/writing from/to XML (for sending resource information between man-
agement components). TheGridLoggerclass provides simulation logging func-
tionality with support for multiple log levels (NSGrid users can select the logging
levels they want to see messages from) and error reporting.

In what follows we briefly given an overview of the methods in listing 3.1:

• virtual int command(...): events fired in the Tcl layer are delegated to the ap-
propriate C++ method through thecommand(...)subroutine. This basically
provides the glue between the Tcl and C++ layers.

• static void sendAndExecute(...): sends commands between components. The
command is sent over the simulated network links between source and des-
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Figure 3.2: NSGrid implementation architecture

Listing 3.1: GridObject interface

classGridObject :public TclObject{
public:

virtual int command(int argc,const char∗ const∗ argv) = 0;
static void sendAndExecute(string sourceNode,string destinationNode,string command);
static void sendDataAndExecute(string sourceNode,string destinationNode,int size,string

command);
static doublegetSimulatedTime();
static string getNode(string componentName);
static int getHops(string source,string destination);
static string setEvent(double time,string command);
static string setEventNow(string command);
static void cancelEvent(string eventId);
static string releaseReservation(string resourceName,string reservationID);
void log(string source,string logMessage,int logLevel);

};

tination, and, once all command data has been received at thedestination,
the Tcl command specified by argumentcommandis fired.

• static void sendDataAndExecute(...): sends data between components. The
data (with size specified by parametersize) is sent between source and des-
tination, and, once all data has been received at the destination, the Tcl com-
mand is fired.

• double getSimulatedTime(): return simulated time.

• string getNode(...): returns the network node associated with the given com-
ponent.
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• static int getHops(...): returns the amount of network hops between source
and destination nodes.

• static string setEvent/setEventNow(...): sets event at given point in time and
returns event ID.

• static void cancelEvent(...): cancels event with given event ID.

• static string releaseReservation(...): releases resource reservation with given
ID.

• void log(...); provides output logging functionality.

3.3.2 Grid model

We regard a Grid as a collection ofGrid sitesinterconnected by WAN and MAN
links (see figure 3.3). Each Grid site has its own resources and a set of manage-
ment components, all of which are interconnected by means ofLAN links. Man-
agement components include aconnection manager(capable of offering network
QoS by providing bandwidth reservation support, and responsible for monitoring
available link bandwidth and delay), aninformation service(storing registered re-
sources’ properties and monitoring their status), ascheduler, a service manager,
service monitorandreplica manager. The explicit treatment of the network as a
“resource” allows management components to take decisionsbased on observed
and expected future load of the network.

Each Grid site can have one or more Grid portals, through which clients can
submit jobs. These jobs are then scheduled on a collection ofresources by a sched-
uler. To this end, the scheduler makes reservations with theresource managers; in
our environment, a connection manager manages a collectionof network links,
while the computational, storage and data resources doubleas their own manager.
To ensure connectivity with the outside world (and in particular with other Grid
sites), each Grid site designates one or more of its underlying ns-2 network nodes
as a gateway to the WAN/MAN.

3.3.3 Job model

The basic unit of work in our model is ajob, which can roughly be characterized
by its length (time it takes to execute on a reference processor), computational
requirements (memory, operating system, temporary disk space, installed appli-
cations, etc.), maximum cost of processing, deadline, the needed input data, the
output data size, theburstinesswith which these data streams are read or written,
and the service class to which it belongs (note that some of these job parameters
are optional). It will be shown in chapter 4 that it can be beneficial to assign jobs
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Figure 3.3: Grid model

from different Grid applications to one and the same serviceclass in order to group
jobs with similar resource/QoS requirements, but for now the service class of a job
denotes the application type it spawned from. Knowing the job’s total length and
the frequency at which each input/output stream is read/written (when executed on
a reference processor), the total execution length of a job can be seen as a con-
catenation of instruction “blocks”. The block of input datato be processed in such
an instruction block is to be present before the start of the instruction block; that
data is therefore transferred from the input source (in thiscase a data resource of-
fering the necessary input) at the start of the previous instruction block. Similarly,
the output data produced by each instruction block is sent out at the beginning of
the next instruction block. We assume these input and outputtransfers occur in
parallel with the execution of an instruction block. Only when input data is not
available at the beginning of an instruction block or previous output data has not
been completely transferred yet, a job is suspended until the blocking operation
completes.

A typical job execution cycle (with one input stream and one output stream) is
shown in figure 3.4 and figure 3.5. The presented model allows us to mimic both
streamingdata (high read or write frequency e.g. a low/high resolution browse
job from the domain of audio/visual production Grids; see table 5.1 for more in-
formation) anddata stagingapproaches (read frequency set to1 e.g. a rendering
job where graphical data and scene rendering information isprefetched to a com-
putational resource, the scene is then rendered and, when rendering is complete,
output is stored onto a storage resource). Note that jobs canreceive input data /
store output data from multiple data / storage resources at the same time.

An overview of all job parameters is given by:

• Job arrival time at Grid portal

• Grid site from which the job originated
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Figure 3.4: Non-blocking job, simultaneous transfer and execution
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Figure 3.5: Non-blocking job, pre-staged input data

• Start time: time at which job may begin processing

• Amount of processing time needed on reference processor

• Duration: minimum duration of job (to ensure that job processing occurs at
a defined rate e.g. video viewing jobs)

• Minimum processor speed asked for by job

• Temporary disk space required on processing element

• Software installation (operating system/programs) required for job to run

• Input data: access type (FTP, secure copy, etc.), minimum required retrieval
speed, ID of input sets required, number of reads

• Output data: access type (FTP, secure copy, etc.), minimum required storage
speed, number of writes, time output data needs to be kept available

• Budget: maximum cost of executing job

• Deadline

• Service class
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3.3.4 Client model

In our simulation environment, a client is a component whichautomatically sub-
mits jobs from a particular service class to a Grid portal (which in turn delivers
these jobs to a scheduler). The “home site” of these jobs is the Grid site where
the client is located. All job characteristics, together with job submission start/end
times and job interarrival times are specified statistically (normal, uniform, zipf
and exponential distributions are supported) according tothe client’s configuration
(specified in the Tcl startup script) or, alternatively, areread from trace files con-
taining previously recorded job submission behaviour. Thelatter approach allows
for identical job load reproduction under different Grid topologies / resource se-
tups. Note that clients are not required to wait for a previously submitted job to
finish before launching another job.

Multi-service class clients, capable of constructing and submitting jobs from
different service classes (with job parameters generated from distinct service class’
configurations) can be instantiated in NSGrid. Each multi-service client can have a
service class workflow assigned to them. These workflows define the probabilityx
of constructing and submitting a job from service classy when a job from service
classz was last submitted by this client (see figure 3.6).

Job

class

B

Job

class

C

Job

class

A

65%

35%

20%

80%

100%

Figure 3.6: Sample multi-service client workflow

Clients are specified by:

• A list of job/service classes with job parameters specified statistically

• Workflow between the different job/service classes

• Grid portal location

• Job generation start time

• Job generation end time



3-12 CHAPTER 3

3.3.5 Resource models

3.3.5.1 Computational resource model

Each computational resource is viewed as a monolithic entity with a certain process-
ing power. Its main capabilities are defined by the followingparameters:

• The number of processors and their respective processing power (relative to
a reference processor)

• Memory available to jobs

• Disk space available for storing temporary job output

• Installed operating system and applications/software

• Load: job load (processing, memory, disk space) and reservations

• Dynamic resource model: resource failure probability, probability to go off-
line and average time before the resource restarts

• Cost: price when using this computational resource (depending on user class
of client that submitted job to be processed)

• Service class ID: either “0”, meaning the computational resource can be
used by any job from any service class, or a non-“0” service class ID mean-
ing the resource can only be used by jobs from service classesmatching
that ID. The service class ID can be dynamically assigned by the service
manager components

This model can be used to represent both multiprocessors andclusters, pro-
vided that, in the latter case, the internal network connecting the various cluster
nodes performs sufficiently (in a well balanced multiprocessor system, the net-
work bus interconnecting the processors will only rarely bea performance-limiting
bottleneck). If the network interconnecting the differentprocessing elements can
be the source of bottlenecks, one should instantiate a computational resource for
each processing element and interconnect these resources by means of bandwidth
limited network resources (see 3.3.5.4).

Before accepting a job for processing, a computational resource will check the
requirements of the computational reservation (sent by a scheduler) to see if these
do not conflict with existing and/or future computational reservations. If there is
a conflict, the computational resource will reject the reservation and inform the
requesting scheduler. Once a job is accepted for processing, the job description is
parsed for information regarding (optional) data and storage resources that are to
be used for retrieving/storing input/output data. In our model, the computational
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Figure 3.7: Computational resource processor allocation

resource is responsible for starting the retrieval of each input block and sending
output blocks to the necessary storage resources.

As can be seen in figure 3.7, a computational reservation allocates a fixed frac-
tion of the computational resource’s processing power overa certain amount of
time (so it can ensure that deadlines will be observed). During the lifespan of
the reservation, the allocated fraction itself will never be modified, but, due to job
blocking, the time this processor fraction is allocated to ajob can be enlarged if it
does not infringe other computational reservations.

When a job has finished sending its last output block (or, if no output had to
be sent, once the job has no further processing to do) the resource will inform the
responsible scheduler that the job is finished, and will release the job’s computa-
tional reservation.

3.3.5.2 Storage resource model

Storage resources provide disk space to store job output data. In our model, storage
resources are described by

• The total available storage space

• Load: storage space allocated to jobs and reservations

• Dynamic resource model

• Cost: price when using the storage resource (depending on user class of
client that submitted job)

• Service class ID: either “0”, meaning the storage resource can be used by
any job from any service class, or a non-“0” service class ID meaning the
resource can only be used by jobs from service classes matching that ID

When a storage resource receives a storage reservation request, it checks to see
if this reservation does not conflict with the already granted reservations (in terms
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of disk space) and, if possible, grants the reservation. A job can choose to keep
its output data stored until the job finishes processing (at which time the storage
resource will release the job’s storage reservation), or itcan opt to keep output data
stored for a specified time (at the possible expense of extra cost).

While a storage resource does not perform computational processing of jobs,
it can be attached to the same network node as some computational and/or data
resource.

3.3.5.3 Data resource model

Data resources serve the purpose of providing input data forjobs. In our model,
data resources are described by

• Available data sets (by ID), their respective sizes and usage characteristics
(the latter is for replication purposes)

• Available storage space for datasets

• Load: content being read by jobs and reservations

• Dynamic resource model

• Cost: price when using the data resource (depending on user class of client
that submitted job)

• Service class ID: either “0”, meaning the data resource can be used by any
job from any service class, or a non-“0” service class ID meaning the re-
source can only be used by jobs from service classes matchingthat ID

Each time a job retrieves an input data set, the data resourceupdates its inter-
nal data set usage properties (time accessed, number of times the data set has been
accessed in last time frame). These usage characteristics can in turn be used to
decide which data sets no longer will be supported in favour of new (replicated)
datasets (i.e. storage space will be made available for storing often utilized, repli-
cated data sets by freeing disk space taken up by less frequently used data sets; for
more information see section 3.3.6.2).

While a data resource does not perform computational processing of jobs, it
can be attached to the same network node as some computational and/or storage
resource.

3.3.5.4 Network resource model

Interconnections between resources (i.e. between two non-network resources) are
modelled as a set of network links, providing a route betweenthe source and
destination resource. Connection reservations, each offering a guaranteed total
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bandwidth available to a particular Grid job or service class, can be set up by the
connection manager. Of course, these connections can only be set up if, in the un-
derlying ns-2 network topology, a route (with sufficient bandwidth capacity) exists
between the nodes to which these resources are attached. Grid resources can also
be interconnected by means of capacitated VPNs: in this case, a VPN tunnel (with
guaranteed bandwidth availability) is set up between Grid resources for a partic-
ular Grid job service type. This VPN tunnel carries all connections matching the
VPN’s endpoints and service class. Such connections can be set up as long as the
VPN’s residual bandwidth can satisfy the connection demands. VPNs allow for
the upfront reservation of bandwidth for a particular service type (see figure 3.8).

2.5 Mbit service type j VPN tunnel

5 Mbit service type i VPN tunnel

1.5 Mbit unallocated service type 0

10 Mbit Network Link

1 Mbit ST i connection

1 Mbit service type 0 connection

Figure 3.8: Network model

Connections in our model are a set if network links, with eachnetwork link
described by:

• Endpoints

• Total bandwidth capacity

• Residual bandwidth of non-VPN connections over time (advance network
reservations are supported)

• Residual bandwidth for each pre-assigned VPN over time (advance network
reservations are supported)

• Delay

• Connection manager responsible for network link (see section 3.3.6.3)

3.3.6 Management components

3.3.6.1 Information service

An information service offers a computational, storage anddata resources’ prop-
erty and status repository. Each time a resource is instantiated in the Grid, it will
register its static properties and dynamic status info withat least one information
service. An information service can be queried by any other Grid management
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components (e.g. scheduler, service manager) for resources meeting certain re-
quirements (e.g. available memory, installed software, available datasets). The
information services perform matchmaking on this query, i.e. they select a set of
resources (from their registered resource repository) that meet the requirements
of the resource query. The resulting resource set is sent back to the management
component requesting resource information. Typically, since a single central in-
formation service for a Grid would not be scalable, each Gridsite offers one (or
more) information service component storing (a subset of) the local resources.

Each time a resource’s state changes (e.g. because of accepting a new job for
processing) it contacts the information services it is registered with and sends up-
to-date status information (note that these status update messages, as any control
message in NSGrid, can suffer from network delays, temporarily rendering the
status information contained within the information service outdated).

The information service also monitors the liveliness of each registered resource
(in order to detect resources failures). At configurable intervals it sends a heartbeat
message to these resources and expects to receive the responses in adequate time
(see section 3.3.7). If these responses do not arrive in due time, the resource is
unregistered from the repository.

Listing 3.2: Information service interface

classInformationService:public ManagementComponent{
public:

void getCRs(string XMLQuery, string tclName,string requestId);
void getSRs(string XMLQuery, string tclName,string requestId);
void getDRs(string XMLQuery, string tclName,string requestId);

void registerScheduler(string schedulerTclName);
void registerResource(string resourceType,string XMLdescription,string resourceTclName);
void updateResource(string resourceType,string XMLdescription,string resourceTclName);
void updateServiceClass(string resourceType,string resourceTclName,int serviceClass);
void unRegisterResource(string resourceType,string resourceTclName);

void pingRegisteredResources();
void pingAnswer(string resourceType,string resourceTclName);
void checkPingAnswers();

};

Listing 3.2 shows the most important public methods (not including construc-
tors/destructors/getters/setters etc.) supported by theinformation service. In what
follows we briefly give an overview of these methods. Note that all methods return
a void value, as method return values are not communicated betweencomponents
on a C++ level, but instead act as a source of network traffic (i.e. methods that need
to send return values do so by invoking thesendAndExecutemethod of GridObject,
as seen in listing 3.1).
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• void getCRs/getSRs/getDRs(...): retrieves the computational/storage/data re-
sources complying with the requirements stated in parameter XMLQuery.
Results (along with request ID) will be sent back to the component specified
by parametertclName.

• void registerScheduler(...): registers a scheduler with an information service.
The information service keeps registered schedulers informed of sudden re-
source unavailability.

• void registerResource(...): registers a resource with an information service.
Resource properties and current state are specified by parameter XMLde-
scription, while the resource’s Tcl name is specified by parameterresource-
TclName.

• void updateResource(...): when resource state changes (e.g. new job ac-
cepted for processing on CR), the resource calls this methodto give the
information service up-to-date status information.

• void updateServiceClass(...): as will be explained in chapter 4, service man-
agers can assign a resource to a service class in order to allow only jobs from
that particular service class to use that resource.

• void unRegisterResource(...): removes the resource from the information
service resource repository (e.g. when resource goes off-line or when it
fails).

• void pingRegisteredResources(): at regular intervals, the information service
sends out heartbeat messages to each registered resource.

• void pingAnswer(...): resources that answer the heartbeat message do so by
calling this method.

• void checkPingAnswers(): at a configurable time after heartbeat messages
have been sent out, the information service checks to see which resources
have answered the heartbeat message. The resources that didnot answer the
message in due time, are assumed to be failing and unregistered from the
information service.

3.3.6.2 Replica manager

A replica manager monitors job input data retrieval behaviour in such a way that
when a job is in need of a dataset that is not present at the job’s computational
processing site (which is not necessarily the job’s originating site), a replica note
is sent to that Grid site’s local data resources, asking themif they are interested in
replicating that dataset locally (the job’s needed data setwill be transferred from
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a remote data resource to the computational resource where the job is processing,
so it will be available for replication). The data resourcescan then choose to
either ignore this replication request (based on the usage characteristics of their
offered datasets) or they can store the new data set locally.If a data resource
decides to replicate the data locally, it can simple store the dataset along with
the existing datasets (if there is enough free storage space) or it can choose to
replace an existing dataset using a Least Recently Used algorithm (in this case the
least recently used dataset(s) will no longer be supported from that particular data
resource).

Listing 3.3: Replica manager interface

classReplicaManager:public ManagementComponent{
public:

void registerInformationService(string ISTclName);
void getDRInformation(string requestId);
void queryDRResult(string requestId,string DRListXML, string ISTclName);
void jobUsedDataset(string jobId, int dataID,doublesize,int service,string CR);

};

Listing 3.3 shows the most important public methods (not including construc-
tors/destructors/getters/setters etc.) supported by thereplica managers. In what
follows we briefly describe these methods:

• void registerInformationService(...): adds information service (with name
ISTclName) to the known replica manager’s information services. These
information services will be queried for data resource information.

• void getDRInformation(...): queries information services for data resource
information (supported data sets, data set storage space, etc.).

• void queryDRResult(...): receives list of data resources registered with in-
formation service (with nameISTclName).

• void jobUsedDataset(...): send replication note to data resource, informing
this data resource that a recently used data set is availablefor replication at
a local computational resource.

3.3.6.3 Connection manager

A connection manager monitors properties (e.g. total bandwidth) and status in-
formation (e.g. available bandwidth, delay) of the different Grid network links.
It can be queried by any other management component (e.g. service managers,
schedulers) to retrieve connection information (available bandwidth, delay, rout-
ing information, total bandwidth, etc.) between a source and destination network
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node. If a connection query is received, the connection manager will ask ns-2 for
the route from source to destination and, once routing information has been re-
ceived, will inspect the status of all network links along this route. The connection
manager will then construct a connection information object, containing info about
all links along this route and available bandwidth/delay between source and des-
tination. This connection information will be sent back (inXML) to the querying
management component.

Next to an informative function, a connection manager is also responsible for
setting up network resource reservations. Both end-to-endconnections and service
class’ VPN reservations are supported (see network model insection 3.3.5.4). To
this end, management components can ask the connection manager to reserve a
certain amount of bandwidth between a source and destination node. The con-
nection manager will inspect all network links on the route between source and
destination, and, if bandwidth requirements are met on eachlink, will reserve the
requested amount of bandwidth, grant the connection reservation and inform the
requesting management component.

Note that reservations are not physically set up by the connection manager:
if the bandwidth requirements of the requested connection reservation are not in-
fringing previously guaranteed connection reservations’minimum bandwidth, the
request is granted. If however this is not the case (due to theuse of stale resource
state information when assigning resources to jobs in the scheduling round), the
connection reservation request is rejected and the job willbe put back in the sched-
uler queue until the next scheduling round. The connection manager thus operates
by bookkeeping all granted connection reservations and denying new reservations
that would infringe on those previously granted reservations.

Listing 3.4: Connection manager interface

classConnectionManager:public ManagementComponent{
public:

void getConnections(string XMLQuery, string tclName,string requestId);
void getLinksForJob(string tclName,string requestId);

void testAndAllocate(string reservationId,string XMLConnectionReservation);
bool setupVPN(pair<string,string> endpoints,doublecapacity,doubledelay,int service);
bool setupConnection(string ID, pair<string,string> endpoints,doublebandwidth,double

delay,int service,doublestarttime,double timespan);
void releaseReservation(string reservationId);

void autoSetupServices();
void addServiceClass(int service,doublebandwidthPercentage);
void removeServiceClass(int service);

};

Listing 3.4 shows the most important public methods (not including construc-
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tors/destructors/getters/setters etc.) supported by theconnection managers. In
what follows we give a brief description of these methods:

• void getConnections(...): retrieves end-to-end interconnection information
(available bandwidth, delay, etc.), with endpoints and requirements described
by the XML connection query. ThetclNameparameter denotes the compo-
nent to which the answer for this query has to be sent.

• void getLinksForJob(...): retrieves information regarding network links mon-
itored by this connection manager.

• void testAndAllocate(...): connection manager checks if connection reserva-
tion request can be granted and sets up the connection if possible.

• bool setupVPN/Connection(...): sets up VPN/connection with specified ca-
pacity/bandwidth between two endpoints.

• void releaseReservation(...): releases previously granted connection/VPN
reservation.

• void autoSetupServices(): automatically partitions network resources amongst
service classes based on service classes’ average bandwidth requirements
(see chapter 4).

• void add/removeServiceClass(...): adds/removes service class average band-
width requirements as calculated by the service manager (see chapter 4).

3.3.6.4 Service manager

Service managers receive information regarding service class characteristics from
the service monitoring components. At regular intervals, the service manager
queries the information services for all Grid resources. Once the answer to this
query has been received, one of the service manager’s resource partitioning algo-
rithms is applied to the resource set, assigning each Grid resource to a particular
service class. The resulting resource-to-service partitioning solution gets sent back
to the information services, who in turn change the service class property of their
registered resources. Resources that have a service class ID assigned to them will
from then on only be returned by resource queries for jobs from that particular
service class. If the service manager’s partitioning algorithm also works in on net-
work resources, the connection manager will be contacted tomake service band-
width reservations. Detailed information about the service manager and associated
interface can be found in chapter 4.
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3.3.6.5 Service monitor

Service monitors inspect job submission behaviour at the Grid portals (recall that
a Grid portal acts as a job submission gateway for Grid users): each time a job
is submitted, job requirements (service class, priority, needed input data sets and
sizes, output storage sizes, computational requirements,etc.) are extracted and
overall service class properties (e.g. average job interarrival time, average I/O
data sizes, average processing requirements) are adjusted. When a service monitor
has gathered adequate service class characteristics, it sends this collected service
class’ information to its known service managers, so as to allow them to have up-
to-date service class characteristics for use by the resource-to-service partitioning
algorithms. For detailed information about the service monitor and associated
interface we also refer to chapter 4.

3.3.6.6 Grid scheduler

As described in section 3.3.4, multiple clients submit, according to their job sub-
mission configuration, jobs to Grid portals who in turn send them to a scheduler.
Each time a job is received by a scheduler, it will query its known information
services for resources that can be allocated to this unscheduled job. The result-
ing resource set is sent back to the scheduler, and, if the scheduler also wishes to
receive resource interconnection information, it will proceed by contacting its con-
nection manager and query the status (available bandwidth,delay, reservations) of
the network links interconnecting the resources received for that particular job by
the information services.

Once resource query results have been received for an unscheduled job, the
scheduler applies one of its scheduling algorithms to the received set of resources
(either instantly when the scheduling strategy is “as soon as possible” or, when
scheduling in batch, at the time of a new scheduling round), and selects those
that will be allocated to each job. Parameters that can be taken into account when
scheduling a job include scheduling objective (minimization of job response times,
priorisation of certain service classes, minimize cost, etc.), job deadlines, budget
constraints, etc..

When a scheduling decision has been made, the scheduler contacts the compu-
tational, data and storage resources (and if bandwidth reservations are necessary
the connection manager) to request the necessary resource reservations. If all re-
source reservation requests are granted (note that, due to stale resource status in-
formation, or due to scheduler competition, reservations can be rejected), the job
is put into the scheduled state and is sent to the selected computational resource,
which in turn will manage the job’s input from the selected data resources and/or
output to the selected storage resources (recall that all computational, storage and
data resources will send up-to-date status information to the information services
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with which they are registered once a reservation has been granted). If network re-
source reservations have been set up, job I/O data will be sent across the reserved
connections.

The moment a job is finished, the computational resource responsible for process-
ing this job notifies the scheduler, releases its computational reservation and sends
up-to-date status information to its registered information services. The sched-
uler proceeds by notifying the client that its job has finished, and releases storage,
data and (if necessary) network resources. Note that XML control messages and
raw I/O data arrival times depend on the bandwidth / protocol/ application that
is used across each network link over which this data is sent (as simulated by the
underlying ns-2 network layer).

In case insufficient resources are available at the time of scheduling or if re-
source reservation requests are rejected, jobs that do not get resources assigned to
them are requeued for scheduling at a later time or (in case multiple schedulers
exist) can be forwarded to a different scheduler. NSGrid supports advance reser-
vation of all resource types.

Listing 3.5 shows the most important methods (not includingconstructors/de-
structors and most getters/setters) supported by the Grid schedulers. In what fol-
lows we give a brief description of these methods:

• void setQueuePolicy/ScheduleInterval/ScheduleAlgorithm/ASAPReschedule-
Delay(...): allow selection and configuration of the scheduling algorithm to
be used by the Grid scheduler. Additionally, the time between scheduling
rounds, queue policy (FIFO, priority rearranged, etc.) andthe reschedul-
ing delay (in case scheduling is impossible) when scheduling ASAP can be
changed with these methods.

• void addInformationService/ConnectionManager/ReplicaManager(...): adds
management components so they can be queried by the Grid scheduler.

• void submitJob(...): submits a job to the Grid scheduler.

• void submitJobWithEndingCallback(...): submits a job to the Grid scheduler.
Once the job has ended, the scheduler will inform the client of this event.

• void endJob(...): ends job, cancelling all existing reservations for this job
and removes it from the scheduling queue.

• void getResources/Connections/LinksForJob(...): queries information ser-
vice and connection manager components for computational,data, storage
and network resource property and status information.

• void queryCRsResult/querySRsResult/queryDRsResult(...): receives answers
to information service queries.
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Listing 3.5: Grid scheduler interface

classGridScheduler :public ManagementComponent{
public:

void setQueuePolicy(string policy);
void setScheduleInterval(double interval);
void setScheduleAlgorithm(string algorithm);
void setASAPRescheduleDelay(doubledelay);

void addInformationService(string informationServiceTclName);
void addConnectionManager(string connectionManagerTclName);
void addReplicaManager(string gridsite,string replicaManager);

void submitJob(string jobXML);
void submitJobWithEndingCallback(string jobXML, string client);
void endJob(JobId jobId);

void getResourcesForJob(constJobId& jobId);
void getConnectionsForJob(constJobId& jobId);
void getLinksForJob(constJobId& jobId);
void queryCRsResult(string requestId,string XMLCRList, string informationService);
void querySRsResult(string requestId,string XMLSRList, string informationService);
void queryDRsResult(string requestId,string XMLDRList, string informationService);
void queryConnectionsResult(string requestId,string XMLConnectionList,string

connectionManager);
void queryLinksForJobResult(string requestId,string XMLLinkList, string connectionManager);

void CRFailure(string CRTclName);
void SRFailure(string SRTclName);
void DRFailure(string DRTclName);
void CRAllocationFailed(string CRTclName);
void SRAllocationFailed(string SRTclName);
void DRAllocationFailed(string DRTclName);
void ConnAllocationFailed(string connectionId);

};

• void queryLinksForJobResult(...): receives answers to connection manager
queries.

• void CRFailure/SRFailure/DRFailure(...): methods called by an information
service when it detects a resource failure.

• void CRAllocationFailed/SRAllocationFailed/DRAllocationFailed(...): resources
call this method when a job reservation request is not granted.

• void ConnAllocationFailed(...): a connection manager calls this method when
a connection reservation request is not granted.
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3.3.7 Dynamic resource model

Sudden failure of Grid resources (computational, data and storage resources) is de-
tected by the information service components and the appropriate actions are taken
to ensure that the jobs that were relying on the failing resource get rescheduled.
Our dynamic model supports two notions of unavailability:

3.3.7.1 Resource failures

Unexpected Grid resource unavailability. These failures will be detected by the
information service (who periodically sends a heartbeat message to each resource
registered with it). If a resource does not reply to this message within a specified
time-interval, failure is assumed. The information service proceeds to unregis-
ter the resource from its repository, and sends a notification message to the Grid
scheduler(s) that had jobs running on the crashed resource.The affected sched-
ulers then revert jobs that were utilizing the failing resource to the unscheduled
state and put them back in the scheduling queue (see figure 3.9). Resource fail-
ures can be specified by means of two distribution-type parameters: “time before
resource failure” and “time before resource restart”.

3.3.7.2 Resource unavailability

Each Grid resource may unregister itself at any time by sending a message to the
information services it is registered with. The resource will then proceed by con-
tacting the Grid schedulers that have jobs utilizing it (either for job processing or
for retrieval/storage of I/O data). If checkpointing is enabled, the last checkpoint
of jobs running on that particular resource will be sent to the scheduler responsible
for allocating the job’s resources. When a scheduler is notified of the unavailabil-
ity of a resource, it looks up which jobs were scheduled on that resource, cancels
all resource reservations of those jobs, reverts the state of those jobs to their ini-
tial state (the “unscheduled” state with no work done) and readies the jobs for
rescheduling. If a checkpoint is available, the job will continue processing from
that checkpoint on.

3.3.8 NSGrid operation

At startup the simulator reads a Tcl script defining the Grid topology and location
of the various resources, management components and clients (this script can be
constructed manually (through a dedicated GUI as seen in figure 3.11) or generated
by automatic topology generator tools based on GridG [30, 31]).

During simulation, each event can be logged (logging supports multiple log-
levels, providing a filtering function for messages of lowerimportance) and either
written to the screen or stored in an output file. A GUI parsingthis output (see
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figure 3.12) allows for extensive filtering and sorting functions (e.g. in case one is
only interested in the behaviour of a particular resource).

When a simulation has ended, NSGrid provides file output regarding job life-
time (arrival time, launch time, end time, execution speed,resources utilized, net-
work usage, etc.) and management component performance (schedule computing
time, resource-to-service partitioning times, etc.). Tools have been provided to
parse this XML output to “comma separated value” files for easy use in spread-
sheet programs.

3.4 Scheduling strategies

Grid scheduling algorithms attempt to allocate resources to jobs in such a way that
a given criterium (e.g. average job response time, resourceusage efficiency, cost)



3-26 CHAPTER 3

Figure 3.11: NSGrid Tcl input file generation

is optimized. In the optimal off-line case (i.e. the job requests that will arrive at
the scheduler over time are known in advance), the schedule can in some cases
(e.g. when job arrival times and job lengths are integer) be produced by solving an
Integer Linear Program (we refer to [32] for an overview on this topic). In such an
ILP, the scheduling constraints are formulated as linear (in)equalities.

Of course, in any operational Grid, only on-line schedulingstrategies (meaning
that at any timet, nothing is known about requests arriving at a timet′ where
t′ > t) can be used. We distinguish between strategies that attempt to schedule a
job as soon as it becomes available (ASAP), and strategies that schedule a batch of
jobs at certain points in time (a batch then consists of previously unscheduled jobs
and jobs that have arrived since the last batch was scheduled). ASAP strategies
attempt to impose a minimal queue waiting time on each job, while batch strategies
attempt to avoid suboptimal resource-to-job assignments by scheduling a set of
jobs (instead of a single job) at the cost of extra waiting time for each job (at most
equal to the interval between two scheduling rounds). However when scheduling
in batch, one hopes to overcome this time loss by the possiblegain created by an
overall “better” scheduling decision.

In realistic scenarios, bursty job arrivals (e.g. high activity during office hours)
will occur. We expect the quality of batch scheduling strategies, when compared
to the schedule produced by strategies that schedule upon arrival, to rise when
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Figure 3.12: NSGrid output GUI
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the average job arrival rate is higher than the rate at which resource status update
information is disseminated through the Grid, while the scheduling rate is lower. If
these assumptions hold, ASAP scheduling strategies can make wrong scheduling
decisions for sequential jobs based on stale resource load information, resulting in
an attempt to schedule a job on an already loaded resource.

In case batch scheduling is used, the (unscheduled) job queue can optionally
be reordered prior to employing a scheduling algorithm (e.g. the job queue can
be sorted based on service class priorities). Also, since batch scheduling can allo-
cate resources to multiple jobs in one scheduling round (andresource reservation
requests are only sent out once all jobs in the queue have beenprocessed by the
scheduling algorithm), the scheduler must keep track of “virtual” resource loads
(i.e. the scheduler needs to modify resources’ virtual state information each time
a job gets resources allocated to it).

In [33], multi-site execution of divisible jobs is discussed. Jobs can be split
into (communicating) subjobs which are then executed simultaneously on different
computational resources. The network over which the subjobs communicate is not
modelled directly; rather, it is assumed that the network’sinfluence (bandwidth,
delay) on the job’s run time can be modelled by a single “overhead” parameter.

A similar job model is used in [34] and [35]. Here, the allocation of proces-
sors to rigid parallel applications on a purely space-shared (multi)cluster system is
studied. Applications consist of a number of possibly communicating jobs, to be
executed in parallel. Each job requires exactly one processor, which it occupies
exclusively during its execution (i.e. no time-shared processors). Figures for the
fraction of idle processors at a given point in time are deduced using statistical
techniques, while the influence of a slow intercluster communication network is
incorporated entirely in a slowdown factorα. This contrasts with our approach, as
we study applications consisting of non-intercommunicating jobs, each of which
can be executed on a singletime-sharedprocessor. In addition to computational
resources, our work also treats other resources such as dataand storage resources
explicitly.

Scheduling work packets for collaborative computing efforts (e.g. SETI [36],
MCell [37]) to computational elements is discussed in [38].Because of the appli-
cation’s particular nature, the Grid can be modelled as a tree, with all work packets
originating from the root node, which differs from our approach as we focus on
generic Grids.

3.5 Scheduling algorithms

The scheduling algorithm used for assigning resources to jobs has a big impact
on Grid performance, and influences overall job throughput,resource usage effi-
ciency, average job response times, etc.. If the scheduler is unable to allocate the
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resources needed by a job, the job is queued for reschedulingin the next scheduling
round (if an ASAP scheduling strategy is used, a rescheduling delay is imposed).
The time between two scheduling rounds can be fixed, but it is also possible to set
a threshold (e.g. maximum number of jobs in the scheduling queue) triggering the
next scheduling round. In what follows we will explain the different scheduling
algorithms available in NSGrid. During each scheduling round, every algorithm
processes submitted yet unscheduled jobs from the job queuein a First-Come First
Serve (FCFS) fashion (job reordering may have occurred as detailed in the pre-
vious section). Once a resource assignment has been made, our scheduler does
not attempt to pre-empt jobs. All jobs run on a single processor which can be
time-shared (i.e. serve multiple jobs simultaneously by allocating portions of its
processing power to each such job). Intelligent allocationof these portions to jobs
is necessary to prevent jobs from blocking when they depend on bandwidth-limited
remote data access.

3.5.1 Network unaware

Network unaware scheduling will compute Grid job schedulesbased on the status
of the computational, storage and data resources. Algorithms that use this kind of
approach will not take into account information concerningthe status of the net-
work interconnecting these resources. The decision of which resources to use for
a job will be based on the information acquired from the different information ser-
vices (i.e. job execution speed and end time will be calculated based on the status
of CR / DR / SR retrievedfor that job from the different information services). In
this case, our network unaware algorithm attempts to optimize execution time by
minimizing the time a job spends on processing:

executiontimejob,referenceproc

speedproc ∗ fractionproc

(3.1)
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In this equationexecutiontimejob,referenceproc is the execution time of a job on
a reference processor,speedproc is the relative speed of a processor compared to
the reference processor andfractionproc denotes the fraction of that processor
that can be assigned to the job.

Because network unaware algorithms assume that residual bandwidth on net-
work links is sufficient, job processing can block on input / output operations (see
figure 3.13); their computational progress is no longer determined by the compu-
tational resource’s processor fraction that has been allocated to it (which, together
with the job’s length and the computational resource’s relative speed determines
its earliest end timeif all I/O transfers complete on time i.e. before the start of
the appropriate instruction block), but rather by the limited bandwidth available
to its I/O streams. Note that the fact that network information is discarded during
the scheduling, implies no connection reservations (providing guaranteed avail-
able bandwidths) are made with the connection manager - these would allow to
accurately predict the job’s running time (see figure 3.14).

The time it takes for a job to complete since it has been submitted by the client
can be broken up into:

• Sending the job to the scheduler

• Time spent in the scheduler’s queue

• Time needed for the co-allocation of resources allocated tothat job

• Transfer time for the first input data block(s)

• Time needed to process the job at its maximal execution speed

• Transfer time for the last output data block(s)

• Time during which the job is blocked on I/O operations

Pseudocode for the network unaware scheduling algorithm isshown in algo-
rithm 3.5.1. For each job in the scheduling queue for which computational, stor-
age and data resource queries have been answered by the information services, the
scheduling algorithm inspects all possible resource triplets (CR,SR,DR) to see if
they meet the job’s requirements (this step is necessary because when scheduling
in batch, virtual resource load changes - by already scheduled jobs in the same
scheduling round - can make resources returned by the information services for a
job, no longer meet the job’s requirements; see section 3.4 for more information).
If the job can be scheduled on the resource triplet, the algorithm calculates the
time the job would spend processing on the selected computational resource and,
if that time is less than the previously encountered optimum, this resource triplet
is assigned the best resource triplet. Once the algorithm has checked all resource
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triplets, it selects the resource triplet that offered the best processing time (if one
was found), schedules the job on those resources and updatesthose resources’
virtual load information.

3.5.2 Network aware

Network aware scheduling algorithms will not only contact the information ser-
vices for resources that adhere to the job’s requirements, but will also query the
connection manager for information about the status of the network links intercon-
necting these resources. In its turn, the connection manager will send the sched-
uler information about connections that can be set up between data / computational
resource couples (necessary for job input retrieval) and computational / storage re-
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Algorithm 3.5.1: NETWORK UNAWARE(Jobs)

for each j ∈ Jobs

do
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BestResources← [ ]
LeastT ime← +∞
for each c ∈ CRs(j), s ∈ SRs(j), d ∈ DRs(j)

do
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
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
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Resources← [c, s, d]
if canSchedule(j, Resources)

then















Time← getT imeSpan(j, Resources)
if Time < LeastT ime

then
{

LeastT ime← Time
BestResources← Resources

if BestResources 6= [ ]

then
{

schedule(j, BestResources, LeastT ime)
updateResourceLoads(j, BestResources)

source couples (needed for job output storing)). Based on the answers from the
information services and connection manager, the scheduling algorithm is able to
calculate job execution speed and end time more accurately,by taking the speed at
which I/O can be delivered to each available computational resource into account.
For jobs with a single input stream and a single output stream, the best DR/CR/SR
triplet is the one that minimizes the expected completion time of the job. This
value is determined by the available processing power to that job on the compu-
tational resource (and its relative speed), the job’s length, the job’s total I/O data
sizes and the residual bandwidth on the observed links from DR to CR and from
CR to SR. Thus we are searching for the maximum speed at which the job can be
processed, which (if we do not want blocking to occur) is the minimum of:
∀cr ∈ CR,∀proc ∈ proccessorscr,∀dr ∈ DR,∀sr ∈ SR calculatespeedproc∗

fractionproc with speedproc ∗ fractionproc the minimum of:

speedproc × fractionproc (3.2)

executiontimejob,referenceproc × bandwidthdr,cr

8× blocksizeinput

(3.3)

executiontimejob,referenceproc × bandwidthcr,sr

8× blocksizeoutput

(3.4)

In these equations,bandwidthdr,cr is the bandwidth available between data and
computational resource,bandwidthcr,sr denotes the bandwidth available between
computational and storage resource,blocksizeinput is the block size of an input
block andblocksizeoutput denotes the block size of an output block. Equation 3.2
describes the rate at which computational processing of thejob can occur (based
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on CR properties returned by the information services and not taking into account
I/O bandwidth restrictions), while equation 3.3 and equation 3.4 denote the speed
at which processing can occur when limited by bandwidth fromdata resource to
computational resource and from computational resource tostorage resource re-
spectively.

As explained, for some (DR/CR/SR) triplets, due to bandwidth constraints, this
duration may be significantly higher than the value calculated from the job’s length
and the CR’s relative speed, even if job execution and data transfer occur simul-
taneously. The scheduler selects the optimal DR/CR/SR triplet and contacts the
connection manager to perform the necessary connection setups. The job then gets
transferred to the selected CR for processing and I/O is sentfrom/to the DR/SR
over the reserved connections. If neither local nor remote resources satisfying the
job’s requirements can be found, or if no connections with sufficient bandwidth
are available, the job will be queued and prepared for rescheduling.

The time it takes for a job to complete since it has been submitted by the client
can be broken up into:

• Sending the job to the scheduler

• Time spent in the scheduler’s queue

• Time needed for the co-allocation of resources (including network resources)
allocated to that job

• Network transfer time for the first input data block(s)

• Time needed to process the job at its allocated execution speed

executiontimejob,referenceproc

speedproc × fractionproc

• Network transfer time for the last output data block(s)

Each of these can be found in figure 3.15. Note that no job can become blocked
because of bandwidth reservations with the connection manager, excluding the
network from becoming an unexpected bottleneck.

The pseudocode for the network aware scheduling algorithm is shown in al-
gorithm 3.5.2. For each job in the scheduling queue for whichcomputational,
storage, data and network resource queries have been answered by the information
services and connection managers, the scheduling algorithm inspects all possible
resource triplets (CR,SR,DR) and associated interconnections to see if the resource
triplet/connection combination meets the job’s requirements (as already noted, this
step is necessary because when scheduling in batch, virtualresource load changes
can make resources returned by the information services/connection manager for
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a job, no longer meet the job’s requirements). If the job can indeed be scheduled
on the selected resources, the algorithm calculates the time during which the job
can be processed (taking into account the speed at which input and output data
blocks can be retrieved over the connections and the processing power available
on the computational resource) and, if that time is less thanthe previously encoun-
tered optimum, temporarily stores this resource/connection combination as best
scheduling solution. Once the algorithm has checked all resource triplets, it se-
lects the resource triplet that offered the best processingtime (if one was found),
schedules the job on those resources and updates those resources’ and their inter-
connections’ virtual load information.
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Algorithm 3.5.2: NETWORK AWARE(Jobs)

for each j ∈ Jobs

do
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BestResources← [ ]
LeastT ime← +∞
for each c ∈ CRs(j), s ∈ SRs(j), d ∈ DRs(j)

do
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Conn← getConn(c, s, d)
Resources← [c, s, d, Conn]
if canSchedule(j, Resources)

then


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


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

Time← getT imeSpan(j, Resources)
if Time < LeastT ime

then
{

LeastT ime← Time
BestResources← Resources

if BestResources 6= [ ]

then
{

schedule(j, BestResources, LeastT ime)
updateResourceLoads(j, BestResources)

3.5.3 Resource locality preference

The “Local” scheduling heuristic is used solely for performance comparison. “Lo-
cal” scheduling implies that a job submitted at a site’s Gridportal, also needs to be
processed on that site’s computational, storage and data resources. Basically this
means that each site executes its own jobs (the scheduler only queries the origi-
nating site’s information services and thereby solely receives local resource infor-
mation), and that no Grid functionality (namely remote processing and remote I/O
retrieval/storage) is used in an attempt to overcome the site’s restrictions. Both
network aware and network unaware local scheduling heuristics are supported in
NSGrid.

“PreferLocal” scheduling algorithms attempt to place a jobon a site’s local re-
sources for processing, as we believe that, from an economicviewpoint, it can be
assumed that remote resources are only used when necessary.When local process-
ing is impossible (either because the job’s requirements cannot be met locally,
because the maximum computational load has been reached, orbecause I/O re-
quirements are not met), the scheduler looks at the status ofthe remote resources
and, if possible, selects a DR/CR/SR triplet (not necessarily all residing at one
particular Grid site) meeting the job’s requirements and prefers the triplet which
allows for the earliest job end time (this job end time can be calculated in both a
network aware or a network unaware fashion). The job is then transferred to the
selected computational resource for processing and I/O is sent from/to the selected
data and storage resource. If neither local nor remote resources satisfying the job’s
requirements can be found, the job gets queued for rescheduling during the next
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scheduling round.
“Spread” algorithms do not prefer resources local to the job’s originating site,

but instead treat each Grid resource as equal.

3.5.4 Minimum hopcount

The “minimum hopcount” scheduling heuristic attempts to minimize the amount
of network links (hops) input/output data needs to be sent over for a job in order to
sparingly use available network resources. It chooses the DR/CR/SR triplet meet-
ing the job’s requirements and minimizinghopcount(DR,CR) + hopcount(CR,SR)

and does not take into account available network bandwidth on the links intercon-
necting the selected resource triplet.

Algorithm 3.5.3: M INIMUM HOPCOUNT(Jobs)

for each j ∈ Jobs

do
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BestResources← [ ]
MinHopCount← +∞
Time← +∞
for each c ∈ CRs(j), s ∈ SRs(j), d ∈ DRs(j)

do
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Resources← [c, s, d]
if canSchedule(j, Resources)

then
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HopCount← getHopCount(j, Resources)
if HopCount < MinHopCount

then







MinHopCount← HopCount
T ime← getT imeSpan(j, Resources)
BestResources← Resources

if BestResources 6= [ ]

then
{

schedule(j, BestResources)
updateResourceLoads(j, BestResources)

3.5.5 Service aware

A service aware heuristic dynamically classifies jobs in service class pools and at-
tempts to schedule these service classes using an appropriate scheduling heuristic.
Computationally intensive service classes are better of with a scheduling algo-
rithm that focusses on allocating large and fast computational processor fractions
than with a scheduling heuristic intent on optimizing network resource usage. Data
intensive service classes on the other hand are better off with a scheduling heuristic
that takes into account computational resource blocking times due to input/output
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network delays. We refer to appendix B and appendix C for moreinformation
regarding service aware scheduling in Grids.

3.6 Simulation results

3.6.1 Simulation environment

All simulations performed in this section were run on a Mosix[39] cluster consist-
ing of 14 AMD Athlon XP1700+ nodes with 1 GB RAM and Debian Woody [40]
as operating system. NSGrid simulations were able to migrate to different cluster
nodes depending on the load.

3.6.2 Simulated topology

A fixed Grid topology was used for the simulations presented here (topology and
resources are depicted in figure 3.16). First, a Wide-Area Network (WAN) topol-
ogy (containing9 core routers with an average out-degree of3) was instantiated
using theGridG tool. Amongst the edge LANs of this topology, we have chosen
12 of them to represent a Grid site (each having its own computational, storage and
data resource). Furthermore, we have homogenized the capacities of each WAN
link, which we then treated as a parameter in our simulations. Each site has its own
information service(storing resource properties and status) and localGrid portal
(through which users can submit jobs). Local resources are connected through
1Gbps LAN links.

3.6.2.1 Job parameters

Two different job types were used in our simulations; one is more data-intensive
(i.e. higher data sizes involved), while the other is more CPU-intensive. At each
Grid site, two clients have been instantiated, one for each job type. Each client
submits mutually independent jobs to its Grid portal. All jobs need a single data
set stored on one of the data resources and write to a single storage resource. In
the simulations where data is retrieved/stored in parallelwith job processing, the
number of blocks equalled 50. The ranges (uniformly distributed) between which
the relevant job parameters vary have been summarized in table 3.2. Both job types
make up50 percent of the total job load; in each simulation, the job load consisted
of 1200 jobs.

For each scheduling algorithm, we have chosen to use a fixed interval of50s

between consecutive scheduling rounds. From the arrival rates in table 3.2 (IAT)
and the fact that multiple sites submit job simultaneously,it follows that we are
likely to find multiple jobs in the queue at the start of each scheduling round.
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Figure 3.16: Simulated Grid topology

CPU-Job Data-Job
Input (GB) 0.01-0.02 1-2

Output (GB) 0.01-0.02 1-2
IAT (s) 100-200 100-200

Ref. run time (s) 400-1200 200-400

Table 3.2: Relevant job properties

3.6.2.2 Resource dimensions

We have assigned one computational resource to each Grid Site. To reflect the
use of different tiers in existing operational Grids, not all computational resources
are equivalent. The least powerful CR has two processors which operate at the
reference speed. A second class of CRs has four processors, and each processor
operates at twice the reference speed. The third - and last - CR type contains 6
processors, each of which operates at three times the reference speed. Conversely,
the least powerful type of CR is three times as common as the most powerful CR,
and twice as common as the middle one.

Since our focus is on determining the influence of the use of network resource
status information on the optimality of the job schedule, weassumed that storage



GRID SIMULATION 3-39

 0

 500

 1000

 1500

 2000

 2500

 3000

155100502510521

A
ve

ra
ge

 J
ob

 R
es

po
ns

e 
T

im
e 

(s
)

Wan Link Capacity (Mbps)

NoNetwork
Network

PreferLocal

Figure 3.17: Job response time: parallel I/O

resources offer ‘unlimited’ disk space. Each site has at itsdisposal exactly one
such storage resource.

Each site’s data resource contains 6 out of 12 possible data sets. These data
sets are distributed in such a way that50 percent of the jobs submitted to a site can
have local access to their needed data set.

3.6.3 Average job response time

We define theresponse timeof a job as the difference between its end time and the
time it is submitted to the scheduler.

In figure 3.17 we present this average job response time for algorithms we dis-
cussed earlier (network unaware spread scheduling, network aware spread schedul-
ing and network aware preferlocal scheduling). In this particular simulation, si-
multaneous execution and data transfer were allowed (inputwas retrieved in 50
consecutive input blocks and output was stored in 50 consecutive output blocks);
data connections were set up on a FCFS basis without upfront VPN dimensioning.
Clearly, for low bandwidths, not taking the network status into account for sched-
ule computation, incurs a severe penalty. When bandwidth grows, the importance
of this network information degrades (for a constant job load) as the network no
longer creates a bottleneck. In fact, for high bandwidths, it is possible for the net-
work unaware algorithm to perform slightly better than the other algorithms; this
is due to the conservative nature of our network-aware algorithms. For instance,
these take for granted that the maximum data transfer rate isonly 95 percent of the
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Figure 3.18: CR allocations: idle time

available bandwidth (i.e.5 percent protocol overhead) and adjust their allocations
accordingly.

In our simulations, no improvement is obtained by giving preference to lo-
cal resources over remote ones. Intuitively, we expect better schedules using this
strategy for data-intensive jobs as intra-site network links have high capacities.
However, this improvement is neutralized by the asymmetry of the computational
resources; jobs submitted at a site containing a slower CR, are now less likely to be
executed on a faster one (which is of course the case if the best resource collection
is selected for a job).

3.6.4 Computational resource idle time

If job execution and data transfer occur simultaneously, jobs can block, thereby
inducing idle time on their time-shared CR within the processing power fraction
allocated to that job. This happens if the job needs to wait for input data to arrive
or output data to be written. Such a scenario is plausible when a network unaware
scheduling algorithm is used; while available network bandwidth (in particular,
between the job’s CR and the DR providing it with input data) influences the mini-
mum duration of a job on that CR, these algorithms do not take this bandwidth into
account. This results in possible overallocation of the time-shared computational
resource; a fraction of the resource is reserved uniquely for this job, but the job
is unable to exploit its allocated computing power to its full extent. This means
that - within its allocated fraction - a job induces idle timeon the CR. Again, the
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Figure 3.19: Job response time: pre-staged input

incurred penalty grows with lower bandwidths. Figure 3.18 shows the amount of
idle time created by the network unaware algorithm in such cases.

In contrast, the network aware scheduling algorithms we discussed will be able
to ‘tune’ their CR allocations with network bandwidth in mind, to ensure that no
CR remains unnecessarily idle.

3.6.5 Influence of sequential data processing

In figure 3.19, we have plotted the average job response time again for the same
job load. In this case however, jobs were not able to start execution while still
downloading data, thus forcing the pre-staging of the entire input to the execu-
tion site. As the execution/transfer parallelism is lost, average response times for
network aware algorithms increase (see also figure 3.17). However, this loss of
parallelism does not influence the relative behaviour of thedifferent algorithms
(network aware or not) as discussed before. For low bandwidths, the network un-
aware algorithm produces better average response times when pre-staging data,
as jobs cannot block their computational resource during processing in this case
(rendering the computational resource utilisation more effective).

3.6.6 Influence of capacitated VPNs

If data connections are set up on demand using a pure FCFS scheme, it is likely
that data-intensive jobs will quickly use up all of the available bandwidth, causing
CPU-intensive jobs to remain queued for a longer period of time.
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Figure 3.20: Job response time: upfront VPN reservations

The upfront reservation of bandwidth to each job type ensures that these CPU-
intensive jobs will never be excluded from remote execution(i.e. process them
on a faster CR). We have simulated the same job load, althoughthis time VPNs
were set up in advance for the two job classes (data-intensive vs. CPU-intensive).
We reserved more bandwidth for the data-intensive jobs, using a20 − 80 percent
ratio. The job response time for the different algorithms inthis scenario is shown
in figure 3.20. This approach visibly improves the response time; CPU-intensive
jobs do not remain queued for an extraordinary long period oftime, and as these
jobs have long processing times, this has a significant impact on the average job
response time.

Further improvement is possible if bandwidth is distributed more intelligently
across the different job classes in a way that takes into account their respective
processed data sizes and run times (see chapter 4).

3.7 Other simulations

We refer to appendix B for simulations concerning the use of application-specific
hints in reconfigurable Grid scheduling algorithms. Using NSGrid we compare
schedules that were produced by taking application-specific hints into account
to schedules produced by applying the same strategy for all jobs (for both net-
work aware as for network unaware scheduling). It is shown that when using
application-specific hints in the scheduling process, average job response times
in our simulated scenario improved by up to30 percent, as some jobs are now
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processed at a rate which is slightly lower than their preferred execution rate (as
allowed by the hints), but finish sooner than if they were requeued for scheduling
at a later time.

In appendix C we compare the performance of “network aware”,“network
unaware”, “service” and “minhopcount” scheduling algorithms when scheduling
cpu intensive and data intensive job classes (with dataset sizes between 15.6GB
and 156GB per job - which can be expected of Grid jobs in the future) on a Grid
topology in which sites are interconnected by means of high bandwidth (2.5Gb/s

- 5Gb/s) optical links. It is shown that even when high-capacity network links are
available, network unaware scheduling heuristics are outperformed by network
aware scheduling algorithms in terms of average job response times and resource
efficiency. Furthermore, if multiple application types areexecuted on the Grid, fur-
ther improvements can be obtained by utilising service-oriented scheduling heuris-
tics.

3.8 Conclusions

In this chapter we have presented NSGrid, a Grid simulator built on top of the ns-2
network simulator and capable of accurately modelling network traffic between
different Grid resources. Computational, storage and dataresource models were
discussed, along with job (processing and I/O) models and the functionality &
interoperation of the different management components: scheduler, connection
manager, service manager, service monitor, information service and replication
manager.

In order to demonstrate the usefulness of NSGrid, differentGrid scheduling
algorithms (some network aware while others network unaware) were detailed and
their performance was evaluated on a sample Grid topology. The results show
that whether data is pre-staged or accessed in parallel withthe job’s execution
(i.e. streamed), accurate network status information allows to create significantly
better schedules in terms of both job response time and computational resource
efficiency. From our simulations, it follows that upfront reservation of bandwidth
(between Grid resources) for different job types can improve the response time by
avoiding that data-intensive jobs monopolize available bandwidth.



3-44 CHAPTER 3

References

[1] The Network Simulator - NS2. http://www.isi.edu/nsnam/ns.

[2] L. Hall, A. Schulz, D. Shmoys, and J. Wein.Scheduling To Minimize Average
Completion Time: Off-line and On-line Algorithms. In SODA: ACM-SIAM
Symposium on Discrete Algorithms (Conference on Theoretical and Experi-
mental Analysis of Discrete Algorithms), 1996.

[3] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,
and Parkson Wong.Theory and Practice in Parallel Job Scheduling. In
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, pages 1–34. Springer Verlag, 1997.

[4] Andrea Carol Arpaci-Dusseau.Implicit coscheduling: coordinated schedul-
ing with implicit information in distributed systems. ACM Transactions on
Computer Systems, 19:283–331, 2001.

[5] J. Liu, D.M. Nicol, B.J. Premore, and A.L.Poplawski.Performance Predic-
tion of a Parallel Simulator. In Proc. of the Parallel and Distributed Simula-
tion Conference (PADS’99), 1999.

[6] Jason Liu, L. Felipe Perrone, David M. Nicol, Michael Liljenstam, Chip El-
liott, and David Pearson.Simulation Modeling of Large-Scale Ad-hoc Sensor
Networks. In European Simulation Interoperability Workshop, 2001.

[7] A. Varga. OMNeT++. IEEE Network Interactive, 16(4), 2002.

[8] Andras Varga.The OMNeT++ Discrete Event Simulation System. In Pro-
ceedings of the European Simulation Multiconference (ESM’2001), 2001.

[9] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, andFrancine Berman.
A Study of Deadline Scheduling for Client-Server Systems onthe Computa-
tional Grid. In HPDC ’01: Proceedings of the 10th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC-10’01), 2001.

[10] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita.Performance Analysis
of Scheduling and Replication Algorithms on Grid Datafarm Architecture for
High-Energy Physics Applications. In Proceedings of the 12th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC-12),
2003.

[11] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, Kenjiro Taura, and
Andrew A. Chien.The MicroGrid: a Scientific Tool for Modeling Computa-
tional Grids. In Proc. of Supercomputing ’00, 2000.



GRID SIMULATION 3-45

[12] Xin Liu, Huaxia Xia, and Andrew Chien.Validating and Scaling the Micro-
Grid: A Scientific Instrument for Grid Dynamics. Journal of Grid Computing,
2:141–161, 2004.

[13] The Globus Alliance. http://www.globus.org/.

[14] Arnaud Legrand, Loris Marchal, and Henri Casanova.Scheduling Distrib-
uted Applications: the SimGrid Simulation Framework. In CCGRID ’03:
Proceedings of the 3st International Symposium on Cluster Computing and
the Grid, 2003.

[15] J. Lerouge and A. Legrand.MetaSimGrid : Towards realistic scheduling
simulation of distributed applications. ENS-LIP Research Report 2002-28,
2002.

[16] R. Buyya and M. Murshed.GridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Scheduling forGrid Comput-
ing. The Journal of Concurrency and Computation: Practice and Experience
(CCPE), May 2002.

[17] Anthony Sulistio, Gokul Poduvaly, Rajkumar Buyya, andChen-Khong
Tham. Constructing A Grid Simulation with Differentiated Network Ser-
vice Using GridSim. In Proc. of the 6th International Conference on Internet
Computing (ICOMP’05), 2005.

[18] Hung-Ying Tyan and Chao-Ju Hou.JavaSim: A component-based composi-
tional network simulation environment. In Proc. of Western Simulation Mul-
ticonference - Communication Networks And Distributed Systems Modeling
And Simulation, 2001.

[19] John A. Miller, Andrew F. Seila, and Xuewei Xiang.The JSIM Web-Based
Simulation Environment. Future Generation Computer Systems (FGCS),
Special Issue on Web-Based Modeling and Simulation, 17:119–133, 2000.

[20] K. Ranganathan and I. Foster.Identifying Dynamic Replication Strategies for
a High Performance Data Grid. In Proc. of the International Grid Computing
Workshop, 2001.

[21] K. Ranganathan and I. Foster.Decoupling Computation and Data Schedul-
ing in Distributed Data-Intensive Applications. In Int. Symposium of High
Performance Distributed Computing, 2002.

[22] Parsec : Parallel Simulation Environment for Complex Systems. http:
//pcl.cs.ucla.edu/projects/parsec.



3-46 CHAPTER 3

[23] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt
Stockinger, and Floriano Zini.Simulation of Dynamic Grid Replication
Strategies in OptorSim. In GRID ’02: Proceedings of the Third International
Workshop on Grid Computing, pages 46–57, 2002.

[24] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Caitriana
Nicholson, Kurt Stockinger, and Floriano Zini.Evaluating Scheduling and
Replica Optimisation Strategies in OptorSim. In 4th International Workshop
on Grid Computing (Grid2003), 2003.

[25] Java. http://java.sun.com/.

[26] The DataGrid Project. http://eu-datagrid.web.cern.ch/
eu-datagrid/.

[27] I. Foster K. Ranganathan.Simulation Studies of Computation and Data
Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1:53–
62, 2003.

[28] Tcl/Tk. http://www.tcl.tk.

[29] B. Stroustrup.The C++ Programming Language. Addison-Wesley Publica-
tion Company, 2000.

[30] D. Lu and P. Dinda.Synthesizing Realistic Computational Grids. In Pro-
ceedings of ACM/IEEE Supercomputing 2003 (SC 2003), 2003.

[31] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids.
ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003.

[32] L. Hall, A. Schulz, D. Shmoys, and J. Wein.Scheduling To Minimize Average
Completion Time: Off-line and On-line Algorithms. In SODA: ACM-SIAM
Symposium on Discrete Algorithms (A Conference on Theoretical and Ex-
perimental Analysis of Discrete Algorithms), 1996.

[33] C. Ernemann, V. Hamscher, A. Streit, and R.Yahyapour.Enhanced Algo-
rithms for Multi-Site Scheduling. In Proceedings of Grid2002, LNCS 2536,
2002.

[34] A.I.D. Bucur and D.H.J. Epema.An Evaluation of Processor Co-Allocation
for Different System Configurations and Job Struxctures. In Proceedings of
SBAC-PAD, 2002.

[35] A.I.D. Bucur and D.H.J. Epema.The Influence of the Structure and Sizes of
Jobs on the Performance of Co-Allocation. In Proceedings of JSSPP6, 2000.



GRID SIMULATION 3-47

[36] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: An Experiment in Public-Resource Computing. Communi-
cations of the ACM, 45:56–61, 2002.

[37] H. Casanova, T. Bartol, J. Stiles, and F. Berman.Distributing MCell Simula-
tions on the Grid. The International Journal of High Performance Computing
Applications, 14:243–257, 2001.

[38] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert.Bandwidth-
centric allocation of independent tasks on heterogeneous platforms. Techni-
cal report, Technical Report 4210, INRIA, 2001.

[39] MOSIX Cluster and Grid management. http://www.mosix.org/.

[40] Debian. http://www.debian.org/.





4
Grid Service Management

4.1 Introduction

In chapter 2 we discussed the importance of accurately monitoring Grid state and
presented a scalable Grid monitoring architecture capableof outperforming the
current leading Grid monitoring platforms. We continued inchapter 3 by de-
scribing NSGrid, a Grid simulator capable of modelling a large variety of Grid
topologies and resource configurations (providing network, computational, data
and storage resource models along with models for various management compo-
nents and jobs). The work presented in this chapter combinesthese efforts and
discusses how monitored job, application and resource characteristics can be put
to use by a Grid service management architecture to improve among others Grid
management scalability and resource efficiency. NSGrid allows us to easily evalu-
ate the effectiveness of different service management algorithms on a wide range
of Grid configurations.

As more and more application types are ported to Grid environments, an evo-
lution is noticed from purely computational and/or data Grid offerings to full-
scale service Grids [1] (e.g. the Enabling Grids for E-Science in Europe (EGEE)
project [2]). A ‘service Grid’ denotes a Grid infrastructure capable of supporting
a multitude ofapplication typeswith varying QoS levels (i.e. our definition of
service Grid is not limited to web-service enabled Grids). We use the term ‘ser-
vice class’ as a classifier for user-submitted Grid jobs thatexhibit similar resource
requirements (processing requirements, I/O data requirements, priority, etc.). The
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architectural standards for service Grids are provided by the Global Grid Forum’s
Open Grid Service Architecture (OGSA) [3], and (to a lesser extent) the Web Ser-
vice Resource Framework [4], building on concepts of both Grid and Web Service
communities.

Widespread Grid adoption also increases the need for automated distributed
management of Grids, as the number of resources offered on these Grids rises
dramatically (hence the scalability of these Grids becomesvery important). Auto-
mated self-configuration and self-optimization of Grid resource usage can greatly
reduce the cost of managing a large-scale Grid system, and atthe same time
achieve better resource efficiency, scalability and QoS support [5, 6].

The distributed service management architecture proposedin this chapter can
be described as a distinct implementation of the OGSA ‘Service Level Manager’
concept. Service Level Managers are, according to the OGSA specification, re-
sponsible for setting and adjusting policies, and changingthe behaviour of man-
aged resources in response to observed conditions.

Our main goal is to automatically and intelligently assign Grid resources (both
network, computing and data/storage resources) to a particular service class for
exclusive use during a specified time frame (i.e. partitioning the pool of Grid re-
sources into distinct service class-assigned resource pool subsets). The decision
to assign a resource to one particular service will be based on the resources avail-
able to the Grid and monitored service class resource usage characteristics and
requirements. Once resource partitioning has been performed, dedicated manage-
ment components (i.e. scheduler, information service, etc.) will be associated to a
service class’s assigned resources, effectively constructing multiple self-managing
‘Virtual Private Grids’. These Virtual Private Grids in turn improve Grid manage-
ment scalability, as their management components only needto take into account
the state of their partition-assigned resources along withthe state and requirements
of jobs from the service class they are responsible for.

In order to compare the performance of a service managed Gridversus a non-
service managed Grid we use NSGrid (detailed in chapter 3). More specifically, we
evaluated Grid performance (in terms of average job response time and resource
efficiency) when different partitioning strategies are employed, and this both in
case network aware as when network unaware scheduling is used.

This chapter is structured as follows: section 4.2 summarizes related work in
this area, while section 4.3 continues with an overview of the service management
architecture and its interaction with other Grid components. Section 4.4 elaborates
on the different resource partitioning strategies, while the evaluation of those par-
titioning strategies in a typical Grid topology is comparedto a non-resource parti-
tioned situation for varying job loads in section 4.5. Finally, section 4.6 presents
some concluding remarks.
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4.2 Related work

Considerable work has already been done in the area of distributed scheduling for
Grids [7]. Grid scheduling taking into account service specific requirements has
been dubbedapplication-level scheduling. Most notable application-level research
projects include AppLeS [8] and GrADS [9].

In AppLeS, service-class scheduling agents interoperablewith existing re-
source management systems have been implemented. Essentially, one separate
scheduler needs to be constructed per application type. Ourservice management
architecture differs from this approach in that it operatescompletely separated
from the Grid scheduling components, working in on service-exclusivity proper-
ties located at the information services (responsible for storing resource properties
and answering resource queries from e.g. the different schedulers).

GrADS on the other hand is a project to provide an end-to-end Grid application
preparation and execution environment. Application run-time specific resource in-
formation comes from the Network Weather Service [10] and MDS2 [11]. For
each application; a performance (i.e. computational, memory and communica-
tion) model needs to be provided by the user. This differs from our service mon-
itor approach, which actively monitors application behaviour and deduces service
characteristics at run-time (see section 4.3.2).

The General purpose Architecture for Reservation and Allocation (GARA)
project [12] provides Globus with end-to-end Quality of Service guarantees for
applications. Both advance and immediate resource reservations are supported.
GARA does not offer dynamic automated resource-to-servicepartitioning but can
instead be seen as a technology enabling the work proposed inthis chapter.

IBM’s Tivoli Intelligent Orchestrator (TIO) and Provisioning Manager (TPM)
[13] can improve service response times by monitoring registered resources and
requirements for anticipated peak workloads and, if necessary, can automatically
re-allocate resources in accordance with business priorities. TIO and TPM are fo-
cused on automated data center resource-to-service allocations, and require users
to predefine ‘optimal resource utilization’ plans for each supported service class.
Our service management architecture focuses on the needs ofgeneric computa-
tional / data / service Grids, and tries to automatically (i.e. without user inter-
action) deduce optimal resource utilization from monitored Grid job submission
behaviour.

Optimally assigning resources to services has been the subject of research
in [14]. In this study however, resource selection occurs each time a job is sub-
mitted to a Grid portal (i.e. service aware scheduling). This differs from the work
proposed in this chapter in which resources are pre-assigned to service classes
based on service class characteristics (i.e. prior to the job scheduling process).

In contrast to the above mentioned research projects, our contribution focuses
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on distributed, automated and intelligent resource-to-service partitioning in a Grid
environment (based on monitored service class characteristics/requirements) along
with the dynamic deployment of service class exclusive management components
(effectively constructing multiple Virtual Private Grids).

4.3 Service management concept

Recall that we regard a Grid as a collection of Grid sites interconnected by WAN
links. Each Grid site has its own resources (computational,storage and data re-
sources) and a set of management components, all of which areinterconnected by
means of LAN links. Every Grid resource in our model is given aservice class
ID property (stored in the information service with which the resource is regis-
tered) which denotes the service class the resource is associated with. If no service
management components are instantiated in the Grid, all resources’ service class
ID equals ‘0’, meaning these resources can be used byany job (i.e. belonging to
anyservice class). If however a resource’s service class ID is set to the ID of one
particular service class, only jobs from that particular service class will be able
to start utilising that resource (note that we saystart since jobs already assigned
to a resource the moment a change in that resource’s service class ID occurs, can
continue utilising that resource).

4.3.1 Resource-to-service partitioning

Our goal is to intelligently and automatically assign service class IDs to each re-
source so they can be used exclusively for jobs spawned from that service class.
This classification of Grid resources in a per-service resource pool with its own
dedicated scheduler and information service has multiple benefits:

• resource efficiency and average job response times improve (as will be shown
in section 4.5)

• allows for faster scheduling decisions and resource information lookups

• service class priorities can be given by assigning more resources to high-
priority service classes

• locally offered service classes can be prioritized over foreign Grid site ser-
vice classes

• reduced infrastructure costs: by allocating job loads to resources more effi-
ciently, the number of resources can be reduced

• improved scalability with dynamic deployment of dedicatedVPG manage-
ment components
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• support for new business models

• service class dedicated management components can be finetuned to the
needs of their particular service

• security can be enforced on a service class’s resource pool basis

As we will see in section 4.5, resource efficiency (and average job response
times) can be improved by limiting resource availability toservice classes that
can make efficient use of that particular resource (e.g. taking into account service
class data locality). Note that resource efficiency describes the amount of time a
resource is reservedand this reservation is fully utilised - as opposed to resource
reservations where reservation time is spent on idling while waiting for job I/O
data to arrive. In addition, the number of job resource queryresults returned by the
information services to the scheduler will be less than whenthere is one common
resource pool, allowing for faster scheduling decisions (as we are in fact utilising
the resources’ service class ID assignation as an advance reservation mechanism).

Of course, one has to be very careful when automatically assigning resources to
service classes, as it creates the risk that certain serviceclasses are (involuntarily)
left starving for resources on which to run, while other resources are assigned to
a service class for which there are no job submissions at thattime (and are thus
unnecessarily left idle). One also has to take into account service class necessities
when making resource partitioning decisions, in order to avoid excluding a service
class from access to a critical resource (e.g. prohibiting aservice class access to
mandatory data resources).

The same way computational, storage and data resources can be partitioned
amongst different service class resource pools, network resources can also be split
up by performing per-service bandwidth reservations (e.g.VPN technology). This
can prevent data-intensive service classes from monopolising network bandwidth
usage and thereby hampering the performance of jobs from other service classes.
Instead, each service class should automatically receive acertain bandwidth and
be able to use this bandwidth without having to worry about the network usage of
other services’ jobs.

With combined network and resource partitioning, a Grid canbe modelled as a
dynamic collection of overlay Grids orVirtual Private Grids(VPG), with one VPG
for each service class offered in the Grid (see figure 4.2). These VPGs are not static
structures in that they do not have resources assigned to them in a permanent way,
but react to monitored changes in service characteristics (e.g. additional service
offerings can lead to the construction of new VPGs and reallocation of resources
across existing VPGs). Resource reallocation can stem fromimportant changes
in monitored service class characteristics (e.g. higher job submission rates for a
service class), a change in service class priorities or, as already mentioned, the
addition of new service classes.



4-6 CHAPTER 4

computational 

resources

computational 

resources

data

resource

Grid Portal

Information

Service

storage

resource
data

resource

computational

resources

Grid Portal

MAN/WAN 

network
storage

resource

Grid

Scheduler

Connection

Manager

Figure 4.1: Standard Grid

4.3.2 NSGrid implementation

In NSGrid, a distributed service management architecture was implemented in or-
der to evaluate the effectiveness of different resource-to-service partitioning strate-
gies and Virtual Private Grid deployments. Each Grid site can have a localservice
manager, which interacts with the local information service (IS), connection man-
ager (CM) andservice monitor.

4.3.2.1 Service monitor

The service monitor inspects job submission behaviour at the Grid portals (recall
that a Grid portal acts as a job submission gateway for Grid users): each time a
job is submitted, job requirements (service class, priority, needed input data sets
and sizes, output storage sizes, computational requirements, etc.) are extracted and
overall service class properties (e.g. average job interarrival time, average I/O data
sizes, average job computational needs, needed input datasets) are adjusted. When
the service monitor has gathered adequate service class characteristics (either when
service class properties remain relatively stable over a fixed period of time, or
when an information dissemination timer has run out), the service monitor sends
the collected service class’ characteristics to its known (local and foreign Grid site)
service managers, so as to allow them to have up-to-date service class information
for use by the resource-to-service partitioning algorithms. The service monitor
keeps a record of the info that was submitted to the service managers, and, if
substantial changes (w.r.t. a configurable threshold) in service class properties
are monitored (e.g. detection of new service classes, increased service class job



GRID SERVICE MANAGEMENT 4-7

computational 

resources

computational 

resources

data

resource

Grid Portal

storage

resource
data

resource

computational

resources

Grid Portal

MAN/WAN 

network

storage

resource

In
fo

rm
a

tio
n

S
e

rv
ic

e
G

rid

S
c

h
e

d
u

le
r

C
o

n
n

e
c
tio

n

M
a

n
a

g
e

r

VPG service class i

resource pool

VPG

scheduler

VPG

IS

VPG service class j 

resource pool

VPG

scheduler

VPG

IS

VPG service class k 

resource pool

VPG

scheduler

VPG

IS

Grid Service Monitoring

Grid Service Management

Figure 4.2: VPG partitioned Grid

interarrival times, change in priority, higher job response times, etc.), sends up-to-
date service class information to the service managers (seefigure 4.3).

Each service monitor has a moving time window (of configurable length), such
that the properties of a job that was submitted at a time before the time window’s
beginning are no longer taken into account when calculatingservice class’ char-
acteristics. In doing so, service classes that spawn no jobsduring a period of time
equal to the time window’s length are discarded: the servicemonitor will inform
the service manager of this occurrence, which in turn will free resources allocated
to that particular service class and (if necessary) repartition.

Listing 4.1 shows the most important public methods (not including construc-
tors/destructors and most getters/setters) supported by the service monitors. In
what follows we give a brief description of these methods:

• void setBeginPartitionTime(...): sets time at which collected service class
information needs to be sent to the service managers that areinterested in
it (i.e. information dissemination timer). Note that the service monitor can
choose to distribute service class characteristics at an earlier time if these
characteristics remain relatively stable over a period of time.

• void setNewServiceJobNr(...): sets number of jobs (belonging to a new ser-
vice class) that need to be monitored before the service monitor informs the
service managers of the existence of a new service class.

• void setProcDiffIAT(...): sets percentual service class’ interarrival time dif-
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Figure 4.3: VPG partitioning messages

ferentiation that can be monitored before the service monitor informs the
service managers of this change in service class’ characteristics.

• void setProcDiffReq(...): sets percentual service class’ processing require-
ments differentiation that can be monitored before the service monitor in-
forms the service managers of this change in service class’ characteristics.

• void setServiceMonitorWindow(...): sets length of service monitoring win-
dow.

• void setProcDiffInput/Output(...): sets percentual service class’ input/out-
put requirements differentiation that can be monitored before the service
monitor informs the service managers of this change in service class’ char-
acteristics.

• void monitorJob(...): job submission monitored by the service monitor. The
service monitor extracts information from the job’s XML description and
updates the job’s service class’ characteristics.

• void addInitialServiceClass(...): utilised in case one wants to seed the ser-
vice monitor with initial service class’ characteristics.

• void addServiceManager(...): adds a service manager that will be contacted
by the service monitor when distributing service class’ characteristics.
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Listing 4.1: Service monitor interface

classServiceMonitor :public ManagementComponent{
public:

void setBeginPartitionTime(doublebeginPartitionTime);
void setNewServiceJobNr(int newServiceJobNr);
void setProcDiffIAT(doubleprocDiffIAT);
void setProcDiffReq(doubleprocDiffReq);
void setServiceMonitorWindow(doubleserviceMonitorWindow);
void setProcDiffInput(doubleprocDiffInput);
void setProcDiffOutput(doubleprocDiffOutput);

void monitorJob(string jobXML);
void addInitialServiceClass(int serviceClass,doubleMIReq,double inputReq,doubleoutputReq

, int priority, double IAT);
void addServiceManager(string serviceManager);

};

4.3.2.2 Service manager

The service manager thus periodically receives information regarding local and
foreign Grid site service class characteristics from the different service monitors.
When the received information does not differ (with regard toa certain thresh-
old) from the one used to partition the Grid resources in a previous partitioning
run, no resource-to-service repartitioning will occur. Ifhowever the difference be-
tween the previous values and currently monitored service characteristics (average
job IAT, processing length, I/O bandwidth necessities, etc.) is too large, or if no
resource partitioning has yet been done, the service manager will query the in-
formation services for the characteristics of the resources in their local Grid site
resource pool. Once the answer to this query has been received, one of the resource
partitioning algorithms (detailed in section 4.4) is applied to the resource set, and
the resulting resource partitioning solution is sent back to the information services,
who in turn change the service class property of their registered resources. If the
partitioning algorithm also works in on network resources,the connection man-
ager will be contacted to make service bandwidth reservations (based on assigned
computational resources, necessary input datasets and monitored service class’
bandwidth requirements).

Once the partitioning algorithm has finished, resources will be assigned to ser-
vice class resource pools, and (if this was not already done)dedicated Virtual
Private Grid management components will be dynamically constructed and asso-
ciated with the different Virtual Private Grids (in NSGrid these VPG management
components are deployed at the Grid site where jobs from the VPG’s service class
are most common). A VPG information service will gather resource property and
status information from all resources assigned to the VPG. This information ser-
vice will in turn be queried by a dedicated VPG scheduler whenthe latter seeks



4-10 CHAPTER 4

information on resources adhering to a job’s requirements.Note that the global
(central or distributed) Grid scheduling system continuesto receive all jobs sub-
mitted to the different Grid portals, but, upon inspection of the service class of each
arriving job, either tries to schedule the job itself, or, when a VPG is constructed
for the job’s service class, immediately sends it to the dedicated VPG scheduler.

Listing 4.2: Service manager interface

classServiceManager :public ManagementComponent{
public:

void addLocalServiceClass(int serviceClass,int submissionSites,doubleCPUReq,double
inputReq,doubleoutputReq,int priority, double IAT);

void removeLocalServiceClass(int serviceClass);
void addForeignServiceClass(string foreignServiceInfo);
void removeForeignServiceClass(int serviceClass);
void addLocalServiceClassIDNeed(int serviceClass,int ID);
void addForeignServiceClassIDNeed(int serviceClass,int ID);

void addInformationService(string informationService);
void addServiceManager(string serviceManager);
void addGridScheduler(string gridScheduler);
void addConnectionManager(string connectionManager);

void setPartitioningStrategy(string partitionStrategy);
void setForeignPolicy(double foreignPolicy);

void retrieveResources();
void retrieveConnections();

void boostPriority(int serviceClass,int boost);

void submitServiceInfo(string serviceInfo);
void deployVPGS();

};

Listing 4.2 shows the most important public methods (not including construc-
tors/destructors and most getters/setters) supported by the service manager com-
ponents. In what follows we give a brief description of thesemethods:

• void add/removeLocalServiceClass(...): adds/removes local service class char-
acteristics.

• void add/removeForeignServiceClass(...): adds/removes foreign service class
characteristics.

• void addLocal/ForeignServiceClassIDNeed(...); adds data set ID frequently
needed by a local/foreign Grid site service class.

• void addInformationService/ServiceManager/GridScheduler/ConnectionMana-
ger(...): adds management component for querying/updating.
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• void setPartitioningStrategy(...): allows initialising/changing the employed
resource-to-service partitioning strategy.

• void setForeignPolicy(...): allows changing foreign service class policy
(ρSCforeign

as explained in section 4.4.1.2)

• void retrieveResources(): queries the information services for resource prop-
erties.

• void retrieveConnections(): retrieves network resource information from the
connection managers.

• void boostPriority(...): boosts the priority of a particular service class.

• void submitServiceInfo(...): submits service class information (i.e. when
service monitors have monitored a change in service class’ behaviour).

• void deployVPGS(): deploys Virtual Private Grid management components
and configures them accordingly.

4.3.2.3 Information service

Much in the same way as the service monitors can trigger a repartitioning of re-
sources to services when substantial changes in service class characteristics are
monitored, the information services are responsible for signalling changes in re-
source availability. Every time an existing Grid resource becomes unavailable (ei-
ther because of failure or by policy), or conversely, when new resources become
available to the Grid, the information services report thischange to the service
manager. The latter then decides if a resource-to-service repartitioning is neces-
sary.

It is important to note that, while resources are assigned for exclusive use by
a particular service, not one job using a service class reassigned resource will be
interrupted (preventing jobs from being pre-empted when the CR it is running on
is assigned to a different service class). The service assignment will thus only be
effective for new jobs or jobs currently in the scheduler queue. At the time of
scheduling, queries will be sent to the information services for resources adhering
to the job’s requirements, and these information services will return only those
resources that are assigned to that particular job’s service class.

On another note, we have limited our research to discrete resource-to-service
allocations (i.e. a single service class assigned to a resource; note that in sec-
tion 4.4.1.4 we allow network resources to be partitioned amongst multiple service
classes, to prevent parts of the Grid topology of becoming isolated when network
partitioning is performed). More advanced resource-to-service partitioning algo-
rithms could allow resources to be reserved for a subset of the available service
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classes (i.e. multiple service class IDs can be assigned to asingle resource). This
way, resources (or resource fractions) could be members of multiple Virtual Private
Grids, allowing for stacked VPGs.

4.4 Partitioning strategies

Recall that we are trying to partition resources into service class resource pools.
A solution in this case is a mapping from resource to a particular service class
ID, and this for all resources returned from the service manager - information
service queries. A resource can also be assigned service class ID ‘0’, meaning
it can be used by jobs from every service class. Exhaustivelysearching for an
optimal partitioning (by evaluating the fitness of a solution by means of a cost
function) quickly becomes infeasible, as the amount of solutions that needs to be
evaluated is(#serviceclasses + 1)#resources. In our attempts to find a suitable
solution in reasonable time, we have used Genetic Algorithmbased heuristics to
obtain a resource-to-service mapping. Note that Pieter Thysebaert has developed a
heuristic based on Divisible Load Theory (DLT [15]) for tackling the resource-to-
service partitioning problem. For a thorough discussion ofthis heuristic we refer
to [16].

In order to provide a better understanding of the results of employing one of the
different resource-to-service partitioning heuristics discussed in the next sections,
we introduce a sample Grid with 3 Grid sites in figure 4.4. We introduce two ser-
vice classes: the first (SC 1) is cpu-intensive, needs accessto the data set with ID
1 and can run at four times the reference processing speed when receiving/sending
I/O 100Mbps. The second service class (SC 2) is data-intensive, needs access to
the data set with ID 2 and can run at twice the reference processing speed when
receiving/sending I/O at 1Gbps. Both service classes account for 50 percent of the
job load and have equal priority. As shown in table 4.1, the first and second Grid
site launch jobs from service class 1 and 2, while the third Grid site only launches
jobs from service class 2. We have provided site 1 with 2 fast computational re-
sources (who can run jobs at 4 times the reference speed) and 1slow computational
resource (running at the reference speed), while site 2 and 3have a single fast CR
and 2 slow CRs. Each Grid site has a client portal, information service, connection
manager, service monitor and service management component, while a singlenet-
work awareGrid scheduling component is instantiated (the different management
components are not shown to avoid cluttering the figure).

If no resource-to-service partitioning occurs (see figure 4.4), the scheduler will
assign both service class 1 and 2 jobs to the fastest computational resources, as
these resources provide for both service classes the fastest processing speeds.
However, once these fast CRs are fully loaded (with both SC1 and SC2 jobs),
the scheduling algorithm will have to assign computationally intensive SC1 jobs
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site 1 site 2 site3
fast CRs (4x ref.speed) 2 1 1
slow CRs (ref.speed) 1 2 2

Service classes 1-2 1-2 2
Data sets 1 2 2

Table 4.1: Sample Grid site properties
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Figure 4.4: Grid example - no resource-to-service partitioning

to CRs with low processing speeds (processing of these SC1 jobs on the slow
CRs will be four times slower than on a fast CR). A better approach would have
been to assign the data-intensive SC2 jobs to those slower computational resources
that have local access to dataset 2, keeping the fast computational resources fully
available for processing jobs from the computationally intensive service class. The
latter behaviour is exactly what the resource-to-service partitioning heuristics will
try to enforce.

Note that due to the use of a Genetic Algorithm different solutions can be
found when employing one of our resource-to-service partitioning algorithms on
the described problem. Our example will only highlight one of those possible
solutions.

4.4.1 Genetic Algorithm heuristics

The resource class assignment can easily be encoded into ann-tuple of service
class IDs, wheren equals the number of resources. Thesechromosomescan then
be fed to a Genetic Algorithm (GA) which evaluates the fitnessof each chromo-
some (i.e. possible service class assignment) w.r.t. a costfunctionf(x) (see algo-
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rithm 4.4.1). Different cost functions will be described insection 4.4.1.1, 4.4.1.2
and 4.4.1.3.

Algorithm 4.4.1 starts with an initial population size ofm randomly gener-
ated tuples (each tupleb consisting ofn service class ID slots). While the stop-
condition is not fulfilled, the GA applies a proportional selection, after which a
two-point crossover and a mutation step occur. The proportional selection selects
tuples based on their fitness (with fitter solutions more likely to be selected and
carried over to the next generation). In the next step, a two-point crossover op-
eration is applied (for each two consecutive tuples the crossover probabilityρC

determines if all service class IDs between the randomly selectedpos1 andpos2

are switched). Finally, the mutation operation is performed for each tuple, with
mutation probabilityρM determining which of then service class ID slots needs
to be mutated to a random service class ID.

Depending on how much time is available between partitioning runs (which in
turn depends on the stability of the different service characteristics), parameters of
this GA can be tuned in such a way that feasible search times can be attained (i.e.
search time<< time between partitioning runs).

In the next sections we provide details on some implemented partitioning strate-
gies (and accompanying cost functionsf(x)): section 4.4.1.1 and section 4.4.1.2
describe computational resource partitioning based on theprocessing requirements
of respectively local and global service classes. Taking into account the site local-
ity of much needed service class’ input datasets is discussed in section 4.4.1.3.
Finally, partitioning of network resources based on data requirements of the dif-
ferent service classes is discussed in section 4.4.1.4. We assume that the service
manager has received both up-to-date local and foreign Gridsite service charac-
teristics from the service monitors and resource properties from the information
services.

4.4.1.1 Local Service CR partitioning

The first (and simplest) partitioning strategy only takes into account the compu-
tational processing needs and priority of the differentlocal service classes. The
service manager queries the information services for all local computational re-
sources and calculates average service class’ requested processing power as the
average processing time of that service class (as measured on a CR running at ref-
erence speed) divided by the average interarrival time of that SC (the higher job
interarrival times, the less processing power will be needed) and multiplied with
the number of sites that submit jobs from this SC.

∀SC · ppowerreqSC
= sitesSC ×

ptimerefSC

IATSC
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Algorithm 4.4.1: GENETIC ALGORITHM(resources)

populationinitial ← (b(1,0), ..., b(m,0)), t← 0
while stopcondition false
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comment:proportional selection

for i← 1 to m

do
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x← rand[0, 1]
k ← 1

while k < m and x <
∑k

j=1
f(bj,t)P

m
j=1

f(bj,t)

do k ← k + 1
bi,t+1 ← bk,t

comment: two-point crossover

for i← 1 to m− 1 stepi + 2

do
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if rand[0, 1] ≤ ρC
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pos1← rand[1, n]
pos2← rand[1, n]
if pos1 > pos2

then switch(pos1, pos2)
for k ← pos1 to pos2

do switch(bi,t+1[k], bi+1,t+1[k])
comment:mutation

for i← 1 to m

do







for k ← 1 to n

do
{

if rand[0, 1] < ρM

then bi,t+1[k]← rand[0,#SC]
t← t + 1

In this equation,ptimerefSC
is the average processing time of a service class SC

job on a reference computational resource,sitesSC denotes the amount of Grid
portals launching service class SC’s jobs andIATSC is the average service class
SC’s job interarrival time. The relative processing power assigned to a service
class (sum of processing power of computational resources assigned to that SC)
can be found from

∀SC · ppowerasgSC
=

∑

∀CR∈SC

speedCR

speedCRref

× ptimerefSC

In this equationspeedCR is the processing speed of the selected computational
resource (as stored in the information services) whilespeedCRref

is the processing
speed of a reference computational resource. Once CR query answers have been
received, the GA (as shown in algorithm 4.4.1) will be started with cost function
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f(x) described in algorithm 4.4.2.

Algorithm 4.4.2: fCRpartlocal
(x)

result←
ppowerasg0

2
maxAllocover ← 0
maxAllocunder ← 0
for i ∈ SClocal

do







































































aux← ppowerreqi
− ppowerasgi

if aux < 0

then







if − aux > maxAllocover

then maxAllocover ← −aux
aux← ppowerasgi

else











if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

result
+
← priorityi

(
P

j∈SClocal
priorityj)

× aux

result
−
← maxAllocover + maxAllocunder

return (result)

In this cost function (which is to be maximized), the objective is to donate
to eachlocal service class the same amount of processing powerrelative to their
requested processing power (giving a higher cost function impact factor to ser-
vice classes that have a high priority). Right at the start wepenalize assigning all
processing power to service class ID ‘0’ (i.e. we only take into account half of
the processing power when a resource can be used byany service class), as the
objective of our algorithm is exactly to assign resources for exclusive use by a
single service class, so service ID ‘0’ assignations shouldonly be used when con-
flicting service class requirements are found (e.g. two service classes need jobs to
run on a single computational resource). ThemaxAllocover andmaxAllocunder

parameters assure an even spread of processing power to services (both in case
insufficient processing power is available as when sufficient processing power is
available), as they keep track of the maximum amount of overallocated/underal-
located processing power (compared to that service class’ requested processing
power) and penalize the cost function result accordingly.

If we take a look at our example (see figure 4.5) we notice that Grid site 1 has
reserved one of the fast CRs for the computationally intensive service class (SC1),
while Grid site 2 has reserved its only fast CR for processingSC1 jobs. The third
Grid site only takes into account its local service class requirements, and assigns
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Figure 4.5: Grid example - local service CR partitioning

all of its resources to the data intensive service class. Thescheduler can now only
assign SC1 resources to SC1 jobs, preventing data intensivejobs from running on
most fast computational resources (these data intensive jobs spend half of theirfast
computational reservation idling while I/O data is being sent/retrieved).

4.4.1.2 Global Service CR partitioning

The second partitioning strategy adds support for servicesoffered at foreign Grid
sites. The cost function impact factor of assigning resources to foreign service
classes can be adjusted by the local service manager by tuning the foreign service
policy ρSCforeign

. Support for foreign service classes can range from no impact at
all on the cost function (ρSCforeign

= 0) to an impact equal to that of local service
classes (ρSCforeign

= 1) or any value in between. The resulting cost function is
stated in algorithm5.3. In this algorithm we include both local and global services
in the processing power allocation loop and, if we assign processing power to
a foreign service class, multiply the assigned processing power with the foreign
service policyρSCforeign

, effectively manipulating the cost function impact factor
of assigning processing power to foreign service classes according to the local
policy.

Returning to our example (see figure 4.6), we notice that the third Grid site has
taken into account the global need for computational power by service class 1 jobs
and has assigned its fast computational resource to this service class.
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Algorithm 4.4.3: fCRpartglobal
(x)

result←
ppowerasg0

2
maxAllocover ← 0
maxAllocunder ← 0
for i ∈ SClocal ∪ SCforeign

do
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aux← ppowerreqi
− ppowerasgi

if aux < 0

then


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if − aux > maxAllocover

then maxAllocover ← −aux
aux← ppowerasgi

else
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
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if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

if i ∈ SCforeign

then aux← aux× ρSCforeign

result
+
← priorityi

(
P

j∈SC priorityj)
× aux

result
−
← maxAllocover + maxAllocunder

return (result)

4.4.1.3 Input Data Locality Penalization

Resource partitioning based solely on the processing needsof the different ser-
vices can lead to bad performance. In case of data-intensiveservices in particular,
one wants these services to be processed on computational resources located near
input data that is generally requested by those service classes. In order to provide
this functionality, the service manager queries the information services for both
computational and data resources and constructs a list of which CRs have local
access (i.e. accessible from the local Grid site) to which input sets. We adjust
the cost function to include this notion and penalize assigning a computational re-
source that hasno local access to an input dataset much-needed by the assigned
service. The actual penalty depends on the input data intensivenessof the ser-
vice class i (InputReqi

IATi
) when compared to the total input data requirements of all

service classes (
∑

∀j∈SC
InputReqj

IATj
):

costCR∈SCi =

InputReqi

IATi
∑

∀j∈SC
InputReqj

IATj

×
ρcost

#CRassignedi
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Figure 4.6: Grid example - global service CR partitioning

In this equationInputReq is the average service class’s input size requirement,
#CRassigned denotes the amount of computational resources assigned to the ser-
vice class andρcost describes the data non-locality penalty factor. An additional
(yet larger) penalty is given when, amongst all computational resources assigned
to a particular service,not one of themhas access to a needed dataset, as it can
be considered best practice that at least one computationalresource can access a
needed input set locally. This cost is only charged once for each service class.

cost =

InputReqi

IATi
∑

∀j∈SC
InputReqj

IATj

× ρcost

Both costs can be used as a penalty for the cost function in algorithm 4.4.2 and
4.4.3. Algorithm 4.4.4 shows the cost function for global service CR partitioning
with input data locality penalisation.

Our example in figure 4.7 shows that all computational resources at the first
Grid site have been assigned to service class 1. This is exactly because the first
Grid site is the only site with local access to data set 1. Service class 2 is in turn
assigned a fast computational resource at Grid site 3, whichhas local access to
data set 2.

4.4.1.4 Network partitioning

Since the service monitor keeps track of I/O data characteristics of each service,
data intensiveness relative to the other services can be calculated. This in turn
can be used to perform per-service network bandwidth reservations. We have im-
plemented a proof-of-concept network partitioning strategy, in which the service
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Algorithm 4.4.4: fCRpartglobalIDLP
(x)

result←
ppowerasg0

2
maxAllocover ← 0
maxAllocunder ← 0
for i ∈ SClocal ∪ SCforeign

do
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aux← ppowerreqi
− ppowerasgi

if aux < 0

then







if − aux > maxAllocover

then maxAllocover ← −aux
aux← ppowerasgi

else











if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

if i ∈ SCforeign

then aux← aux× ρSCforeign

for c ∈ CRassignedi

do







if noLocalAccesToDataNeeded(c, i)

then aux
−
←

InputReqi
IATiP

∀j∈SC

InputReqj
IATj

× ρcost

#CRassignedi

if noCRsAssignedWithLocalAccessToDataNeeded(i)

then aux
−
←

InputReqi
IATiP

∀j∈SC

InputReqj
IATj

× ρcost

result
+
← priorityi

(
P

j∈SC priorityj)
× aux

result
−
← maxAllocover + maxAllocunder

return (result)

manager calculates average data requirement percentages for each service class i:

bwreqi
=

bwinputi
+bwoutputi

IATi

∑

∀j∈SC

bwinputj
+bwoutputj

IATj

In this equationbwinput is the average service class’s input bandwidth need i.e.
speedCR

speedCRref

× InputReq
ptimeref

while bwoutput denotes the average service class’s output

bandwidth need: speedCR

speedCRref

× OutputReq
ptimeref

. The service manager sends the calcu-

lated information to the connection manager, who in turn will make service class
bandwidth reservations on all network links for which it is responsible. Network
partitioning can be applied to all previously mentioned partitioning algorithms.

If we employ network partitioning on our example (see figure 4.8) we notice
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Figure 4.7: Grid example - global service CR partitioning IDLP

that all network links have been partitioned amongst service class 1 (which has 10
percent of the I/O needs of the data-intensive service class2) and service class 2.
This way, computationally intensive jobs assigned to the fast CR at Grid site 2 will
not suffer from fully congested network links due to I/O fromservice class 2 jobs
travelling over network links on their I/O retrieval/storage route, but instead will
always have a minimum of 10 percent of the total network link capacity assigned
to them. As our network partitioning algorithm only acts as aproof-of-concept
heuristic, a variety of improvements still exist, most notably non-global percentual
network link partitioning. More advanced network partitioning heuristics could
take into account the computational resource-to-service assignations, Grid network
topology and the location of different needed data sets to provide service classes
with point-to-point advance connection reservations tailored to their needs.

4.5 Performance evaluation

4.5.1 Resource setup

A fixed Grid topology (see figure 4.9) was used for all simulations (run on an
LCG-2.6.0 Grid [17] comprised of dual Opteron 242 1.6Ghz worknodes with 2
GB RAM per cpu, and operating under Scientific Linux 3). First, a WAN topology
(containing9 core routers with an average out-degree of3) was instantiated using
the GridG tool [18]. Amongst the edge LANs of this topology, we have chosen
12 of them to represent a Grid site. Each site has its own resources, management
components and Grid portal interconnected through 1Gbps LAN links, with Grid
site interconnections consisting of dedicated 10Mbps WAN links. A single ser-
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vice manager was instantiated, and was given access to the different Grid sites’
information services.

We have assigned3 computational resources to each Grid site (for a total of
36 CRs). To reflect the use of different tiers in existing operational Grids, not
all CRs are equivalent: the least powerful CR has two processors (which oper-
ate at the reference speed - note that speed in our computational model refers to
the actual speed at which computational resources can process jobs i.e. compu-
tational resource performance). A second class of CRs has four processors, and
each processor operates at twice the reference speed. The third - and last - CR
type contains 6 processors, each of which operates at three times the reference
speed. Conversely, the least powerful type of CR is three times as common as
the most powerful CR, and twice as common as the middle one (for a total of 18
reference CRs, 12 four-processor CRs and 6 of the most powerful CRs deployed
in our simulated topology).

We have assumed that storage resources offer “unlimited” disk space, but are
limited in terms of access/write speed by the bandwidth of the link connecting the
resource to the Grid site. Each site has at its disposal exactly one such SR. Each
site’s data resource contains 6 out of 12 possible data sets.These data sets are
distributed in such a way that 50 percent of the jobs submitted to a site can have
local access to their needed data set.

4.5.2 Job parameters

We have used two different, equal-priority service classes(each accounting for
half of the total job load) in our simulations; one is more data-intensive (i.e. higher
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data sizes involved), while the other is more cpu-intensive. At eachGrid site, two
“clients” have been instantiated, one for each job type. Each client submits mutu-
ally independent jobs to its Grid portal. All jobs need a single data resource and
a single storage resource. The ranges between which the relevant job parameters
vary have been summarized in table 4.2. In each simulation, the job load consisted
of 2784 jobs. For each scheduling algorithm, we chose to use a fixed interval of
20s between consecutive scheduling rounds. From the arrival rates in table 4.2 and

CPU-Job Data-Job
Input(GB) 0.01-0.02 1-2

Output(GB) 0.01-0.02 1-2
IAT(s) 30-40 30-40

Ref. run time(s) 100-200 40-60

Table 4.2: Relevant service class properties

the fact that multiple sites submit job simultaneously, we are likely to find multiple
jobs in the queue at the start of each scheduling round.

4.5.3 GA-partitioning performance

The main drawback of GA-based partitioning is the time needed to complete a GA
run (with reasonable results); on our sample scenario, a naive stop condition of
100 generations takes on average2632s (26.32s per generation but it should be
noted that this time is not exclusive for GA solution calculation, but is also spent
on all other simulation tasks during partitioning) as can beseen in figure 4.10.
More reasonable GA calculation times (with an average of1123.4s can however be
obtained when using a more intelligent stop condition (i.e.stop when over a period
of 15 generations the cost function optimum changes by less than 0.5 percent).
For the GA approach, we used Grefenstette’s settings [19], with a population of
30 per generation,ρC = 0.9 andρM = 0.01. In case faster partitioning times
need to be attained, one can either tune GA parameters (smaller population sizes,
faster stopping condition, etc.) or deploy a service monitor/service manager at
every Grid site, who are then responsible for communicatingwith the foreign site’s
service monitor components and partitioning the resourcesat their assigned site (as
described in section 4.3.2).

Figure 4.11 shows the trend of the cost function optimum for different GA
generations (partitioning occurred on the topology discussed in section 4.5.1). The
cost function used is the one discussed in section 4.4.1.1 (Local Service CR parti-
tioning with Input Data Locality penalization). It is important to note that during
the calculation of a resource-to-service partitioning, Grid operation does not stall



GRID SERVICE MANAGEMENT 4-25

but continues as normal, as the service management components do not block any
other management components.
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Figure 4.11: GA optimal fitness trend

4.5.4 Job response time

We define theresponse timeof a job as the difference between its end time (time
at which the job’s final output block has been sent to the scheduler-assigned stor-



4-26 CHAPTER 4

age resource) and the time it is submitted to the scheduler. If we compare the
performance of the different GA-based partitioning heuristics (see figure 4.12 - in
this figure IDLP is short for Input Data Locality Penalization), the results show
that average job response times can be improved significantly (by 29 percent when
network unaware scheduling is used and by30.5 percent when network aware
scheduling is employed) by employing a resource partitioning algorithm prior to
scheduling. This behaviour can be explained because resources are reserved for
exclusive use by a service class. It is this service-exclusivity that forces the sched-
uler to not assign jobs to less-optimal resources (e.g. non-local access to needed
input data, low processing power available), but to keep thejob in the schedul-
ing queue until a service-assigned resource becomes available. Note that when
network unaware scheduling is employed, no connection partitioning results are
shown, due to the fact that the network unaware scheduling algorithm does not
take into account the connection reservation system.

When scheduling network unaware, the best results are attained when using
computational partitioning taking into account input datalocality, as data intensive
jobs can be run on computational resources reserved physically near resources that
store much needed I/O data, leading in turn to less computational stalling, as I/O
data suffers from less network bottlenecking. When network aware scheduling is
employed, one is best off using a heuristic that partitions both computational and
network resources. Network partitioning assures that service classes with high I/O
requirements do not consume all bandwidth (thereby preventing computationally
intensive service classes from retrieving their I/O), but instead force them to only
use a predefined percentage of bandwidth. It is interesting to note that, since the
average runtime of the computational and data intensive service class jobs is150

and50 seconds respectively (only taking into account computational requirements)
and taking into account that the fastest computational resource in our simulated
topology can process a job at three times the reference speed, optimal average job
response time is33.33 seconds.

4.5.5 Resource efficiency

Using the same job load, the average hopcount over which datawas transferred
by data-intensive jobs (with hopcount equalling the amountof hops between data
resource and computational resource added to the amount of hops between com-
putational resource and storage resource) is shown in figure4.13. We notice that
average hopcount dropped by4.8 percent when network unaware scheduling was
employed (i.e. computational resource partitioning with data locality versus non-
service partitioned resources), and by5.5 percent when a network aware schedul-
ing heuristic was used (i.e. network partitioning with datalocality compared to the
non-service managed case), due to the fact that input/output data was located at re-
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Figure 4.12: Job response times for GA-based partitioning heuristics

sources closer to the job’s service class’ assigned CRs. Network resources are thus
used most sparingly when computational and network resource partitioning with
input data locality is employed together with a scheduling algorithm that takes into
account the state of the network links interconnecting the job’s resources.

Furthermore, we calculated the average computational resource utilization:

∑

j∈JobsCR
Loadj

Makespan× speedCR

In this equation
∑

j∈JobsCR
Loadj is the total amount of processing that needs to

be done for the jobs accepted on this resource,Makespandenotes the total amount
of time these jobs spend on this resource, whilespeedCR is the amount of work
that can be processed per time-unit on that particular computational resource (note

that
P

j∈JobsCR
Loadj

speedCR
represents the minimum amount of time for processing these

jobs on that particular computational resource, if no time is lost waiting for I/O
data to arrive). The improvement obtained by employing resource-to-service parti-
tioning when using network unaware scheduling equals17 percent, whereas in the
case where network aware scheduling is used, it is14.6 percent. Indeed, the fastest
(and rarest in our topology) computational resources were automatically reserved
for processing computationally complex jobs, disallowingdata intensive jobs from
cluttering these resources and using their full processingpotential for those com-
putationally intense jobs. The slower computational resources were then assigned
to the data intensive service classes, that (because of their large I/O needs) benefit
more from having fast (i.e. LAN) access to much needed data.
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4.5.6 Scheduling

We measured the time it takes to calculate a scheduling decision and noticed a
decrease in scheduling time of28.17 percent when comparing the service man-
aged Grid to the non-service managed Grid in case network aware scheduling is
used (i.e. from an average7.88s in the non service managed case to5.66s in the
service managed Grid). Note that this is the time measured toscheduleall jobs
that are present in the scheduling queue, as we are scheduling in batch with a
scheduling round time interval of20s. This behaviour can be explained by the
fact that a scheduler queries the information services for resources adhering to a
job’s requirementsandassigned to either the job’s service class or service class0.
When resources are partitioned amongst services, less results will be returned to
the scheduler, allowing for faster schedule making decisions.

4.5.7 Priority - service class QoS support

In another experiment, we gave the cpu-intensive jobs higher priority than the
data-intensive jobs (by informing the service manager of the higher service class
priority before resource-to-service partitioning started) and let the service manager
construct a Virtual Private Grid (dedicated resource pool,scheduler and informa-
tion service) for each service class. Due to the high priority of the cpu-intensive
class, its cost function impact factor becomes higher whichleads to more (and/or
better) resources being assigned to the prioritized class.Also, during deployment
of the VPG schedulers, the service manager configures the dedicated cpu-intensive
scheduler to schedule those prioritized jobs as soon as possible, using a network
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aware scheduling algorithm (the data intensive jobs were also scheduled using a
network aware scheduling algorithm, but were by default queued until the next
scheduling round). The results are shown in figure 4.14: the average job response
time of the computationally intensive service class is substantially improved (due
to more/better resources assigned to this service class andthe ASAP scheduling
policy enforced by the VPG scheduler), while the data intensive service class’s
average response time gets worse (prioritizing service classes over other service
classes can not lead to win-win situations: the non-prioritized service classes’ per-
formance will deteriorate).
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Figure 4.14: VPG service class priority support

4.6 Conclusions

We proposed the use of a distributed service management architecture, following
the OGSA ‘service level manager’ concept, capable of monitoring service char-
acteristics at run-time and partitioning Grid resources amongst different priority
service classes. This partitioning, together with the dynamic creation of per-
service management components, lead to the introduction ofthe Virtual Private
Grid concept. A variety of resource-to-service partitioning algorithms (based on
Genetic Algorithm heuristics) were discussed and we evaluated their performance
on a sample topology using NSGrid. Our results show that the proposed service
management architecture improves both network and computational resource effi-
ciency and job turnaround times, eases the process of makingscheduling decisions,
and at the same time offers service class QoS support. Management complexity
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and scheduling / information service scalability is improved due to the automated
deployment of service class dedicated management components.
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5
Media Grids

5.1 Introduction

In this chapter, we introduce a typical Grid use case based onthe recent trend
of employing Grid technology in audio/visual production and distribution compa-
nies. In this media environment, typical audio/video tasksimpose heavy network
resource QoS requirements. We discuss how NSGrid, the network aware Grid
simulator presented in chapter 3, was extended to incorporate typical audio/visual
production company profiles, user profiles and task profiles in order to allow quick
and accurate simulations for studying the effectiveness ofintroducing Grid tech-
nology in the media production/distribution environment.

Much in the same way as other businesses, the media industry has been con-
fronted with an increasing complexity in both the technicaland the business do-
main. Up until now, a broadcaster was an umbrella organization for different kinds
of in-house activities like media production, distribution and play-out, etc.. More
and more however, business drivers such as cost reduction (a.o. reduced infrastruc-
ture investments by sharing resources), added value management, partnerships,
global sourcing, and business componentisation are forcing these companies to
become more agile, find partnerships and evolve to dynamically extending orga-
nizations, with business models based on business servicesavailable within the
media market. These parameters combined with possible future mergers, acquisi-
tions and fusions drive the media businesses to become more agile.

Furthermore, exponential decrease of harddisk costs [1] ignited a paradigm
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shift in the production of audiovisual media from tape to filebased. Current cost
per byte of harddisk based storage systems rivals that of tape based systems and is
expected to go below the stagnating prices of the latter. Although today’s architec-
tures promisedemocratizationof data access, i.e. inexpensive, non-mediated, and
shared access to centrally-managed storage, this promise is only partially met by
existing installations. On a software level, generic (Grid-enabled) applications are
tuned towards typical ICT related requirements and are not yet fitted for the spe-
cific challenges induced by a file based media production and archiving platform.

In the long term, one wants to allow automated interaction between several
audio/video media production sites, and share centralizedstorage, computational
and specialized (e.g. capturing devices, broadcasting equipment) resources with
several independent corporate users in a controlled manner. It is in this domain
that media production environments can benefit from Grid technology to both im-
prove media handling/processing times and provide a means for securely sharing
and utilizing distributed resources and applications amongst multiple virtual orga-
nizations by employing specialized Grid middleware.

Due to the specific scenario however, current Grid technology can not be intro-
duced in a straightforward way. The high bandwidth, reliability and short response
time requirements when handling audio/video streams (as will be illustrated in sec-
tion 5.4) imply the need for special care in the design of the overall architecture
and in particular in the scheduling and resource control process. Media handling
can take place at local sites before streaming them to a remote site or can be per-
formed at a remote site: the scheduling, resource control and QoS management
components of the Grid will have a high impact on the achievedapplication per-
formance. Furthermore, the software architecture of the management platform
will need to exhibit high performance and reliability to meet the specific applica-
tion requirements. The MediaGrid architecture presented in this chapter has been
developed to cope with these challenges, and will make it possible for media part-
ners to evolve to extended organizations where partnerships, media communities
and commercialization of media services are omnipresent.

Advantages of Grid-enabling the audiovisual media production/distribution
companies would be:

• Ability to distribute media files among different companieswithin an envi-
ronment with high reactivity requirements and various levels of Quality of
Service (QoS)

• Ease the exchange of media resources/assets (rendering farms, specialized
media capture devices, etc.) allowing for a.o. distributedcomputing

• Integration of broadcast media exchange standards (e.g. the EBU’s P/Meta
standard [2]) in a Grid services environment to provide interoperability be-
tween different media content providers
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• Migration from special purpose resources and applicationsto conventional
IT hard/software

• Stimulate the growth of media community Virtual Organization (VO) setups
supporting advanced collaborative working

This chapter continues as follows: first we give an overview of the related work
in section 5.2, and continue by discussing the MediaGrid (Micro/MacroGrid) ar-
chitecture in section 5.3. An overview of the different media production/distribu-
tion company profiles, along with the typical characteristics of their associated job
classes is presented in section 5.4. MediaNSG, a MediaGrid simulator is discussed
in section 5.5, while simulation results are shown in section 5.6. Finally, we give
some concluding remarks in section 5.7.

5.2 Related work

For an overview of current Grid enabling technologies we refer to the related work
of the previous chapters. Here we focus on Grid technology specifically tuned to
the needs of audio/visual production and distribution companies.

GridCast [3, 4] is a research project being undertaken by theBBC and the
Belfast eScience Center aiming to develop a prototype mediaGrid, running on
Globus middleware, that will manage the sharing of program content between dis-
tributed sites. The objectives are to effectively manage the distribution of broad-
cast media files, permit distributed processing and providesecurity and network
resilience within a highly reactive environment requiringhigh levels of Quality of
Service (QoS). The GridCast project has similar objectivesas our work, but fo-
cusses more on the specific BBC topology (with regional BBC departments inter-
acting with the main BBC production house), whereas we try toprovide a general
framework and focus on the accurate simulation of a multitude of collaboration
setups between audiovisual companies.

The FIPA project [5] (File based Integrated Production Architecture), is an
IBBT project aiming at the development of an IP based architecture to share stor-
age and computing power on single or multiple sites. Application areas are digital
media production, e-security, e-health, etc. Apart from the storage, processing
and management of the data, accessibility is also a crucial architectural issue, es-
pecially since more and more companies tend to share their data with business
partners and freelance international employees. The work contained in this chap-
ter is based on and an extension to some of the research work performed in the
FIPA project.

A scalable solution for digital media post production networks is offered by
Force10 Networks [6]. They mainly focus on the interconnectivity of rendering
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Figure 5.1: Typical MicroGrid scenario

farms with several hundreds of cluster nodes through Ethernet LANs and offer no
full Grid solutions.

SGI [7] is known to be able to deploy an IT storage, computing and networking
hardware infrastructure tuned to broadcast media environments.

MediaNSG, the MediaGrid simulator detailed in this chapter, was developed
on top of NSGrid (detailed in chapter 3), our in-house developed network aware
Grid simulator. An overview of other Grid simulators has been given in chapter 3.

5.3 MediaGrid architecture

The MediaGrid architecture consists of two main components: the MicroGrid con-
cept on one side and the MacroGrid concept on the other. The MicroGrid is very
similar to NSGrid’sGrid site concept from chapter 3 while a MacroGrid shares
similarities with NSGrid’sGrid concept. We introduce these new terms in order
to have a clear distinction between NSGrid’s generic simulation structure and the
concrete use case at hand (i.e. Grid computing technology for audio/visual pro-
duction companies). In what follows we will explain the MediaGrid constituents
in detail.

5.3.1 MicroGrid

As explained above, a MicroGrid (see figure 5.1) denotes a Grid set up at a local
audiovisual media processing facility, interconnecting the different local resources
and providing the tools to manage, access and control local (self-owned) resources.
Resources can be storage/data resources, providing diskspace for storing and re-
trieving media files, or computational resources, which in turn provide the com-
putational power required for processing the different user submitted tasks. In
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a media production company, one typically discerns computational resources lo-
cated in terminals (with a high degree of interaction between the job and user e.g.
editing terminals) and computational resource farms (focussed on fast processing
of computationally intensive tasks e.g. rendering). The MicroGrid can also allow
Grid access to specialized resources (capturing devices, broadcasting equipment,
etc.).

Each MicroGrid, like our local Grid site described in chapter 3, needs a set
of Grid management components to be able to tackle issues such as job schedul-
ing, Quality of Service, etc.. Required management components are: a scheduling
system (responsible for the allocation of resources to jobsaccording to a certain
objective e.g. minimize job turnaround time or meet specificdeadlines), informa-
tion service (storing registered MicroGrid resource’s properties and characteris-
tics), monitoring system (monitoring the status of computational, storage and data
resources), connection manager (responsible for monitoring the status of network
resources and setting up network connection reservations), service monitor (mon-
itoring QoS requirements of jobs and collecting service class information) and a
service manager (which reserves resources for service classes in order to provide
them with specific QoS guarantees). Other notable management components in-
clude an accounting component, an authorisation/securitycomponent (for restrict-
ing MicroGrid resource access) and a data transfer/replicamanager (responsible
for replicating/caching frequently accessed media files).

A MicroGrid can thus be seen as a provider of a set of Grid services, and these
services can be advertised not only to the local company users, but if wanted also to
3rd party media companies with which one wants to collaborate (see section 5.3.2).
Each offered service is accompanied by extensive access control (describing which
user/userclass can use that service and to what extent) and accounting agreements
(e.g. service usage pricing information for different userclasses), allowing Micro-
Grid managers full control over how local resources may be utilized byMediaGrid
users.

5.3.2 MacroGrid

A MacroGrid is a collection of interconnected MicroGrid sites. In such a Macro-
Grid, resources can be shared amongst the different constituent MicroGrids (while
taking into account the access policies of each MicroGrid’sresource usage ser-
vice). This way, jobs that originate at one MicroGrid site, can be migrated to
another MicroGrid for processing (e.g. in case insufficientprocessing power is
available at the originating site or if the job needs to have access to specialized
resources not available at its originating site). The MicroGrid schedulers query
the different MicroGrid sites’ information services for resources adhering to a user
job’s requirements and decide whether it is beneficial (e.g.faster processing times)
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or necessary (e.g. specialized resources unavailable locally or when having to cope
with local resource failures) to utilize remote resources,while taking into account
the possible downsides of using remote resources (price tag, larger network trans-
fer times due to remote location, etc.).

On top of resource sharing, MacroGrids also enable media filesharing between
different MicroGrids. In this case, users are able to utilise/retrieve/store remote
media files, again taking into account any access restrictions that have been spec-
ified (speed/ratio limitations in order to not deteriorate internal MicroGrid perfor-
mance, clearance levels depending on the content/copyrights of media files, etc.).

Another important benefit of sharing MicroGrid services across company bound-
aries is the ability for users to work on projects collaboratively. The accounting
managers of each MicroGrid can be used to keep track of resource and media file
service usage by users/MicroGrids allowing economic gainsby charging money
and/or bartering for external resource usage compensation.

It is important to note that a MacroGrid does not have exclusive access to
a MicroGrid’s services: one MicroGrid can be included in multiple MacroGrids
(and each membership can come with different resource/media file usage policies
and access control configurations), with each MacroGrid representing a different
Virtual Organization (see figure 5.2 and figure 5.3). Also, MacroGrids are not
necessarily static structures, in that MicroGrids can joinor leave this Virtual Or-
ganization at any time by changing service access policies.

5.4 Audiovisual application/user/company profiles

Together with partners from the media industry (more specifically the Flemish
Radio- and Television Network [8] and Video Promotion [9], acompany active
on the broadcast television market), we studied the characteristics and require-
ments for the audiovisual applications that are to be supported by the MediaGrid
architecture. This resulted in task, user and company profiles that have been im-
plemented in the MediaNSG simulator (see section 5.5) and that can readily be
used in simulations.

5.4.1 Application profiles

Audiovisual application classes show large differences intheir processing, net-
work and storage requirements. In table 5.1 we give an overview of average task
class/application requirements of the most typical tasks/applications in a media
centered company. The Quality of Service parameter can be used by MediaNSG
while scheduling and during service management to ensure priorities are given to
high QoS tasks. Table 5.2 shows the network and storage requirements for differ-
ent resolution audio and video streams.
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Following important tasks were identified:

• Ingest: deals with bringing media files onto the storage/archive system, ex-
tracting keyframes and constructing metadata about the ingested media.

• Quality checking, HiRes Browse: tasks from this class inspect the quality of
media files in high resolution to see if it’s fit for playout.

• LoRes browse: mainly used to rapidly shuffle through different archived
media files in low resolution when trying to find specific or suitable source
material.

• LoRes rough EDL: construction of a rough Edit Decision List (EDL). This
Edit Decision List is a list of events that include the sources to be recorded
from and information about transitions (cuts, dissolves, wipes), transition
durations, etc.. Once an EDL has been processed, the result will be a newly
constructed media file.

• Send to/Restore from archive: fetching data from the archive or storing new
media files mainly stresses the available network resources.

• Craft editing: high quality finegrained editing and jog shuffling of multiple
audio/video streams.

• Rendering, conforming, transcoding: this task involves rendering graphics,
conforming of media to different video standards and transcoding of au-
dio/video data to different qualities/resolutions/standards.

• Playout: Viewing multiple audio/video streams and sendingone of those to
playout equipment (e.g. broadcast equipment).

• Audio editing: Editing of multiple audio streams (possiblyin conjunction
with a video stream that needs to have the associated audio stream edited)

• Graphic creation: The creation of Computer Generated Imagery (CGI), cus-
tom scene transitions, etc.

5.4.2 User profiles

Now that we have discussed the different application/task classes and their require-
ments, we can look at the different user classes of typical audiovisual companies,
with each user class showing widely differing characteristics regarding which ap-
plications they use:

• Ingester: This profile includes tasks like quality checkingand low resolution
browsing, besides the actual ingesting of media onto the storage archive.
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Streams Bitrates Storage
HiRes Video 20-50 Mb/s 25 GB/h
LoRes Video 1 Mb/s 0.5 GB/h
HiRes Audio 1.5 Mb/s 0.7 GB/h
LoRes Audio 256 kb/s 0.15 GB/h

HD HiRes Video 200Mb/s 100GB/h

Table 5.2: Network and storage requirements of typical audio/video streams

• Video journalist: The main tasks of a journalist are low resolution browsing,
low resolution rough EDL construction (Edit Decision List)and rendering,
conforming and transcoding.

• Audio/Video editor: an audio editor deals with mixing and editing multiple
audio tracks, while video editing includes quality checking, craft editing,
rendering/conforming/transcoding and graphic creation.

• Producer/Director: involved at different stages of media production, mainly
doing low resolution browse tasks, with the occasional sending to/restoring
from archive and some quality checking and/or high resolution browsing.

• Playout: tasks include quality checking, low resolution browsing and play-
out.

• Archivist: an archivist mainly performs low resolution browsing and send-
ing to/restoring from archive.

This information, together with the user/task workflows (presented in figure 5.4)
and average application characteristics presented in table 5.1, has been used to con-
struct accurate media user profiles for use in MediaNSG simulations.

5.4.3 Company profiles

Finally, profiles have been provided for typical audiovisual companies (mainly de-
scribing the average amount of users from each userclass working simultaneously).
The most important profiles are:

• Television production: an example of television production is news program
production. In these organizations tens (regional) or hundreds (national) of
video journalists gather information that has to be ingested, edited, archived
and played out.

• Television post production: in a post-production facilitythe same user classes
are present, along with producers / directors managing the studio work.
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Figure 5.4: Task workflow of typical audiovisual company user classes

• Television broadcast: television broadcast companies arenot involved in
(post) production. The focus is more on playout than on editing.

• Television program supplier: these companies combine individual items into
finished programs and send these to television broadcasters. Editors and
producers/directors are the most important user classes inthis type of orga-
nization.

• Video on Demand: companies delivering Video on Demand services mainly
focus on indexing of the available material, user and channel dependent en-
coding of the streams and play out.

• Radio broadcast: similar to television broadcast, but withdifferent require-
ments (e.g. no buffering or delays allowed).

5.5 MediaGrid simulation

If we wish to develop MediaGrid suitable scheduling/service management algo-
rithms, or wish to evaluate the performance of different network/computational/s-
torage resource configurations, we either have to constructa testbed and measure
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task/resource performance, or we can simulate the MediaGrid’s behaviour. Due to
the size and the amount of resources involved in setting up a MediaGrid testbed
each time a new scenario needs to be evaluated, accurate simulation of MediaGrid
scenarios is likely to be more efficient.

MediaNSG, a MediaGrid specific extension to NSGrid has been developed
allowing users to simulate typical task submission behaviour of different media
company organizations and experiment with scheduling and service management
architectures. MediaNSG supports the simulation of both Micro- (single site) and
MacroGrid behaviour (Grid comprised of different interconnected Micro Grids),
and provides the user with output data regarding job execution statistics (job re-
sponse time, time spent in scheduling queue, data transfer size/speed, etc.) for the
different tasks, resource (computational, storage and network resources) and man-
agement component (scheduler, information service, etc.)usage statistics, bottle-
necks, etc..

5.5.1 User model

Each user belongs to a particular user class (with the latterdescribing the charac-
teristics of job types that are to be submitted) and is modelled as a job submitting
entity. Every time a user wishes to launch a job, it constructs a job from one
of its user class’s registered job types (job characteristics are generated from dis-
tributions specified in the job type’s definition) and waits until the job has been
scheduled and processed by the Media Grid. When the job is finished, the user
class’s workflow (as seen in figure 5.4) is inspected to see from which job type a
new job is to be generated (i.e. a user class’s workflow determines (by probability)
which job types will be executed after a particular job has finished).

5.5.2 MediaNSG operation

In order to set up a simulation, users must provide both a company and resource
topology description. The default organizations that are discussed in section 5.4.3,
are all readily available through the MediaNSG frontend. Each organization is
modelled as a collection of users belonging to different user types (see section 5.4.2),
with each user in turn being modelled as a task submitting entity (i.e. users submit
tasks according to the task workflows discussed in section 5.4). The default tasks
described in section 5.4.1, along with all their properties(CPU utilization, storage
needs, bandwidth, QoS, etc.) have been supplied, and all task characteristics can
be modified through the GUI (see figure 5.5). New media organization profiles can
be added, and existing profiles can be modified to include additional users and/or
jobs.

Currently, simulated MicroGrid topologies deploy one central data storage /
retrieval resource by default, with each client submittingjobs from a dedicated
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Figure 5.5: MediaNSG frontend
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computational resource (which is used to provide processing power for the user-
submitted jobs) connected to this storage resource by meansof TCP/IP network
links. Furthermore, each MicroGrid site can have a computational resource farm,
offering processing power to computationally intensive tasks (e.g. rendering tasks).
Different MicroGrid network topologies can automaticallybe generated by Medi-
aNSG: for now point-to-point topologies, in which clients are directly connected
to the data storage resources, and ring topologies are supported. Other network
topologies can easily be added manually or one can use GridG [10, 11], a tool
to generate realistic Grid topologies (which is supported by the NSGrid simu-
lation core). Also, additional storage/computational resources can be added to
the topology to allow simulation of dedicated storage/computational server farms
(e.g. used for rendering). A multitude of task scheduling algorithms (e.g. net-
work aware scheduling, service aware scheduling, application level scheduling)
are available from NSGrid and can be employed to schedule user submitted tasks
on the MicroGrid/MacroGrid resources. Also, advanced management components
such as replica managers, checkpointing, service class managers (providing QoS
support) can be instantiated and used in Micro/Macro Grid simulations. Once a
suitable media company profile has been selected/constructed, users can automat-
ically generate a Tcl script describing the scenario’s topology, together with the
different company profiles to NSGrid. The NSGrid simulator itself has beengridi-
fiedin that it is able to run in a Grid environment (all NSGrid simulations described
in section 5.6 were run on an LCG-2.6.0 Grid [12] comprised ofdual Opteron 242
1.6Ghz worknodes with 2 GB RAM per cpu, and operating under Scientific Linux
3).

5.6 Simulation results

In what follows, MediaNSG will be used to construct realistic MediaGrid topolo-
gies and simulate some proof-of-concept MediaGrid situations. In all simulations
presented here, each user was associated with a computational resource, with all
computational resources having equal reference processing capabilities. We lim-
ited storage resource/archive access to a maximum read/write throughput of 5600
Mbps (which is realistic as a proof-of-concept storage element array intercon-
nected by fiber channel technology [13] and attaining these speeds is deployed
in the FIPA project). User tasks with a duration of100 percent were mapped to
a simulated duration of 3600 seconds (e.g. from figure 5.4 we can see that each
Quality Checking/HiRes browse task by a producer/directortakes 1080 seconds to
complete on a reference processing element).
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5.6.1 MicroGrid topology

In a first batch of simulations, we constructed a Television Broadcasting Micro-
Grid, and parametrized LAN network bandwidth (LAN interconnections are in
this case the network connections between the different clients and the central
MicroGrid storage/archiving element containing I/O data for the different tasks)
from 1 Mbps to 1000 Mbps. We mapped low, medium and high CPU usage to
respectively 10, 50 and 90 percent processor utilization ona reference processor
in this simulation. In this first case a point-to-point connection between clients
and storage element was provided and network aware scheduling was employed.
We measured the average job response times (we define job response times as the
difference between the time the job ends, and the time it was submitted to the
scheduling service) and notice (see figure 5.7) that tasks experience serious delays
when MicroGrid LAN bandwidth is less than 2 Mbps (due to the fact that data
input/output retrieval/storage is blocked by network congestion, thereby stalling
computational progress). It is also interesting to note that the difference between
10 Mbps and 1 Gbps interconnections is relatively small (on average tasks took 29
seconds longer to run when 10 Mbps network technology was used) as the network
is no longer posing a bottleneck.

In the next batch of simulations, we changed the point-to-point network con-
nection from clients to the storage/archiving element to a ring topology. The re-
sults show that at least 3 Mbps interconnections are needed if tasks are to execute
without substantial delays. This can be explained because of the ring configuration
of the network topology, network congestion on one link willinfluence more than
one client’s job response times (as opposed to the point-to-point network). It is
interesting to note that when network bandwidths of 5 Mbps ormore are available,
the difference between point-to-point connections and ring connections is virtually
non-existent, while a ring topology has the benefit of protecting client machines
from single link failures.

The average job hopcount (number of hops storing job output data from com-
putational to storage resource, plus the number of hops for retrieving job input data
from data resource to computational element) when a ring topology was used is
7.88, while hopcount when using point-to-point connections is2.

5.6.2 MacroGrid resource sharing

In this simulation, we connected the Television Broadcasting MicroGrid to a re-
mote computational resource provider, offering 5 additional processing elements
capable of running at twice the reference processor speed (point-to-point con-
nected to a gateway). We again parametrized MicroGrid LAN bandwidth (and
used a point-to-point topology), and low, medium and high task processing re-
quirements in this simulation were respectively set at20, 100 and 180 percent



5-18 CHAPTER 5

Computational Resource Provider

Storage / Archive
Television Broadcast

Figure 5.8: Simulated MacroGrid topology

 0

 500

 1000

 1500

 2000

100010010521

A
ve

ra
ge

 J
ob

 R
es

po
ns

e 
T

im
e 

(s
)

LAN bandwidth (Mbps)

MacroGrid
Tv Broadcast MicroGrid

Figure 5.9: Influence of MacroGrid resource sharing on avg. job response time



MEDIA GRIDS 5-19

 0

 500

 1000

 1500

 2000

100010010521

A
ve

ra
ge

 jo
b 

re
sp

on
se

 ti
m

e 
(s

)

LAN bandwidth (Mbps)

non-network aware scheduling
network aware scheduling

Figure 5.10: Network unaware vs. network aware scheduling

of a reference processor. Jobs running at180 percent can be processed on the
Television Broadcasting MicroGrid, but will run at0.55% of their normal speed.
The link connecting the remote resource provider to the Television Broadcast-
ing MicroGrid is a dedicated link, and in each simulation, itwas given the same
bandwidth as the Television Broadcast company’s LAN bandwidth. The television
broadcast’s scheduling service (utilizing a network unaware scheduling algorithm)
queried both its own information service and the computational resource provider’s
information services for resources adhering to the job’s requirements, and both re-
turned status information regarding the provided resources.

From figure 5.9 we can see that the average task response timesdrop signifi-
cantly when the Television Broadcast MicroGrid is given access to the computa-
tional resource provider’s assetsif the interconnecting link bandwidth does not go
below 5 Mbps. Indeed, since network unaware scheduling is used, the scheduler
looks at the state of available computational and storage resources, but does not
take into account the state of the network links interconnecting these resources. If
the available link bandwidth between MicroGrid sites drops, it can be detrimental
to schedule jobs for processing on remote resources (as can be seen on figure 5.9
for bandwidths of 1 Mbps and 2 Mbps), since the network links connecting these
resources to the job’s originating site’s storage element will become a bottleneck.

If the network does not hamper computational processing (5 Mbps or more in-
terconnections), average job response times were up to30.37 percent better when
MacroGrid’s resource usage services were being used (in this case allowing mi-
gration of jobs from the TV broadcast company to the computational resource
provider).
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Figure 5.11: Computational resource blocking times

5.6.3 Network aware versus network unaware scheduling

To overcome the problem described in the previous simulation, a network aware
scheduling algorithm needs to be employed. We simulate the same MacroGrid
topology as in section 5.6.2 and compare average job response times when schedul-
ing jobs by using network aware on one hand and network unaware scheduling al-
gorithms on the other. From figure 5.10 we see that at low bandwidths, the average
job response time no longer exhibits bad performance when using a network aware
scheduling algorithm. This is due to the fact that the network aware algorithm will
schedule jobs for processing on remote resources only if thenetwork links con-
necting these resources to the required storage resource/archive support transfer-
ring the job’s I/O data at sufficient speeds so as to not waste reserved processing
time.

5.6.4 Resource efficiency

From the simulations performed in section 5.6.2 we calculated the average amount
of time during which a computational resource was reserved for a job without be-
ing able to continue processing (i.e. ‘idling’), because job processing was blocked
while waiting for necessary input/output data to be received/sent. From figure 5.11
we can see that utilizing remote resources (the MacroGrid case) is not efficient if
available connection bandwidth drops below 5 Mbps. At 1 Mbpslocal MicroGrid
task processing capabilities are being hindered by networkbottlenecks towards the
local storage element/archive.
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5.7 Conclusions

Since media production/broadcast companies are more and more evolving to file
based media handling instead of tape based, and since these companies tend to
have high requirements regarding Quality of Service, the need to integrate state-
of-the-art IT technology in this domain is becoming mandatory. A second impor-
tant evolution in this field is the need for collaboration amongst media companies,
not only on application level, but also to share resources and media repositories.
Grid computing can offer a solution in this case, with support for resource/data
sharing and advanced collaborative virtual organizationscrossing media company
boundaries. We therefore propose the use of a MediaGrid architecture consisting
of MicroGrid and MacroGrid components. The development of suitable schedul-
ing and service management algorithms in a MediaGrid context, can only happen
thoroughly if multiple collaboration scenarios are investigated. To this end, we
have developed MediaNSG, a media company specific Grid simulator built on top
of NSGrid. Typical task, user and media company profiles werepresented, and a
set of proof-of-concept simulations was discussed.
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6
Overall Conclusion

In this work we have investigated the use of network status and application moni-
toring information when assigning resources to jobs and/orapplications on a Grid.
To this end we have developed:

• a scalable and performance tuned Grid monitoring architecture

• NSGrid, a Grid simulator focussed on modelling accurate application con-
trol and data transfers

• network and service aware Grid scheduling algorithms allowing faster aver-
age job response times and more efficient Grid resource useage

• a distributed Grid service management architecture with multiple resource-
to-service partitioning heuristics

The main conclusion of the work comprised in this thesis can be stated as
follows: when up-to-date and accurate Grid application andresource status mon-
itoring information is available, the Grid infrastructurecan be utilised more ef-
ficiently by taking into account the state of the network and the characteristics
of the different Grid service classes when scheduling Grid jobs and/or managing
these service classes. By differentiating between serviceclasses and allocating
Grid resources based on these classes’ characteristics, a relatively easy to imple-
ment advance reservation mechanism can be deployed in a Grid.

To reach this conclusion, we first presented a well-performing, scalable and
portable Grid monitoring framework. Performance was obtained by using C++ as
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base implementation language, together with caching mechanisms at key locations
(e.g. producers caching sensor data, eliminating the need for producers to contact
sensors directly); portability then dictated the use of appropriate middleware for
which we chose the Adaptive Communication Environment, theGTop libraries for
monitoring resource status and Java based consumers. Scalability was achieved by
using a “Grid Monitoring Architecture”-compliant architecture consisting of sen-
sors, producers, consumers and a decentralized directory service. Multiple ready-
to-use consumers (e.g. network usage prediction/failure detection, real-time visu-
alization, archiving) have been implemented, and the information service offers a
fast resource matchmaking portal for use by management components.

We compared the functionality, performance and intrusiveness of our moni-
toring framework to that of Globus MDS2 and its successor, the GT3.2 web ser-
vices based information service. Satisfying results were presented in terms of
query throughput and response times, both for our producersand directory ser-
vice. Monitored resource properties (e.g. typical processing capabilities, network
bandwidths) and state information data (e.g. failure probabilities) allow construc-
tion of realistic Grid topology descriptions for simulation purposes.

Noting the absence of a Grid simulator providing accurate network resource
modelling, we developed NSGrid, a Grid simulator built on top of the ns-2 network
simulator and capable of accurately modelling network traffic between different
Grid resources and management components. Computational,storage and data
resource models were discussed, along with job models and the functionality and
interoperation of the different management components: scheduler, connection
manager, service manager, service monitor, information service and replication
manager.

In order to demonstrate the usefulness of a network aware Grid simulator like
NSGrid, different Grid scheduling algorithms (some network aware while others
network unaware) were detailed and their performance was evaluated on a sample
Grid topology. The results showed that whether data was pre-staged or accessed in
parallel with the job’s execution (i.e. streamed), accurate network status informa-
tion allowed to create significantly better schedules in terms of both job response
time and computational resource efficiency. With Grid site interconnection band-
widths of10 Mbps we measured average job response times that were61 percent
better than when no network information was included in the scheduling process.
For the same scenario, we showed that computational resource reservations spent
on average30 percent of their time idling, while waiting for I/O data to arrive/be
sent (which can be avoided when taking into account the stateof network resources
at the time of scheduling). Our simulations also showed thatupfront reservation of
bandwidth (between Grid resources) for different service classes can improve the
average job response times by avoiding that data-intensiveservice classes monop-
olized available bandwidth.
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Additional research into the area of Grid service class differentiation yielded a
distributed service management architecture capable of monitoring service charac-
teristics at run-time and partitioning Grid resources amongst different priority ser-
vice classes. This partitioning, together with the dynamiccreation of per-service
management components, lead us to the introduction of the “Virtual Private Grid”
concept. A variety of resource-to-service partitioning algorithms (based on ge-
netic algorithm heuristics) were discussed and we evaluated their performance on
a sample topology using NSGrid. The results showed that the proposed service
management architecture can improve both computational and network resource
efficiency (with average improvements of17 and5.5 percent respectively), com-
bined with lower average job response times (when employinga network aware
scheduling algorithm this can lead to30.5 percent better job response times) and
that it became possible to automatically enforce service class priorities. Manage-
ment complexity and scheduling / information service scalability was improved
due to the automated deployment of service class dedicated management compo-
nents.

We concluded our Grid research contributions by presentinga use case based
on a recent trend in Grid computing: the deployment of Grid technology in the
audio/visual production industry. As media production/broadcast companies are
more and more evolving to file based media handling instead oftape based, and
since these companies tend to have high requirements regarding Quality of Ser-
vice, the need to integrate state-of-the-art IT technologyin this domain is becom-
ing mandatory. A second important evolution in this field is the need for collabo-
ration amongst media companies, not only on application level, but also to share
resources and media repositories. Grid computing can offera solution for these
problems, with support for resource/data sharing and advanced collaborative vir-
tual organizations crossing media company boundaries. We therefore proposed
the use of a MediaGrid architecture consisting of MicroGridand MacroGrid com-
ponents. The development of suitable scheduling and service management algo-
rithms in a MediaGrid context, can only happen thoroughly ifmultiple collabo-
ration scenarios are investigated. To this end, we have developed MediaNSG, a
media company specific Grid simulator built on top of NSGrid.Typical task, user
and media company profiles were presented, and a set of proof-of-concept simula-
tions was discussed.

In the future, we expect work to continue on extensions to some of the key
aspects discussed in this PhD thesis. In particular, decoupling the NSGrid Grid
modelling layer from the underlying ns-2 network layer and providing a generic
interface to discrete event network simulators (e.g. Dartmouth SSF) would allow
for more scalable Grid simulations. It would also be interesting to implement the
presented network and service aware Grid scheduling algorithms in a real-life Grid
middleware scheduling system as this would allow us to accurately determine the
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error margins when simulating Grid behaviour with NSGrid, which in turn would
allow us to tune resource and management component delays tobetter reflect the
behaviour of a particular Grid middleware solution. A thirdnotable extension
would be the conception, implementation and evaluation of additional resource-
to-service partitioning algorithms (particularly with regard to network resource
partitioning) for the presented Grid service management architecture.
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Abstract For the last five years, grid computing has been a very hot and fruit-
ful research theme resulting now in the deployment of the first operational grid
systems. The main motivation for this new computing paradigm lies in the obser-
vation that the demand for computational and storage resources is ever growing
while on the other hand vast resources remain underused. Thegrid paradigm aims
at solving this mismatch by offering its users computational and storage resources
transparently, making abstraction of the exact geographiclocation of the physi-
cal resource (this approach has appealing similarities to the power grid, hence
the term “grid computing”). Despite the current deploymentof operational grid
systems, important challenges still lay ahead. New applications, opening the grid
also for commercial exploitation, impose new requirementsin terms of e.g. se-
curity, scaling behaviour, Quality of Service and robustness. In particular the
geographic spread of grid users in combination with these new requirements will
certainly have drastic consequences for the communicationinfrastructure. In this
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paper, an overview of current grid systems, application taxonomy and emerging
trends will be discussed. The implications for the network will be analysed, taking
current grid deployments as a starting point. The importance of co-management
of computational/storage and network resources will be illustrated.

A.1 The concept of Grid computing

A.1.1 Historical background

Supercomputers and clusters have been the main workhorses to process computa-
tionally complex problems, often originating from the scientific community. How-
ever, problems are becoming increasingly demanding, challenging the capabilities
of even the most powerful single supercomputer or cluster system. This observa-
tion led to the idea to join forces for solving these problemsin a reasonable time
frame, interconnecting these remote computational and storage resources into a
single number crunching system: the Grid.

As a first step in realizing this concept, the maturation of the Internet in the
nineties led to the first global distributed computing projects. Two projects in par-
ticular have proven that the concept works extremely well. The first project, dis-
tributed.net, used thousands of independently owned computers across the Internet
to crack encryption codes. The second is the SETI@home project [1]. Over two
million people have installed the SETI@home software agentsince the project’s
start in May 1999. This project proved that distributed computing could accel-
erate computing project results while at the same time managing project costs
(IBM’s ASCI White supercomputer is rated at 12 TeraFLOPs and costs $110 mil-
lion. SETI@home currently gets on average 15 TeraFLOPs and has cost $500K so
far).

The term “Grid computing” suggests a computing paradigm similar to the op-
eration of an electric power grid: a variety of resources contribute power into a
shared pool for consumers to access on an as-needed basis. Although this ideal
is still a few years off, key efforts are emerging to define standards allowing the
easy pooling and sharing of all computing, storage, data andnetwork resources in
a way that can promote mass adoption of grid computing.

A.1.2 What’s in a name: Grid computing or cluster comput-
ing?

Grid computing differs from cluster computing in a number ofkey aspects. First,
due to the geographic distribution of Grid resources, a Griddoes not have a cen-
tral administration point (instead it uses resources across multiple administrative
domains), whereas all cluster resources can usually be administered from one loca-
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tion. Second, the same geographic distribution usually entails drastically different
resource usage policies and heterogeneity of equipment: a variety of resources
will be connected by a wide range of network technologies, whereas a cluster will
usually consist of a large collection of homogeneous resources interconnected by
a proprietary bus or high speed / short range network links. This again indicates an
important distinctive Grid feature: communication links can be long haul, possibly
subject to congestion, while the Grid topology itself is subject to frequent change,
due to the possibly dynamic nature of resources and the decentralized authority
over resource usage (this dynamic behaviour can easily be spotted in the case of
SETI@home type grids, based on desktop pc’s donating unusedCPU cycles).

A.1.3 No one-size-fits-all: different Grid systems for different
application areas

Based on their main application area, grid systems can be divided in three classes:
Computational grids, Data grids and Service grids. Computational grids can offer
more processing power than any of its constituent machines.In this category,
one can further distinguish “distributed supercomputing”and “high throughput
computing” categories. The former class attempts to shorten execution time of a
task by processing the task in parallel on multiple machines, while high throughput
computing systems are tuned to process large job batches (for instance parameter
sweep jobs). Cycle scavenging grids are special cases of computational grids:
they allow desktop users to donate their idle CPU time to helpscientific research
(mostly global interest projects e.g. SETI@home, fightAIDS@home, etc.).

A second grid system class is coined the term “Data Grid”. These synthesize
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new information from distributed data repositories. The LCG project (i.e. the
processing of data generated by CERN’s Large Hadron Collider [2]) is a well-
known example of this type of grids.

Service grids offer services that cannot be provided by a single machine. Ser-
vices can range from collaborative working (enabling interaction between users
and applications through a virtual workspace), to multimedia grids and “on de-
mand” grids (enabling a user to dynamically increase the amount of machines
processing on its jobs or even to dynamically select dedicated equipment to realize
a possibly virtual experiment). A thorough look at Grid taxonomy can be found
in [3].

A.1.4 Grid standardization

The Global Grid Forum (GGF [4]) acts as standardization bodyfor the Grid, com-
parable in terms of philosophy as the IETF for Internet related matters. The GGF
is a community-initiated forum of thousands of individualsfrom industry and re-
search leading the global standardization effort for grid computing. The GGF’s
primary objectives are to promote and support development,deployment, and im-
plementation of Grid technologies and applications through the creation and docu-
mentation of “best practices” - technical specifications, user experiences, and im-
plementation guidelines. Similar to the Internet, adopting common standards and
promoting the use of these standards will allow clients to connect transparently to
multiple grids and eventually facilitate grid interworking.
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A.2 The Grid today

A.2.1 Generic Grid management architecture

Just like an electrical power grid needs advanced control functions and infrastruc-
ture to assure proper operation, managing resources is a vital Grid function. A Grid
management architecture consists of three fundamental building blocks: resource
discovery, resource advertisement and a scheduler capableof assigning Grid re-
sources to jobs in an intelligent manner. Grid applicationsneed to formulate their
resource needs (processing elements, storage elements andcommunication and
data requirements) and their respective Quality of Servicerequirements in job re-
quests. The resource management architecture contains an admission control com-
ponent that decides if an incoming job / resource request canbe accepted. In order
to be able to schedule jobs on Grid resources in an intelligent way, the Resource
Monitoring component provides resource information (bothstatic properties and
dynamic status) to the scheduler. Other notable managementcomponents are the
naming service, which provides a distinct name to each Grid resource, and the
reservation manager that keeps track of all resource reservations. Once a job has
been scheduled, the execution manager is responsible for starting the Job on the
assigned resources. The job monitoring component preventsa job from violat-
ing its allocated resource utilization contract and the resource policy (enforced by
the policy manager). This allows the resource management architecture to offer
Quality of Service to Grid applications. The Job Monitor is also responsible for
reporting the job’s resource usage to the external Accounting/Billing components.

Besides having a Grid application interface, the resource management system
also has an interface with the Grid resources’ native operating system (in order
to be able to execute jobs on resources and provide job and resource monitoring),
with the Security Manager (the resource managers must authenticate and authorize
all resource requests with the Grid security manager), and with the accounting
manager (responsible for issuing Grid resource usage billsto consumers).

A.2.2 Glueing Grid resources: Grid middleware systems

Grid middleware refers to a service layer that operates between the Grid resources
on the one hand and applications on the other: it attempts to transparently con-
nect networks, computational resources and data resourcesinto one Grid that can
encompass different architectures, operating systems andphysical locations, and
provides the tools for applications to communicate and collaborate effectively. The
Globus toolkit [5] is one of the most advanced and widely deployed Grid mid-
dleware suites, offering a set of Grid services and softwarelibraries to construct
computational, data- or service grids. Globus implements most of the Global Grid
Forum’s specifications and provides components for resource management (Grid
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Resource Allocation & Management Protocol), information services (Monitoring
and Discovery Service), security services (Grid Security Infrastructure) and data
movement/management (Global Access to Secondary Storage and GridFTP). Grid
developers typically pick the Globus services they need andincorporate those in
their Grid-enabled application. An important example of Globus’ usage in cur-
rent scientific grids is the Large Hadron Collider Computational Grid middleware
(LCG). The LCG middleware is built on services provided by Globus and compo-
nents developed by the European DataGrid project, and provides a Grid capable of
processing large amounts of data (further details are givenin the LCG case study).

Another notable middleware suite, Legion, provides an object-based frame-
work in which resources can be combined into a computationalGrid. Legion is
not a “sum of services” architecture (as Globus is), but rather a completely inte-
grated architecture, allowing for fast Grid deployment.

A.3 Grid applications: case studies

A.3.1 Cycle Scavenging Grids

United Devices Grid [6] offers desktop users the ability to donate their unused
processing power and thereby help achieve scientific progress in finding new cures
for life-threatening diseases. Global participation has passed the 2.5 million mark
in 2004. UD Grid is now the largest public grid in operation, helping the Cancer
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Project Grid Category CPU Storage Network
EGEE Service 1000 10TB 2.5-10 Gbps
LCG Data & Comput. 1075 15TB 10Gbps(core)

TeraGrid Comput. & Data 6174 + 1.1TF 1PB 40Gbps(core)

Table A.1: Grid case studies

Research Project, the Anthrax Research Project and the current PatriotGrid project,
designed specifically to identify new leads for cures to bioterrorism diseases. Due
to the participation of numerous users, UD Grid projects have achieved record
levels of speed and success in processing data. Other notable cycle scavenging
grid projects are SETI@home and fightAIDS@home.

A.3.2 Dedicated scientific computing and data Grids

TeraGrid [7] is a US-based virtual computing infrastructure, built from five in-
dividual clusters, offering 1 Petabyte of storage, and linked by a cross-country
40Gbps core network. The goal of TeraGrid is to provide scientists with a ded-
icated computing and storage infrastructure delivering the power needed to cope
with large data set analysis and high resolution simulations and, in the process,
speed up scientific discovery.

Another major example of this type of Grid is the Large HadronCollider com-
putational Grid project (LCG). In this project, a worldwidecomputational grid
will be deployed to cope with the massive data flow that will come from CERN’s
Large Hadron Collider (in 2007 the LHC will roughly generatebetween 12 to 14
Petabytes of data). Data analysis requirements are in the order of 70.000 of today’s
fastest PCs.

A.3.3 Service Grids

The Enabling Grids for E-Science project in Europe (EGEE [8]) aims to develop a
dedicated service Grid infrastructure in Europe, available to scientists 24 hours-a-
day. The project focuses on building a consistent, robust and secure grid network
(built on the GANT research network), offering a large variety of production-
quality services to the user. For the moment, the two main service interests lie
in the area of Biomedical Science and High Energy Physics, but more services
will be added at a later stage.

A.3.4 Grid services meet web services

The Globus toolkit is, as of 2003, evolving towards a service-based Grid concept
with the development of the Open Grid Services Architecture(OGSA), offering
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complete virtualization of the Grid resources. The goal of OGSA is to standardize
all the services one finds in a Grid application (job management services, resource
management services, security services, accounting services, etc.) by specifying a
set of standard interfaces for these services. The Web Services Resource Frame-
work (WSRF) was chosen as the base of this architecture, due tothe fact that web
services offer a way for accessing diverse services/applications in a distributed
environment. The WSRF standard is being developed partly by the Grid devel-
opment community and partly by the Web Services community, as it allows Grid
services to be treated as extended web services.

A.4 New Grid trends

A.4.1 Emergence of new applications

As the ability to tap into the Grid’s power is getting closer and closer to the end-
user’s home, the need to support new (not necessarily scientific) Grid applications
arises. In what follows we present some of these next-generation Grid applications
and their associated requirements:

• Multimedia Editing : With the advent of high-definition video, and a grow-
ing interest in home video editing, end-users need processing capabilities
exceeding those of the regular personal computer. Computational Grids can
offer end-users the possibility to use industry level videoediting capabilities.

• Collaborative Working : Collaborative working focuses on bringing Grid
benefits as on-demand processing power and data availability together in an
integrated environment, giving people at different locations all the necessary
tools to be able to work on a common project.

• Online Gaming: Massively Multiplayer Online games, where thousands of
players can simultaneously interact with each other in a virtual world, are
becoming increasingly popular. In the near future, as the amount of players
grows, the resource limitations of the game provider will bereached. Grid
technology can offer a cost-effective scalable solution, increasing compu-
tational power by assigning more resources during gaming rush hours, and
solving the network bottleneck by distributing the workload.

• Virtual Reality : New advances in screening technologies allow people to
experience realistic 3D environments through a variety of Virtual Reality ap-
plications (e.g. entertainment, exploring new architectural structures, sim-
ulator training, etc.). The more realistic the scenario, the more processing
power involved (especially when rendering complex environments in real-
time), giving an incentive to move to Grid computing.
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Application CPU Data Netw. Robust Users Secure Realt.
Online Gaming ++ ++ ++ + +++ + +++

Virt. Reality +++ ++ ++ + + + +++
Collab. Working ++ ++ ++ ++ ++ +++ +++

MM Editing +++ +++ +++ ++ + + +
Data Mining +++ +++ +++ ++ ++ +++ +

Table A.2: New Grid trends and requirements

• Data Mining : Effective data mining is being hampered by the massive
amounts of data available in today’s digitized age. Filtering this data re-
quires huge amounts of processing and storage, unavailableto most end-
users. Since data mining is becoming critical for launchingeffective mar-
keting campaigns, companies are more and more interested inthe benefits
(faster results, cost-effective processing on an as-needed basis, etc.) of Grid
technology.

A.4.2 Telecom oriented Grid management

In [9], the Grid is defined as follows: “A computational Grid is a hardware and
software infrastructure that provides dependable, consistent, pervasive, and inex-
pensive access to high-end computational capabilities”. This definition was later
extended to include usage policy issues, but the message remains clear; when
broad adoption of grids becomes a reality, we should treat computing and storage
not as an asset, but instead as service. Typically, this service will be purchased,
on demand, from one or more service providers. This might be your neighbour
who shares his spare CPU cycles, or it might be a dedicated service provider.
These Grid Service Providers will usually house powerful computational and stor-
age resources, and charge customers for the used capacity and time. Obviously
this scenario poses several challenges for Grid related research. For instance, how
should a provider dimension his network, and, for a given setup, how should prices
be determined and varied over time?

Additional difficulties arise if we consider the fact that a paying customer
will not tolerate degraded service levels. First and foremost, a user-submitted job
should be executed until completion, even in case of failingresources. This implies
that we need a resilient Grid environment, which can handle problems quickly and
efficiently with minimal (preferably even no) intervention. This requirement has
implications on Grid resource management strategies and components (resource
allocation, reservation management, job scheduling), since they must be able to
react to network link failures, malfunctioning hardware, software errors, etc. A
natural consequence of this service-oriented view of gridsis the introduction of
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service classes. This gives providers the opportunity to offer added value on top
of their basic service, which essentially is the successfulcompletion of a user-
submitted job. Which service classes the providers will offer remains to be seen,
but an obvious example is a deadline guaranteed service in which the user’s job
will be completed before a specified deadline. Offering QoS on the Grid also poses
several scientific challenges, since it must be based on the independently provided
QoS levels of the network and the resources.

A.5 Grid network importance

A.5.1 Network aware Grid scheduling

Traditionally, computing jobs have been scheduled on multiprocessor or cluster
systems using algorithms that ignore network parameters such as bandwidth and
delay. The rationale behind this approach is that (i) the interconnection band-
width between processing elements is high, (ii) input data is readily available at
the processing site and (iii) the overall time spent transferring input and output
data is negligible in comparison with the total job duration, given its computational
complexity. Given the distribution of resources in a Grid environment (resulting
in greater network delays between two distant resources) and the size of the data
to be moved around for a typical Grid job, it becomes clear that this approach is
suboptimal: the time spent in transferring data can no longer be neglected, and if
it is transferred between distant resources, network bottlenecks can severely block
a job’s computational progress.

It follows that in order to generate quality schedules (bothfrom the end user’s
point of view - the experienced job turnaround time - and the provider’s point of
view - efficient use of the interconnecting network), data location and network
status need to be incorporated. In particular, decisions must be taken regarding
(i) the replication of input data sets to multiple locationsand (ii) the allocation of
available network bandwidth to the different jobs.

The latter requires that a Grid scheduler is able to query thestatus (available
bandwidth) of network links, and make bandwidth reservations for jobs. In other
words, it is necessary that the network can be treated as a manageable resource,
which in turn requires the presence of a Network Management Infrastructure that
implements all these operations.

If all resources (including network) are manageable, it becomes possible to
partition the Grid’s aggregate resources into subsets; each subset can be dedicated
to a single class of applications, or can be reserved for users requesting a specific
class of service.

In figure A.4 and figure A.5, we have visualized both user-experienced and
provider-experienced improvements in schedule quality when scheduling jobs from
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Figure A.4: Average network link utilization

Figure A.5: Average turnaround time for data jobs and cpu jobs



A-12 APPENDIX A

different application classes using either traditional (network unaware) and more
refined (network and possibly application class aware) heuristics. The results were
obtained from the simulation of a Grid consisting of 5 different sites, each pro-
viding local resources and a number of end-users submittingjobs. It is clear that
network-awareness in the Grid scheduler can improve the average job turnaround
time significantly. In addition, when jobs fall into distinct application or service
classes, this knowledge can be exploited by providers to create more efficient
schedules in terms of resource utilization (as is shown for the network resources),
while preserving the overall job turnaround time. A more in-depth discussion of
these results can be found in [10–12].

A.5.2 Management and control in the optical transport layer

Incorporating network information in a scheduler not only implies that the sched-
uler will decide which computational and storage resourcesa job should use, but
also how data should be transported through the network. In other words, the grid
traffic is routed through the network by the scheduler. In order to exploit the grid’s
capacity to its full extent, resources should be connected through high capacity
links. Advances in optical and fiber technology such as DenseWavelength Divi-
sion Multiplexing (DWDM), allow us to make these kinds of connections between
grid resources. Since we expect optical technology to remain the dominant tech-
nique for building high-speed networks, an important challenge is to optimize the
interface between grids and optical networks.

Broadly speaking, there are three methods to send data over an optical network.
The first is called circuit switching, and works by reservinga dedicated wavelength
on all links of the path between the sender and receiver. Although setting up a path
takes a non-negligible time, the end points have exclusive access to the path once
it is in place. Not surprisingly, this technique is very attractive when large datasets
need to be transmitted. A second technique, called packet switching, sends small
amounts of data in packets. These packets are sent independently of each other. A
router, receiving a packet, has to inspect the header and make a routing decision.
A third recently developed technique called Optical Burst Switching (OBS [13]),
combines features of both packet and circuit switching. Using OBS, a control
packet is sent first, which reserves a wavelength for a specified amount of time at
each router it passes. The control packet is closely followed by the actual data (a
burst), which does not wait for a confirmation of the reservation. Note that OBS
is only usable for medium-sized datasets; in practice this means a burst length
smaller than 100 ms (longer bursts are better transmitted bycircuit switching), or
about 10 MB on a 1 Gbps link.

One could think of assembling a complete grid job (code and data) in one
burst. If the optical routers maintain some information about where resources
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are located, and if this information becomes more precise when approaching the
resources, an intermediate router should be able to guide the burst in the direction
of the resources. The router could dynamically make a routing decision for each
burst based on the available resource status information. Ultimately, this could
lead to a large scale, self-organizing optical network.

A.6 Conclusions

Grid systems are reaching the maturity level necessary to initiate production grade
roll-out initiatives, leading to an increasing user community in scientific and busi-
ness sectors. Development of standards and wide spread usage of toolkits based
on these standards are signs of this maturity level. Research programs like EGEE
and TeraGrid indeed aim at large-scale deployment, openingup vast computational
and storage resources to many. The success of these high-performance Grid sys-
tems will undoubtedly lead to adoption of Grid technology for small companies
and even residential users (just like the Internet itself has evolved from a purely re-
search infrastructure to a commodity service for everybody). As suggested above,
development of Grid intensive applications for residential end users will lead to
a paradigm shift towards service oriented Grid infrastructures. New requirements
relating to e.g. service guarantees, resilience and security will arise.

It becomes increasingly clear that together with the expected growth of Grid
usage, important network challenges will need to be handled. Co-scheduling of
network resources and computational/storage resources has been presented as a
promising avenue towards cost-effective Grid exploitation. On the longer term, a
vision of a self-organizing optical network infrastructure designed specifically for
massively scalable Grid operation has been presented.
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Abstract In this paper, we investigate the use of application-specific hints
when scheduling jobs on a Computational Grid, as these jobs can expose widely
differing characteristics regarding CPU and I/O requirements. Specifically, we
consider hints that specify the relative importance of network and computational
resources w.r.t. their influence on the associated application’s performance. Using
our ns-2 based Grid Simulator (NSGrid), we compare schedules that were pro-
duced by taking application-specific hints into account to schedules produced by
applying the same strategy for all jobs. The results show that better schedules can
be obtained when using these scheduling hints intelligently.
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B.1 Introduction

Computational Grids consist of a multitude of heterogeneous resources (such as
Computational, Storage and Network resources) which can beco-allocated for
the execution of applications or jobs. The allocation of resources to particular
jobs and the order in which these jobs are processed on the Grid are determined
by the Grid’s management infrastructure through the application of ascheduling
algorithm. Most jobs will need access to different resource types during their
execution, meaning job execution progress depends on the quality of service de-
livered to that job byeveryresource involved. The exact sensitivity of a job’s com-
putational progress w.r.t. the individual resources’ performance depends on the
“nature” of that job: jobs that require huge amounts of CPU power, but perform
(relatively) little I/O operations, will only suffer lightly from a temporary degra-
dation of e.g. available network bandwidth, but cannot withstand a sudden loss of
CPU power. Conversely, the computational progress made by an I/O-bound job is
influenced dramatically by the network bandwidth availableto that job, and to a
lesser extent by the variation in available computing power. This leads us to the
observation that:

1. algorithms that schedule jobs on a Computational Grid ought to take into ac-
count the status of multiple different resource types instead of solely relying
on e.g. the available computational power.

2. using the same scheduling algorithm with rigid constraints for all job types
can be outperformed by applying different scheduling algorithms for dif-
ferent job types; each job-specific algorithm only performsrigid resource
reservation withcritical resources, but allows for relaxed resource availabil-
ity constraints when dealing with non-critical resources.

This indicates that programmable architectures, where thejob scheduling mech-
anism is provided (at least partly) by the application (and where the algorithms
could even be adapted on the fly), are a promising avenue towards grids offering
a wide variety of services (each having their specific service metrics and qual-
ity classes). In this approach, the grid infrastructure is coarsely managed by
cross-service components, supplemented by on-the-fly configurable service spe-
cific management components. The latter components manage the resources allo-
cated to the service on a fine grained level, optimizing job throughput and service
quality simultaneously according to service specific attributes and metrics. In this
paper we show howscheduling hintscan be incorporated into job descriptions.
The goal of these hints is to enable a Grid scheduler to estimate the critical level
of the different resource types w.r.t. that job. Because hints are contained in the
job description, they are available at each scheduler in theGrid to which the job is
submitted or forwarded.
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This paper continues as follows: section B.2 starts with a short description
of the related work. In section B.3, we give an overview of therelevant simu-
lation models used: the Grid, Resource, VPN, Job and Scheduling Hint models
are explained in detail. In section B.4, we discuss the various algorithms that we
compared; they differ from each other in (i) the types of resources they take into
account and (ii) whether or not they treat all jobs equally. Our simulated scenario
and corresponding results are presented in section B.5, leading to the conclusions
in section B.6.

B.2 Related work

Well-known Grid Simulation toolkits includeGridSim [1] and SimGrid [2]. The
key difference withNSGrid [3] is that NSGrid makes use of a network simulator
(ns-2 [4]) which allows for accurate simulation down to the network packet level.

Scheduling jobs over multiple processing units has been studied extensively in
literature. Machine scheduling [5] [6] is concerned with producing optimal sched-
ules for tasks on a set of tightly-coupled processors, and provides analytical results
for certain objective functions. Jobs are commonly modelled as task graphs, or as
continuously divisible work entities. As these models do not deal with “network
connections” or “data transfers”, they do not capture all the Grid-specific ingredi-
ents described in the previous section. Grid scheduling strategies which take both
computational resource load and data locality into accountare extensively dis-
cussed in [7]. The use of Application-specific scheduling hints is not considered
however.

TheMetacomputing Adaptive Runtime System(MARS) [8] is a framework for
utilizing a heterogeneous WAN-connected metacomputer as adistributed comput-
ing platform. When scheduling tasks, the MARS system takes into account Com-
putational Resource and Network load, and statistical performance data gathered
from previous runs of the tasks. As such, the MARS approach differs from the
scheduling model simulated by NSGrid, as NSGrid allows foruser preferencesto
be taken into account as well.

Application-level scheduling agents, interoperable withexisting resource man-
agement systems have been implemented in theAppLeS[9] work. Essentially, one
separate scheduler needs to be constructed per applicationtype. Our simulation en-
vironment allows the simulation of multiple scheduling scenarios, including those
using a single centralized schedule as well as those having multiple competing
schedulers (not necessarily one per application type).
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B.3 Simulation model

B.3.1 Grid model

Grids are modelled as a collection of interconnected and geographically dispersed
Grid sites. Each Grid Site can contain multipleresourcesof different kinds such
as Computational Resources (CRs) and Storage Resources (SRs) interconnected
by VPN links. At each Grid Site, resource properties and status information are
collected in a localInformation Service. Jobs are submitted through aGrid Portal
and are scheduled on some collection of resources by aScheduler. To this end, the
scheduler makesreservationswith the appropriateResource Managers.

B.3.2 Grid resource models

Each Grid site can offer one or more CRs and/or SRs. A CR is a monolithic entity,
described by its total processing power in MIPS, the maximumnumber of jobs
that it can handle simultaneously and the maximum slice of processing power (in
MIPS) that can be reserved for a single job. An SR on the other hand, serves
the purpose of providing disk space to store input and outputdata. In our model,
their basic properties include the total available storagespace, the input data sets
currently stored at the resource and the speed at which the resource can read and
write data. While a SR does not perform computational work, itcan be attached to
the same network node as some CR. Interconnections between local resources are
modelled as a collection of point-to-point VPN links, each offering a guaranteed
total bandwidth available to Grid jobs. Of course, these VPNlinks can only be set
up if, in the underlying network, a route (with sufficient bandwidth capacity) exists
between the nodes to which these resources are attached. Different Grid Sites can
be interconnected by a VPN link. These models are covered in more detail in [3].

B.3.3 Job model

The atomic (i.e. that which cannot be parallelized) unit of work used throughout
this paper is coined with the termjob. Each job is characterized by its length
(measured ininstructions), its requiredinput data sets, its need forstorage, and
the burstinesswith which these data streams are read or written. During a job’s
execution, a certain minimal computational progress is to be guaranteed at all times
(i.e. a deadline relative to the starting time is to be met).

Knowing the job’s total length (in million instructions, MI) and the frequency
at which each input (output) stream is read (written), the total execution length of
a job can be seen as a concatenation of instruction “blocks”.The block of input
data to be processed in such an instruction block is to be present before the start of
the instruction block; that data is therefore transferred from the input source at the
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start of the previous instruction block. In a similar way, the output data produced
by each instruction block is sent out at the beginning of the next instruction block.
We assume these input and output transfers occur in parallelwith the execution of
an instruction block. Only when input data is not available at the beginning of an
instruction block or previous output data has not been completely transferred yet,
a job is suspended until the blocking operation completes. The presented model
allows us to mimic bothstreamingdata (high read or write frequency) anddata
stagingapproaches (read frequency set to1). A typical job execution cycle (one
input stream and one output stream) is shown in figure B.1.

t

concurrent 
tasks

input 1

processing

input 2

processing

output 2

MIjob/MIPSreserved

processing

input 3

output 1

MIjob/MIPSreserved

/#reads

MIjob/MIPSreserved

/#writes

Figure B.1: Simulated job lifespan with indication of start-of-I/O events; non-blocking job

B.3.4 Scheduling hints model

From the job model described in the previous section, it is clear that the computa-
tional progress made by a job is determined by both the computational power and
network bandwidth available to that job. As such, scheduling hints (distributed
together with the job description) describe

• the resource types that are to be taken into account when scheduling this
job; any subset of{Computational / Network Resource} can be
specified.

• for each of the above resource types, the size of an acceptable (not pre-
venting the job from being scheduled on that resource) deviation from the
resource’s performance delivered to that job (described inthe job require-
ments).

It is not desirable to have critical resources deliver a less-than-minimal perfor-
mance to the job, while this may not matter much for non-critical resources.
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B.4 Algorithms

When jobs are submitted to a Grid Portal, a Scheduler needs to decide where to
place the job for execution. As has been mentioned previously, we discriminate
between algorithms using two criteria: the type of resources they take into account
and whether or not they take into account scheduling hints. If the scheduler is un-
able to allocate the needed resources for a job, the job gets queued for reschedul-
ing in the next scheduling round. The time between two scheduling rounds can
be fixed, but it is also possible to set a threshold which triggers the next schedul-
ing round. During each scheduling round, every algorithm processes submitted
yet unscheduled jobs in a greedy fashion, attempting to minimize job completion
time. Once scheduled, our scheduler does not pre-empt jobs.

B.4.1 Algorithm “NoNetwork”

As the name implies, this algorithm does not take into account the status of Net-
work Resources when scheduling jobs. Rather, it assumes that only CRs are criti-
cal for each job. Furthermore, it will treat minimal job requirements as hard con-
straints; it disregards hints that might propose a softer approach. At first, “NoNet-
work” will attempt to place a job on a site’s local CRs, only using remote resources
when strictly necessary (we believe this to be a plausible approach from an eco-
nomic viewpoint). If this is impossible, and at least one remote CR is available,
that job will be scheduled on the remote CR offering most processing power. It
is therefore expected that this algorithm will perform badly when dealing with a
significant amount of “I/O-bound” jobs: due to “blocking”, these jobs will finish
considerably later than predicted by the scheduling algorithm.

B.4.2 Algorithm “PreferLocal”

Similar to the “NoNetwork” algorithm, “PreferLocal” will apriori attempt to place
a job on a site’s local CRs. If this turns out to be impossible,remote CRs will
be considered. While looking for the best resources for a particular job, however,
“PreferLocal” not only considers the status of CRs, but alsothe residual bandwidth
on network links connecting Computational and Storage Resources. The best re-
source combination is the one that maximizes the job’s computational progress.
For a job requiring one CR and one SR (in different Grid Sites,connected through
a VPN link), the maximal computational progress (expressedin MIPS) that can be
delivered to that job is given by

MIPSeff = min
CR,VPN

(MIPSCR,
MI ∗ BWVPN

8 ∗DATASIZE
)

It is easily verified that it makes no sense to allocate a bigger portion of the best
CR’s power to this job, as due to network limitations, the jobcannot be processed
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at a higher rate. In a similar way, due to CR limitations, it makes no sense to allo-
cate more bandwidth to the job than8∗DATASIZE∗MIPSeff

MI
. Like “NoNetwork”,

“PreferLocal” does not adapt its strategy using job-specific hints.

B.4.3 Algorithm “Service”

Algorithm “Service”, like “PreferLocal”, considers both Computational and Net-
work Resources when scheduling jobs. However, instead of immediately rejecting
those resource combinations that would not allow some of thejob’s minimal re-
quirements to be met, it can still select those resources (ifnone better are found)
if this is declared “acceptable” by the appropriate job hint. For instance, jobs
can specify that their available network bandwidth requirements are less important
than their computational requirements (and/or quantify the relative importance), or
that there is no gain in finishing the job before its deadline (i.e. no gain in attempt-
ing to maximize that job’sMIPSeff ). Using these hints, jobs can be divided into
different classes, where all jobs in one class have similar associated hints. The
algorithm can then be seen as delivering the same service to each of those jobs in
a single class.

B.5 Simulation results

B.5.1 Simulated Grid

A fixed Grid topology was used for all simulations presented here (see figure B.2).
This topology is depicted in table B.1. Grid control components are interconnected
by means of dedicated network links providing for out-of-band Grid control traffic
(as shown by the dotted network links).

B.5.2 Simulated jobs

In our simulations, two types of hints were used (i.e. two service types). The first
type of hint is supplied with CPU-bound jobs, and specifies that the job should
be scheduled on the fastest CR, even if this means schedulingthe job on a remote
resource when it could have been scheduled locally. The second type of hint is
distributed with I/O-bound jobs, stating that these jobs are better off being sched-
uled using only local resources, as this offers better chances of allocating sufficient
network bandwidth. In both cases, however, resource loads are not ignored; rather,
thepreferredexecution rate for a job is no longer treated as a rigid minimum.

We have compared the “Service” algorithm (which understands and uses the
hints as specified) for this job set with the “NoNetwork” and “PreferLocal” algo-
rithms, both disregarding the hints.
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Service type I/O size MI
I/O-bound 6100 MB 12500000

CPU-bound 0.4 MB 25000000

Table B.1: Simulated job classes

Figure B.2: Simulated topology

B.5.3 Per-class response times

The average job response time for each algorithm is shown in figure B.3. The
figure shows both the overall response rate and the per-classresponse rates when
20% I/O jobs and 80% CPU intensive jobs are submitted to the Grid. As expected,
“NoNetwork” fails to produce good schedules for I/O-bound jobs, as it ignores
network loads (which are, of course, of particular importance to this type of job).
In addition, notice that the use of hints (algorithm “Service”) improves the average
response time for CPU-bound jobs (which make up most of the jobs in this sim-
ulation). Indeed, some jobs are now processed at a rate (slightly) lower than the
preferred one (the goal of the hints is exactly to specify that this is allowed), but
finish sooner than if they were delayed in time.

B.5.4 Response times with varying class representation

In these simulations we stressed the three Grid sites by submitting a heavy job
load (parameterized by the percentage of I/O-bound jobs in the total job load).
The resulting average job response time for the three algorithms (as a function of
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the percentage of I/O-bound jobs) is shown in figure B.4.

When only CPU-bound jobs are submitted, “NoNetwork” performs like “Prefer-
Local”, as we remarked previously. Note that “Service” performs slightly better,
as this algorithm does not prefer local resources over remote. When the amount of
I/O-bound jobs is increased, “NoNetwork” performance degrades as network load
status gains importance when scheduling jobs. Since “PreferLocal” always tries
local resources first (instead of the best resources), it will schedule more I/O-bound
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jobs remotely (i.e. using lower-bandwidth links) as CPU-bound jobs (the majority)
use up these local resources; this accounts for the difference with “Service”. Once
the fraction of I/O-bound jobs passes60%, the network links of our simulated Grid
saturate, and the three algorithms’ performance converges.

B.6 Conclusions

In this paper we have shown the benefits of using active scheduling mechanisms
in a service oriented Grid environment. In particular, we used NSGrid to compare
the efficiency of schedules produced by algorithms that do not take into account
the service specific needs of a job, to schedules produced by algorithms that use
service scheduling hints. It was shown that when using the latter algorithms, av-
erage job response times in our simulated scenario improvedsignificantly (up to
30% in some cases).
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Abstract Computational Grids consist of an aggregation of data and com-
puting resources, which can be co-allocated to execute large data-intensive tasks
which cannot be handled by an individual resource. The vast amounts of (possibly
remote) data these tasks process give rise to the need for a high-capacity network
interconnecting the various resources. In this paper, it isargued that, in order to
obtain quality job schedules resulting in low throughput times while making effi-
cient use of available resources, network- and service-aware algorithms need to
be used. We present several heuristic algorithms, which we simulate extensively in
order to gain insight in the quality of the generated schedules. In particular, in a
Grid with heterogeneous Computational Resources and link capacities, we show
how the average job response time can be improved by distinguishing between
data-intensive and compute-intensive jobs, and scheduling these jobs based upon
both Computational Resource and network load. We show that the heuristics pre-
sented perform well when compared to an Integer Linear Programming approach
modelling a periodic on-line scheduler.
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C.1 Introduction

In parallel and distributed computing communities, a lot ofattention has recently
been paid to Computational Grids. These Grids are conceivedas a collection of
resources of various types (computational, storage, etc.), distributed over multiple
geographical locations. The underlying principle of an operational Grid is that
several resources can be co-allocated to the same resource-intensive task, over-
coming each resource’s individual limitations. These resource-intensive tasks will
typically operate on large amounts of data, which must be transferred from its
storage site to the processing site. This implies that, whenscheduling jobs on this
Grid, gathering information on data location and network bandwidth availability
is essential in order to generate quality schedules.

Scheduling algorithms for parallel computing systems havebeen studied exten-
sively in literature [1]. Most approaches assume a discreteworkload (e.g. jobs) and
use a stochastic [2, 3] or linear programming model [4]. Divisible load theory [5],
on the other hand, assumes a continuously divisible load, and seems well suited to
model a Grid, as it leads to fairly easy systems of equations,even for large problem
sizes. However, in order to remain analytically tractable,these techniques trade in
some of the characteristic properties of a Grid by simplifying network and/or job
models or focusing on a particular topology.

More accurate grid models require the use of simulation tools in order to be
evaluated. In [6] and [7], network-awareness is introducedin the scheduling de-
cisions by replicating data to suitable sites; jobs can thenbe scheduled to run at a
site holding all the necessary data. Our in-house developedNS2-based Grid sim-
ulator NSGrid [8, 9] extends this model by allowing data to betransferred to the
execution site while the job has already been started, and this extension is used in
the simulations described here.

In this paper, we use this simulator to investigate the generation of schedules
for a Grid in which the core network uses high capacity (possibly optical) core
links. While this approach seemingly provides for abundant bandwidth in the net-
work, it follows from the expected Grid job size in the near future (the expected
data size generated yearly in the European DataGrid projectis in the order of 12-14
PB/year [10]) that high-bandwidth (typically found in optical networks) intercon-
nections are a necessity, not a luxury. This implies that naive scheduling heuristics,
which assume “infinite” (or at least “sufficient”) network bandwidth at all times or
ignore the network altogether are unable to generate quality schedules, both in
terms of average job response time and in terms of efficient resource utilization.

We verify this through simulation of different scheduling heuristics and calcu-
lation of an ILP solution to the problem, operating on a suitable workload (con-
sisting of a mix of different types of Grid jobs requiring sufficiently high compu-
tational power and network bandwidth).
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The remaining sections of this paper are organized as follows: Section C.2 ex-
plains how the various Grid components in our simulation environment are mod-
elled. A concise description of the scheduling problem addressed here, the ILP
model of a periodic, on-line scheduler and the heuristics used in our simulations
are presented in section C.3. Our results are presented in section C.4, and the main
conclusions drawn from them are summarized in section C.5.

C.2 Grid model

For the simulations described in this paper, a Grid has been modelled as a set of
interconnected, geographically dispersedGrid sites. At each site, one or more re-
sources are present. The status and properties of these resources are stored in an
Information Servicerepository. The idea is that a single site groups “geograph-
ically close” resources, connecting them through a high-bandwidth, low-latency
network. Each site is connected to the backbone network and all simulations use
static shortest-path routing for inter-site traffic.

C.2.1 Grid resources

The resources modelled in the simulation framework includeComputational Re-
sources (CR) and Storage/Information Resources (SR/IR). Computational Resources
represent either a cluster or multi-computer, and are described by the number of
(time-shared) processors provided, the amount of memory and temporary disk
space. In order to schedule a job, a reservation can be made with a CR, con-
sisting of a time-share of a processor dedicated to that job.Storage/Information
Resources hold the data written/read by the job. We use the notationC for the set
of Computational Resources, with elementsc ∈ C.

Jobs transfer data from and to remote resources usingconnections, which act
as point-to-point bandwidth pipes between a pair of resources and are allocated
with the network management system by the grid scheduler. This allows the net-
work to be viewed as a resource (with limited renewable capacity a.k.a. bandwidth,
of which a portion can be reserved for a connection), giving the scheduler the pos-
sibility to generate accurate network-aware schedules, and balance computation
vs. communication bottlenecks. We use the notationE for the collection of net-
work links, where eache ∈ E has a bandwidthBe.

C.2.2 Jobs

We reserve the termjob for atomic units of work. Jobsj ∈ J are characterized
by their computational and communication (I/O) complexity. The first property is
captured using thereference running timetj (time to execute on a reference proces-
sor when not experiencing any communication bottlenecks).The communication



C-4 APPENDIX C

Scheduling

Algorithm


ILP

Heuristics

- Network unaware

- Network aware

- Link Load Min.

- Service Diff.


Central

Job


Queue

Job Submissions


Rejected

Jobs


Accepted

Jobs


Resubmission in queue


Grid

Info


Service

Start execution


Allocate assigned resources


Figure C.1: General overview of scheduling algorithm

complexity is specified by a number of parameters: the data sets the job needs as
input (total sizedr

j ), the size of the outputs it produces (total sizedw
j ), whether or

not I/O are processed block-per-block (the opposite case iswhen all input data is
pre-staged to the CR the job is running onprior to execution) and the amount of
separate blocks I/O data is divided into (if applicable). This allows to simulate data
streamswith arbitrary precision. The fundamental relation between computation
and communication in our model is that a data block can only beprocessed when
it has arrived entirely; if this is not the case, the job’s computational progress is
blocked.

C.3 Scheduling algorithms

The scheduling algorithms we use arequeueingalgorithms (see figure C.1) that
attempt to schedule jobs in a FCFS fashion [11], and, once a job is scheduled,
the scheduler does not attempt to pre-empt jobs. Since this introduces the risk of
allocating minimal leftover computational resource time shares to certain jobs, we
have demanded that a processor can be time-shared by at most aspecified number
of concurrent jobsNc. Our scheduling algorithms are executed periodically; after
a specified amount of timeT , all job requests are taken into consideration, and,
based on the state of the grid’s resources at that time, a schedule is calculated.

C.3.1 ILP

In this section we present an Integer Linear Programming (ILP) model, which
captures all important parameters in the scheduling problem. It is well known
that ILP is a computationally intensive technique. This, together with the fact
that the proposed grid and job models are both very generic, obliges us to impose
additional restrictions to the model. We model a grid as a collectionC of resources,
where eachc ∈ C has a processing capacityPc and unlimited storage capacity. We



NETWORK AWARE SCHEDULING IN GRIDS C-5

assume a job can only be executed at its reference processingspeed, and thus
the execution length is given by the reference running timetj . This also implies
the job is not held up by communication bottlenecks. We further assume a job
has only one input and one output block, which is to be transferred at a constant

datarate during the job’s execution. It follows that a job requiresbr
j =

dr
j

tj
of input

bandwidth, andbw
j =

dw
j

tj
of output bandwidth. Two additional parameters for the

ILP model are the budgetwj which a job pays if it is accepted for execution, and
the arrival sitesj . We introduce the following binary variables:

• xj = 1 ⇐ : job j is accepted for execution.

• yp
jc = 1 ⇐ : job j uses processing power of resourcec.

ys
jc = 1 ⇐ : job j uses storage capacity of resourcec.

• zr
je = 1 ⇐ : job j uses network linke for input.

zw
je = 1 ⇐ : job j uses network linke for output.

These variables allow us to express the cost to execute a job,which is given by
a weighted sum of the processing cost and the transfer cost:

Cj = α×kj×
∑

c∈C

(Cp
c×pj×yp

jc)+β×kj×
∑

e∈E

(Cb
e×(br

j×zr
je+bw

j ×zw
je)) (C.1)

wherekj = ⌈
tj

T
⌉ is the number of periods a task will run, andCp

c andCb
e are

the costs for using resourcec and network linke during one time unit. Parame-
tersα andβ allow us to give priority to CPU-bound or network-bound jobs. We
investigate their influence on the scheduler in section C.4.3.2.

Our objective function, stated below, expresses theprofit our scheduler makes
by choosing which tasks to execute where. Clearly our goal isto maximize this
function, as it strikes a balance between a user’s perceivedsatisfaction (high ac-
ceptance rate) and the provider’s optimal resource utilization (keeping the costs
low means jobs are executed close to where they are submitted).

f =
∑

j∈J

(wj × xj − Cj) (C.2)

We now introduce the constraints which need to be satisfied. Recall that all
variables are binary-valued. We first state that an acceptedjob uses computational
power of exactly one resource, uses its submission site as storage site, and possibly
uses multiple network links:

∀j ·
∑

c∈C

yp
jc = xj ; ∀j · ys

jc =

{

xj if c = sj

0 otherwise
; ∀j · ∀e · zr,w

je ≤ xj

(C.3)
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The following constraints limit the usage of the individualresources:

∀c·
∑

j∈J

yp
jc ≤ Nc ; ∀c·

∑

j∈J

(pj×yp
jc) ≤ Pc ; ∀e·

∑

j∈J

(br
j×zr

je+bw
j ×zw

je) ≤ Be

(C.4)
The model is completed by expressing the balance of flows in the network

(analogous constraints are necessary for variableszw
je):

∀j · ∀u ·
∑

v∈V

(u,v)∈E

zr
j(u,v) −

∑

v∈V

(u,v)∈E

zr
j(v,u) = ys

ju − yp
ju (C.5)

C.3.2 Heuristics

The ILP model described above can only be used to solve an offline scheduling
problem because of its computational intensiveness (i.e. it is unsuitable as an
actual scheduling algorithm implementation). Below we give an overview of the
scheduling heuristics that were used in our study and compare their results with
the ILP solution.

C.3.2.1 Network Unaware

We have used network unaware scheduling as a naive heuristicfor comparison.
This heuristic will compute job schedules based on CR/IR/SRstatus. It does
not take into account information concerning the status of resource interconnec-
tions. Because of this, job processing can block on I/O operations: computational
progress is no longer determined by the CR’s processor fraction that has been al-
located to a job (which, together with the job’s length and the CR’s relative speed
determines its earliest end timeif all input and output transfers complete on time
i.e. before the start of the appropriate instruction block), but rather by the limited
bandwidth available to its I/O streams.

C.3.2.2 Network Aware

Network aware algorithms will not only query the Information Services (for re-
sources adhering to the job’s requirements), but also the network management for
information about the status of the interconnecting network links. Based on both
the Information Services’ and Connection Manager’s answer, the heuristic is able
to calculate job execution speed and end time more accurately, taking into account
the speed at which data can be delivered to (or sent from) eachavailable CR. For
jobs with one input and one output stream, the best resource (CR/IR/SR) triplet
is the one that minimizes the expected completion time of thejob. This value is
determined by the available processing power to that job on the Computational
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Resource, the job’s length, the job’s total I/O size and the residual bandwidth on
the links from IR to CR and from CR to SR.

C.3.2.3 Minimum Hop Count

This heuristic attempts to minimize network usage when scheduling jobs. In order
to achieve this, the scheduler evaluates the network load each CR/IR/SR triplet
selection would generate for a given job, and chooses to schedule the job on the
triplet that minimizes this network usage. Typically, whenjobs require that their
I/O be streamed from/to the originating site, this heuristic will first attempt to
schedule the job on local resources, and, when this is infeasible, will try to submit
the job to a CRas close as possible to the job’s originating site, minimizing the
amount of network links that data has to be sent over.

C.3.2.4 Service differentiation

The Service Differentiation heuristic will compute the data intensity of a job, based
on the job’s I/O and processing requirements, and, based on this metric, will clas-
sify the job as either a data intensive or a computational intensive job. Data in-
tensive jobs will only be scheduled on resources local to thejob’s originating site
(if these resources adhere to the job’s requirements). If nolocal processing slots
are available, the data intensive jobs are queued for local processing. Jobs in the
other service class will be scheduled on remote processing resources (in a network
aware manner), in order to maximize the chance of having local processing slots
available for data intensive jobs.

C.4 Simulation results

C.4.1 Simulated topology

The Grid topology used in our simulations is shown in figure C.2. The topology is
symmetric and consists of 12 Grid sites (8 edge and 4 core sites) interconnected by
means of bidirectional optical links (2, 5Gb/s links between edge and core sites,
and a5Gb/s ring network between core sites). Furthermore, each core site con-
nects two edge sites to the core ring network. Each site contains an IR/SR/CR and
an Information Service management component responsible for tracking resource
properties. Jobs are submitted to the site through that site’s user interface. Core
sites differ from edge sites in terms of the offered Computational Resource; both
CR types have 4 processors, capable of running 8 jobs simultaneously, but a core
CR offers three times the processing speed of its edge counterpart. A site’s local
interconnections are modelled as fiber channel links capable of transmitting data
at10Gb/s.
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(a) Grid site (b) Grid topology

Figure C.2: Simulated topology

C.4.2 Grid jobs

The user interface at each Grid site submits two different job types: data-intensive
and cpu-intensive jobs. Both job types have the same reference run time, but they
differ in the amount of I/O data they need/generate. Jobs areinstantiated at speci-
fied time intervals, according to the interarrival time (IAT) distribution of the job’s
class. Furthermore, all jobsstreamtheir I/O from/to the originating site’s local
IR/SR. Average job parameters have been summarized in tableC.1. In each simu-
lation, the job load consists of 405 jobs. We chose to use a fixed interval of1000s

between consecutive scheduling rounds.

CPU-Job Data-Job
Input(GB) 15.6 156

Output(GB) 15.6 156
IAT(s) 1350 5400

Ref. run time(s) 10000 10000

Table C.1: Job properties

C.4.3 Results

C.4.3.1 Bandwidth of core network

The job throughput for different core network bandwidth values is shown in fig-
ure C.3. We clearly see that, for the given job load, a “sufficient” bandwidth exists;
going above this value has little to no effect on the job throughput and thus implies
an overdimensioned core network.
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Figure C.3: ILP job throughput
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Figure C.4: ILP utilization of core sites

C.4.3.2 Parameters of ILP

Figure C.4 depicts the utilization of the core sites for various values of the quotient
β
α

. This quotient expresses the relative cost between the usage of a network link
and a computational resource. Clearly, higher values implythat using the network
becomes more and more expensive, and thus local execution becomes preferable.
We performed this experiment for different values of the jobinterarrival times
(IAT); higher job arrival rates generate higher site utilization as long as the network
is cheap enough. When the usage of the network becomes too expensive, the site
utilization drops notably.
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Figure C.5: Average job turnaround times

C.4.3.3 Turnaround time

Figure C.5 shows the average job turnaround time (time between arrival of a job
and the time it finishes) for the different scheduling heuristics discussed above.
The “Service” heuristic clearly provides the best performance, by pushing cpu-
intensive jobs to remote processing sites, and, in doing so,reserving the local
processing slots for data-intensive jobs. It is exactly because remote processing a
lot of data-intensive jobs causes a network bottleneck (andthereby causes process-
ing to be blocked), that the network aware “Minimum Hop Count” and “Service”
heuristics perform well.

C.4.3.4 Network utilization

The difference in network utilization resulting from deploying different scheduling
heuristics is shown in figure C.6 (the lower part of each bar represents network uti-
lization of data-intensive jobs). The metric used here is called weighted hopcount,
as we took into account the fact that data-intensive jobs useon average10 times
more data than other jobs. The results show that the least network traffic flows
when we make use of the service differentiation heuristic, maximizing the chance
that data-intensive jobs obtain a local processing slot.

C.5 Conclusions

Our main observations are that due to the expected size of thedata transferred by a
Grid job in the future, even with high-capacity network links, naive (non-network
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Figure C.6: Weighted average hopcount

aware) heuristics are outperformed by network-aware scheduling strategies both
from the end user’s viewpoint (job turnaround time) and fromthe provider’s view-
point (network usage efficiency). Furthermore, if multipleapplications with differ-
ent bandwidth requirements are run on the Grid, further improvements are possible
by deploying different service-oriented scheduling strategies.
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